Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
d963d69e
M
models
项目概览
PaddlePaddle
/
models
1 年多 前同步成功
通知
226
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
d963d69e
编写于
5月 22, 2018
作者:
G
guosheng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Make fast decoder run smoothly in Transformer
上级
dead21e4
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
220 addition
and
69 deletion
+220
-69
fluid/neural_machine_translation/transformer/config.py
fluid/neural_machine_translation/transformer/config.py
+33
-24
fluid/neural_machine_translation/transformer/infer.py
fluid/neural_machine_translation/transformer/infer.py
+131
-12
fluid/neural_machine_translation/transformer/model.py
fluid/neural_machine_translation/transformer/model.py
+56
-33
未找到文件。
fluid/neural_machine_translation/transformer/config.py
浏览文件 @
d963d69e
...
...
@@ -33,12 +33,12 @@ class TrainTaskConfig(object):
class
InferTaskConfig
(
object
):
use_gpu
=
Tru
e
use_gpu
=
Fals
e
# the number of examples in one run for sequence generation.
batch_size
=
10
batch_size
=
2
# the parameters for beam search.
beam_size
=
5
max_
length
=
30
max_
out_len
=
30
# the number of decoded sentences to output.
n_best
=
1
# the flags indicating whether to output the special tokens.
...
...
@@ -103,24 +103,28 @@ def merge_cfg_from_list(cfg_list, g_cfgs):
break
# The placeholder for batch_size in compile time. Must be -1 currently to be
# consistent with some ops' infer-shape output in compile time, such as the
# sequence_expand op used in beamsearch decoder.
batch_size
=
-
1
# The placeholder for squence length in compile time.
seq_len
=
ModelHyperParams
.
max_length
# Here list the data shapes and data types of all inputs.
# The shapes here act as placeholder and are set to pass the infer-shape in
# compile time.
input_descs
=
{
# The actual data shape of src_word is:
# [batch_size * max_src_len_in_batch, 1]
"src_word"
:
[(
batch_size
*
(
ModelHyperParams
.
max_length
+
1
),
1L
),
"int64"
],
"src_word"
:
[(
batch_size
*
seq_len
,
1L
),
"int64"
,
2
],
# The actual data shape of src_pos is:
# [batch_size * max_src_len_in_batch, 1]
"src_pos"
:
[(
batch_size
*
(
ModelHyperParams
.
max_length
+
1
)
,
1L
),
"int64"
],
"src_pos"
:
[(
batch_size
*
seq_len
,
1L
),
"int64"
],
# This input is used to remove attention weights on paddings in the
# encoder.
# The actual data shape of src_slf_attn_bias is:
# [batch_size, n_head, max_src_len_in_batch, max_src_len_in_batch]
"src_slf_attn_bias"
:
[(
batch_size
,
ModelHyperParams
.
n_head
,
(
ModelHyperParams
.
max_length
+
1
),
(
ModelHyperParams
.
max_length
+
1
)),
"float32"
],
"src_slf_attn_bias"
:
[(
batch_size
,
ModelHyperParams
.
n_head
,
seq_len
,
seq_len
),
"float32"
],
# This shape input is used to reshape the output of embedding layer.
"src_data_shape"
:
[(
3L
,
),
"int32"
],
# This shape input is used to reshape before softmax in self attention.
...
...
@@ -129,24 +133,23 @@ input_descs = {
"src_slf_attn_post_softmax_shape"
:
[(
4L
,
),
"int32"
],
# The actual data shape of trg_word is:
# [batch_size * max_trg_len_in_batch, 1]
"trg_word"
:
[(
batch_size
*
(
ModelHyperParams
.
max_length
+
1
),
1L
),
"int64"
],
"trg_word"
:
[(
batch_size
*
seq_len
,
1L
),
"int64"
,
2
],
# lod_level is only used in fast decoder.
# The actual data shape of trg_pos is:
# [batch_size * max_trg_len_in_batch, 1]
"trg_pos"
:
[(
batch_size
*
(
ModelHyperParams
.
max_length
+
1
)
,
1L
),
"int64"
],
"trg_pos"
:
[(
batch_size
*
seq_len
,
1L
),
"int64"
],
# This input is used to remove attention weights on paddings and
# subsequent words in the decoder.
# The actual data shape of trg_slf_attn_bias is:
# [batch_size, n_head, max_trg_len_in_batch, max_trg_len_in_batch]
"trg_slf_attn_bias"
:
[(
batch_size
,
ModelHyperParams
.
n_head
,
(
ModelHyperParams
.
max_length
+
1
),
(
ModelHyperParams
.
max_length
+
1
)),
"float32"
],
"trg_slf_attn_bias"
:
[(
batch_size
,
ModelHyperParams
.
n_head
,
seq_len
,
seq_len
),
"float32"
],
# This input is used to remove attention weights on paddings of the source
# input in the encoder-decoder attention.
# The actual data shape of trg_src_attn_bias is:
# [batch_size, n_head, max_trg_len_in_batch, max_src_len_in_batch]
"trg_src_attn_bias"
:
[(
batch_size
,
ModelHyperParams
.
n_head
,
(
ModelHyperParams
.
max_length
+
1
),
(
ModelHyperParams
.
max_length
+
1
)),
"float32"
],
"trg_src_attn_bias"
:
[(
batch_size
,
ModelHyperParams
.
n_head
,
seq_len
,
seq_len
),
"float32"
],
# This shape input is used to reshape the output of embedding layer.
"trg_data_shape"
:
[(
3L
,
),
"int32"
],
# This shape input is used to reshape before softmax in self attention.
...
...
@@ -162,17 +165,18 @@ input_descs = {
# This input is used in independent decoder program for inference.
# The actual data shape of enc_output is:
# [batch_size, max_src_len_in_batch, d_model]
"enc_output"
:
[(
1
,
(
ModelHyperParams
.
max_length
+
1
),
ModelHyperParams
.
d_model
),
"float32"
],
"enc_output"
:
[(
batch_size
,
seq_len
,
ModelHyperParams
.
d_model
),
"float32"
],
# The actual data shape of label_word is:
# [batch_size * max_trg_len_in_batch, 1]
"lbl_word"
:
[(
1
*
(
ModelHyperParams
.
max_length
+
1
)
,
1L
),
"int64"
],
"lbl_word"
:
[(
batch_size
*
seq_len
,
1L
),
"int64"
],
# This input is used to mask out the loss of paddding tokens.
# The actual data shape of label_weight is:
# [batch_size * max_trg_len_in_batch, 1]
"lbl_weight"
:
[(
1
*
(
ModelHyperParams
.
max_length
+
1
),
1L
),
"float32"
],
# These two inputs are used for beam search decoder.
# "start_token": [(1 * 1, 1L), "int64"],
"lbl_weight"
:
[(
batch_size
*
seq_len
,
1L
),
"float32"
],
# These inputs are used to change the shape tensor in beam-search decoder.
"trg_slf_attn_pre_softmax_shape_delta"
:
[(
2L
,
),
"int32"
],
"trg_slf_attn_post_softmax_shape_delta"
:
[(
4L
,
),
"int32"
],
"init_score"
:
[(
batch_size
,
1L
),
"float32"
],
}
# Names of position encoding table which will be initialized externally.
...
...
@@ -203,7 +207,12 @@ decoder_util_input_fields = (
label_data_input_fields
=
(
"lbl_word"
,
"lbl_weight"
,
)
fast_decoder_data_fields
=
(
# In fast decoder, trg_pos (only containing the current time step) is generated
# by ops and trg_slf_attn_bias is not needed.
fast_decoder_data_input_fields
=
(
"trg_word"
,
# "start_token
",
"init_score
"
,
"trg_src_attn_bias"
,
)
fast_decoder_util_input_fields
=
decoder_util_input_fields
+
(
"trg_slf_attn_pre_softmax_shape_delta"
,
"trg_slf_attn_post_softmax_shape_delta"
,
)
fluid/neural_machine_translation/transformer/infer.py
浏览文件 @
d963d69e
...
...
@@ -397,7 +397,7 @@ def infer(args):
(
decoder_data_input_fields
[
-
1
],
),
[
predict
.
name
],
InferTaskConfig
.
beam_size
,
InferTaskConfig
.
max_
length
,
InferTaskConfig
.
max_
out_len
,
InferTaskConfig
.
n_best
,
len
(
data
),
ModelHyperParams
.
n_head
,
...
...
@@ -416,16 +416,135 @@ def infer(args):
print
(
" "
.
join
([
trg_idx2word
[
idx
]
for
idx
in
seq
]))
def
prepare_batch_input
(
insts
,
data_input_names
,
util_input_names
,
src_pad_idx
,
bos_idx
,
n_head
,
d_model
,
place
):
"""
Put all padded data needed by inference into a dict.
"""
src_word
,
src_pos
,
src_slf_attn_bias
,
src_max_len
=
pad_batch_data
(
[
inst
[
0
]
for
inst
in
insts
],
src_pad_idx
,
n_head
,
is_target
=
False
)
# start tokens
trg_word
=
np
.
asarray
([[
bos_idx
]]
*
len
(
insts
),
dtype
=
"int64"
)
trg_src_attn_bias
=
np
.
tile
(
src_slf_attn_bias
[:,
:,
::
src_max_len
,
:],
[
1
,
1
,
1
,
1
]).
astype
(
"float32"
)
# These shape tensors are used in reshape_op.
src_data_shape
=
np
.
array
([
-
1
,
src_max_len
,
d_model
],
dtype
=
"int32"
)
trg_data_shape
=
np
.
array
([
-
1
,
1
,
d_model
],
dtype
=
"int32"
)
src_slf_attn_pre_softmax_shape
=
np
.
array
(
[
-
1
,
src_slf_attn_bias
.
shape
[
-
1
]],
dtype
=
"int32"
)
src_slf_attn_post_softmax_shape
=
np
.
array
(
[
-
1
]
+
list
(
src_slf_attn_bias
.
shape
[
1
:]),
dtype
=
"int32"
)
trg_slf_attn_pre_softmax_shape
=
np
.
array
(
[
-
1
,
1
],
dtype
=
"int32"
)
# only the first time step
trg_slf_attn_post_softmax_shape
=
np
.
array
(
[
-
1
,
n_head
,
1
,
1
],
dtype
=
"int32"
)
# only the first time step
trg_src_attn_pre_softmax_shape
=
np
.
array
(
[
-
1
,
trg_src_attn_bias
.
shape
[
-
1
]],
dtype
=
"int32"
)
trg_src_attn_post_softmax_shape
=
np
.
array
(
[
-
1
]
+
list
(
trg_src_attn_bias
.
shape
[
1
:]),
dtype
=
"int32"
)
# These inputs are used to change the shapes in the loop of while op.
attn_pre_softmax_shape_delta
=
np
.
array
([
0
,
1
],
dtype
=
"int32"
)
attn_post_softmax_shape_delta
=
np
.
array
([
0
,
0
,
0
,
1
],
dtype
=
"int32"
)
def
to_lodtensor
(
data
,
place
,
lod
=
None
):
data_tensor
=
fluid
.
LoDTensor
()
data_tensor
.
set
(
data
,
place
)
if
lod
is
not
None
:
data_tensor
.
set_lod
(
lod
)
return
data_tensor
# beamsearch_op must use tensors with lod
init_score
=
to_lodtensor
(
np
.
zeros_like
(
trg_word
,
dtype
=
"float32"
),
place
,
[
range
(
trg_word
.
shape
[
0
]
+
1
)]
*
2
)
trg_word
=
to_lodtensor
(
trg_word
,
place
,
[
range
(
trg_word
.
shape
[
0
]
+
1
)]
*
2
)
data_input_dict
=
dict
(
zip
(
data_input_names
,
[
src_word
,
src_pos
,
src_slf_attn_bias
,
trg_word
,
init_score
,
trg_src_attn_bias
]))
util_input_dict
=
dict
(
zip
(
util_input_names
,
[
src_data_shape
,
src_slf_attn_pre_softmax_shape
,
src_slf_attn_post_softmax_shape
,
trg_data_shape
,
trg_slf_attn_pre_softmax_shape
,
trg_slf_attn_post_softmax_shape
,
trg_src_attn_pre_softmax_shape
,
trg_src_attn_post_softmax_shape
,
attn_pre_softmax_shape_delta
,
attn_post_softmax_shape_delta
]))
input_dict
=
dict
(
data_input_dict
.
items
()
+
util_input_dict
.
items
())
return
input_dict
def
fast_infer
(
args
):
place
=
fluid
.
CUDAPlace
(
0
)
if
InferTaskConfig
.
use_gpu
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
ids
,
scores
=
fast_decoder
(
ModelHyperParams
.
src_vocab_size
,
ModelHyperParams
.
trg_vocab_size
,
ModelHyperParams
.
max_length
+
1
,
ModelHyperParams
.
n_layer
,
ModelHyperParams
.
n_head
,
ModelHyperParams
.
d_key
,
ModelHyperParams
.
d_value
,
ModelHyperParams
.
d_model
,
ModelHyperParams
.
d_inner_hid
,
ModelHyperParams
.
dropout
,
InferTaskConfig
.
beam_size
,
InferTaskConfig
.
max_out_len
,
ModelHyperParams
.
eos_idx
)
fluid
.
io
.
load_vars
(
exe
,
InferTaskConfig
.
model_path
,
vars
=
filter
(
lambda
var
:
isinstance
(
var
,
fluid
.
framework
.
Parameter
),
fluid
.
default_main_program
().
list_vars
()))
# This is used here to set dropout to the test mode.
infer_program
=
fluid
.
default_main_program
().
inference_optimize
()
test_data
=
reader
.
DataReader
(
src_vocab_fpath
=
args
.
src_vocab_fpath
,
trg_vocab_fpath
=
args
.
trg_vocab_fpath
,
fpattern
=
args
.
test_file_pattern
,
batch_size
=
args
.
batch_size
,
use_token_batch
=
False
,
pool_size
=
args
.
pool_size
,
sort_type
=
reader
.
SortType
.
NONE
,
shuffle
=
False
,
shuffle_batch
=
False
,
start_mark
=
args
.
special_token
[
0
],
end_mark
=
args
.
special_token
[
1
],
unk_mark
=
args
.
special_token
[
2
],
clip_last_batch
=
False
)
trg_idx2word
=
test_data
.
load_dict
(
dict_path
=
args
.
trg_vocab_fpath
,
reverse
=
True
)
for
batch_id
,
data
in
enumerate
(
test_data
.
batch_generator
()):
data_input
=
prepare_batch_input
(
data
,
encoder_data_input_fields
+
fast_decoder_data_input_fields
,
encoder_util_input_fields
+
fast_decoder_util_input_fields
,
ModelHyperParams
.
eos_idx
,
ModelHyperParams
.
bos_idx
,
ModelHyperParams
.
n_head
,
ModelHyperParams
.
d_model
,
place
)
seq_ids
,
seq_scores
=
exe
.
run
(
infer_program
,
feed
=
data_input
,
fetch_list
=
[
ids
,
scores
],
return_numpy
=
False
)
# print np.array(seq_ids)#, np.array(seq_scores)
# print seq_ids.lod()#, seq_scores.lod()
hyps
=
[[]
for
i
in
range
(
len
(
data
))]
for
i
in
range
(
len
(
seq_ids
.
lod
()[
0
])
-
1
):
# for each source sentence
start
=
seq_ids
.
lod
()[
0
][
i
]
end
=
seq_ids
.
lod
()[
0
][
i
+
1
]
for
j
in
range
(
end
-
start
):
# for each candidate
sub_start
=
seq_ids
.
lod
()[
1
][
start
+
j
]
sub_end
=
seq_ids
.
lod
()[
1
][
start
+
j
+
1
]
hyps
[
i
].
append
(
" "
.
join
([
trg_idx2word
[
idx
]
for
idx
in
np
.
array
(
seq_ids
)[
sub_start
:
sub_end
]
]))
print
hyps
[
i
]
if
__name__
==
"__main__"
:
fast_decoder
(
ModelHyperParams
.
src_vocab_size
,
ModelHyperParams
.
trg_vocab_size
,
ModelHyperParams
.
max_length
+
1
,
ModelHyperParams
.
n_layer
,
ModelHyperParams
.
n_head
,
ModelHyperParams
.
d_key
,
ModelHyperParams
.
d_value
,
ModelHyperParams
.
d_model
,
ModelHyperParams
.
d_inner_hid
,
ModelHyperParams
.
dropout
,
InferTaskConfig
.
beam_size
,
InferTaskConfig
.
max_length
,
ModelHyperParams
.
eos_idx
)
print
(
fluid
.
default_main_program
())
exit
(
0
)
args
=
parse_args
()
infer
(
args
)
fast_
infer
(
args
)
fluid/neural_machine_translation/transformer/model.py
浏览文件 @
d963d69e
...
...
@@ -85,7 +85,7 @@ def multi_head_attention(queries,
# The value 0 in shape attr means copying the corresponding dimension
# size of the input as the output dimension size.
reshaped
=
layers
.
reshape
(
x
=
x
,
shape
=
[
0
,
-
1
,
n_head
,
hidden_size
//
n_head
])
x
=
x
,
shape
=
[
0
,
0
,
n_head
,
hidden_size
//
n_head
])
# permuate the dimensions into:
# [batch_size, n_head, max_sequence_len, hidden_size_per_head]
...
...
@@ -105,7 +105,7 @@ def multi_head_attention(queries,
# size of the input as the output dimension size.
return
layers
.
reshape
(
x
=
trans_x
,
shape
=
map
(
int
,
[
0
,
-
1
,
trans_x
.
shape
[
2
]
*
trans_x
.
shape
[
3
]]))
shape
=
map
(
int
,
[
0
,
0
,
trans_x
.
shape
[
2
]
*
trans_x
.
shape
[
3
]]))
def
scaled_dot_product_attention
(
q
,
k
,
v
,
attn_bias
,
d_model
,
dropout_rate
):
"""
...
...
@@ -124,17 +124,15 @@ def multi_head_attention(queries,
if
dropout_rate
:
weights
=
layers
.
dropout
(
weights
,
dropout_prob
=
dropout_rate
,
is_test
=
False
)
out
=
layers
.
matmul
(
weights
,
v
)
return
out
q
,
k
,
v
=
__compute_qkv
(
queries
,
keys
,
values
,
n_head
,
d_key
,
d_value
)
if
cache
is
not
None
:
# use cache and concat time steps
print
cache
[
"k"
].
shape
print
k
.
shape
k
=
cache
[
"k"
]
=
layers
.
concat
([
cache
[
"k"
],
k
],
axis
=
1
)
v
=
cache
[
"v"
]
=
layers
.
concat
([
cache
[
"v"
],
v
],
axis
=
1
)
q
=
__split_heads
(
q
,
n_head
)
k
=
__split_heads
(
k
,
n_head
)
v
=
__split_heads
(
v
,
n_head
)
...
...
@@ -143,7 +141,6 @@ def multi_head_attention(queries,
dropout_rate
)
out
=
__combine_heads
(
ctx_multiheads
)
# Project back to the model size.
proj_out
=
layers
.
fc
(
input
=
out
,
size
=
d_model
,
...
...
@@ -225,7 +222,7 @@ def prepare_encoder(src_word,
enc_input
=
src_word_emb
+
src_pos_enc
enc_input
=
layers
.
reshape
(
x
=
enc_input
,
shape
=
[
-
1
,
src_max
_len
,
src_emb_dim
],
shape
=
[
batch_size
,
seq
_len
,
src_emb_dim
],
actual_shape
=
src_data_shape
)
return
layers
.
dropout
(
enc_input
,
dropout_prob
=
dropout_rate
,
...
...
@@ -400,6 +397,8 @@ def make_all_inputs(input_fields):
name
=
input_field
,
shape
=
input_descs
[
input_field
][
0
],
dtype
=
input_descs
[
input_field
][
1
],
lod_level
=
input_descs
[
input_field
][
2
]
if
len
(
input_descs
[
input_field
])
==
3
else
0
,
append_batch_size
=
False
)
inputs
.
append
(
input_var
)
return
inputs
...
...
@@ -460,7 +459,6 @@ def transformer(
logits
=
predict
,
label
=
label
,
soft_label
=
True
if
label_smooth_eps
else
False
)
# cost = layers.softmax_with_cross_entropy(logits=predict, label=gold)
weighted_cost
=
cost
*
weights
sum_cost
=
layers
.
reduce_sum
(
weighted_cost
)
token_num
=
layers
.
reduce_sum
(
weights
)
...
...
@@ -595,19 +593,24 @@ def fast_decode(
enc_output
=
wrap_encoder
(
src_vocab_size
,
max_in_len
,
n_layer
,
n_head
,
d_key
,
d_value
,
d_model
,
d_inner_hid
,
dropout_rate
)
start_tokens
,
trg_src_attn_bias
,
trg_data_shape
,
\
start_tokens
,
init_scores
,
trg_src_attn_bias
,
trg_data_shape
,
\
slf_attn_pre_softmax_shape
,
slf_attn_post_softmax_shape
,
\
src_attn_pre_softmax_shape
,
src_attn_post_softmax_shape
=
\
make_all_inputs
(
fast_decoder_data_fields
+
decoder_util_input_fields
)
src_attn_pre_softmax_shape
,
src_attn_post_softmax_shape
,
\
attn_pre_softmax_shape_delta
,
attn_post_softmax_shape_delta
=
\
make_all_inputs
(
fast_decoder_data_input_fields
+
fast_decoder_util_input_fields
)
def
beam_search
():
cond
=
layers
.
create_tensor
(
dtype
=
'bool'
)
while_op
=
layers
.
While
(
cond
)
max_len
=
layers
.
fill_constant
(
shape
=
[
1
],
dtype
=
'int32'
,
value
=
max_out_len
)
step_idx
=
layers
.
fill_constant
(
shape
=
[
1
],
dtype
=
'int32'
,
value
=
0
)
init_scores
=
layers
.
fill_constant_batch_size_like
(
input
=
start_tokens
,
shape
=
[
-
1
,
1
],
dtype
=
"float32"
,
value
=
0
)
shape
=
[
1
],
dtype
=
start_tokens
.
dtype
,
value
=
max_out_len
)
step_idx
=
layers
.
fill_constant
(
shape
=
[
1
],
dtype
=
start_tokens
.
dtype
,
value
=
0
)
# cond = layers.fill_constant(
# shape=[1], dtype='bool', value=1, force_cpu=True)
cond
=
layers
.
less_than
(
x
=
step_idx
,
y
=
max_len
)
while_op
=
layers
.
While
(
cond
)
# init_scores = layers.fill_constant_batch_size_like(
# input=start_tokens, shape=[-1, 1], dtype="float32", value=0)
# array states
ids
=
layers
.
array_write
(
start_tokens
,
step_idx
)
scores
=
layers
.
array_write
(
init_scores
,
step_idx
)
...
...
@@ -616,34 +619,38 @@ def fast_decode(
"k"
:
layers
.
fill_constant_batch_size_like
(
input
=
start_tokens
,
shape
=
[
-
1
,
0
,
d_model
],
dtype
=
"float32"
,
dtype
=
enc_output
.
dtype
,
value
=
0
),
"v"
:
layers
.
fill_constant_batch_size_like
(
input
=
start_tokens
,
shape
=
[
-
1
,
0
,
d_model
],
dtype
=
"float32"
,
dtype
=
enc_output
.
dtype
,
value
=
0
)
}
for
i
in
range
(
n_layer
)]
with
while_op
.
block
():
pre_ids
=
layers
.
array_read
(
array
=
ids
,
i
=
step_idx
)
pre_scores
=
layers
.
array_read
(
array
=
scores
,
i
=
step_idx
)
pre_pos
=
layers
.
elementwise_mul
(
x
=
layers
.
fill_constant_batch_size_like
(
input
=
pre_ids
,
value
=
1
,
shape
=
[
-
1
,
1
],
dtype
=
'int32'
),
input
=
pre_ids
,
value
=
1
,
shape
=
[
-
1
,
1
],
dtype
=
pre_ids
.
dtype
),
y
=
layers
.
increment
(
x
=
step_idx
,
value
=
1.0
,
in_place
=
False
))
x
=
step_idx
,
value
=
1.0
,
in_place
=
False
),
axis
=
0
)
pre_src_attn_bias
=
layers
.
sequence_expand
(
x
=
trg_src_attn_bias
,
y
=
pre_ids
)
pre_enc_output
=
layers
.
sequence_expand
(
x
=
enc_output
,
y
=
pre_ids
)
print
caches
[
0
][
"k"
].
shape
x
=
trg_src_attn_bias
,
y
=
pre_scores
)
pre_enc_output
=
layers
.
sequence_expand
(
x
=
enc_output
,
y
=
pre_scores
)
pre_caches
=
[{
"k"
:
layers
.
sequence_expand
(
x
=
cache
[
"k"
],
y
=
pre_
id
s
),
x
=
cache
[
"k"
],
y
=
pre_
score
s
),
"v"
:
layers
.
sequence_expand
(
x
=
cache
[
"v"
],
y
=
pre_
id
s
),
x
=
cache
[
"v"
],
y
=
pre_
score
s
),
}
for
cache
in
caches
]
print
pre_caches
[
0
][
"k"
].
shape
layers
.
Print
(
pre_ids
)
# layers.Print(pre_enc_output)
# layers.Print(pre_src_attn_bias)
# layers.Print(pre_caches[0]["k"])
# layers.Print(pre_caches[0]["v"])
# layers.Print(slf_attn_post_softmax_shape)
logits
=
wrap_decoder
(
trg_vocab_size
,
max_in_len
,
...
...
@@ -662,26 +669,42 @@ def fast_decode(
caches
=
pre_caches
)
topk_scores
,
topk_indices
=
layers
.
topk
(
logits
,
k
=
beam_size
)
accu_scores
=
layers
.
elementwise_add
(
x
=
pre_scores
,
y
=
layers
.
log
(
x
=
layers
.
softmax
(
topk_scores
)))
x
=
layers
.
log
(
x
=
layers
.
softmax
(
topk_scores
)),
y
=
layers
.
reshape
(
pre_scores
,
shape
=
[
-
1
]),
axis
=
0
)
# beam_search op uses lod to distinguish branches.
topk_indices
=
layers
.
lod_reset
(
topk_indices
,
pre_ids
)
selected_ids
,
selected_scores
=
layers
.
beam_search
(
pre_ids
=
pre_ids
,
ids
=
topk_indices
,
scores
=
accu_scores
,
beam_size
=
beam_size
,
end_id
=
eos_idx
)
layers
.
increment
(
x
=
step_idx
,
value
=
1.0
,
in_place
=
True
)
# update states
layers
.
array_write
(
selected_ids
,
i
=
step_idx
)
layers
.
array_write
(
selected_scores
,
i
=
step_idx
)
layers
.
array_write
(
selected_ids
,
i
=
step_idx
,
array
=
ids
)
layers
.
array_write
(
selected_scores
,
i
=
step_idx
,
array
=
scores
)
layers
.
assign
(
pre_src_attn_bias
,
trg_src_attn_bias
)
layers
.
assign
(
pre_enc_output
,
enc_output
)
for
i
in
range
(
n_layer
):
layers
.
assign
(
pre_caches
[
i
][
"k"
],
caches
[
i
][
"k"
])
layers
.
assign
(
pre_caches
[
i
][
"v"
],
caches
[
i
][
"v"
])
layers
.
assign
(
slf_attn_pre_softmax_shape
+
attn_pre_softmax_shape_delta
,
slf_attn_pre_softmax_shape
)
layers
.
assign
(
layers
.
elementwise_add
(
x
=
slf_attn_post_softmax_shape
,
y
=
attn_post_softmax_shape_delta
),
slf_attn_post_softmax_shape
)
max_len_cond
=
layers
.
less_than
(
x
=
step_idx
,
y
=
max_len
)
all_finish_cond
=
layers
.
less_than
(
x
=
step_idx
,
y
=
max_len
)
layers
.
logical_or
(
x
=
max_len_cond
,
y
=
all_finish_cond
,
out
=
cond
)
beam_search
()
finished_ids
,
finished_scores
=
layers
.
beam_search_decode
(
ids
,
scores
)
return
finished_ids
,
finished_scores
finished_ids
,
finished_scores
=
beam_search
()
return
finished_ids
,
finished_scores
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录