Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
dead21e4
M
models
项目概览
PaddlePaddle
/
models
大约 1 年 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
dead21e4
编写于
5月 16, 2018
作者:
G
guosheng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add beam search decoder in Transformer
上级
a3ed9b00
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
157 addition
and
27 deletion
+157
-27
fluid/neural_machine_translation/transformer/config.py
fluid/neural_machine_translation/transformer/config.py
+14
-7
fluid/neural_machine_translation/transformer/infer.py
fluid/neural_machine_translation/transformer/infer.py
+11
-0
fluid/neural_machine_translation/transformer/model.py
fluid/neural_machine_translation/transformer/model.py
+132
-20
未找到文件。
fluid/neural_machine_translation/transformer/config.py
浏览文件 @
dead21e4
...
...
@@ -103,22 +103,23 @@ def merge_cfg_from_list(cfg_list, g_cfgs):
break
batch_size
=
-
1
# Here list the data shapes and data types of all inputs.
# The shapes here act as placeholder and are set to pass the infer-shape in
# compile time.
input_descs
=
{
# The actual data shape of src_word is:
# [batch_size * max_src_len_in_batch, 1]
"src_word"
:
[(
1
*
(
ModelHyperParams
.
max_length
+
1
),
1L
),
"int64"
],
"src_word"
:
[(
batch_size
*
(
ModelHyperParams
.
max_length
+
1
),
1L
),
"int64"
],
# The actual data shape of src_pos is:
# [batch_size * max_src_len_in_batch, 1]
"src_pos"
:
[(
1
*
(
ModelHyperParams
.
max_length
+
1
),
1L
),
"int64"
],
"src_pos"
:
[(
batch_size
*
(
ModelHyperParams
.
max_length
+
1
),
1L
),
"int64"
],
# This input is used to remove attention weights on paddings in the
# encoder.
# The actual data shape of src_slf_attn_bias is:
# [batch_size, n_head, max_src_len_in_batch, max_src_len_in_batch]
"src_slf_attn_bias"
:
[(
1
,
ModelHyperParams
.
n_head
,
(
ModelHyperParams
.
max_length
+
1
),
[(
batch_size
,
ModelHyperParams
.
n_head
,
(
ModelHyperParams
.
max_length
+
1
),
(
ModelHyperParams
.
max_length
+
1
)),
"float32"
],
# This shape input is used to reshape the output of embedding layer.
"src_data_shape"
:
[(
3L
,
),
"int32"
],
...
...
@@ -128,22 +129,22 @@ input_descs = {
"src_slf_attn_post_softmax_shape"
:
[(
4L
,
),
"int32"
],
# The actual data shape of trg_word is:
# [batch_size * max_trg_len_in_batch, 1]
"trg_word"
:
[(
1
*
(
ModelHyperParams
.
max_length
+
1
),
1L
),
"int64"
],
"trg_word"
:
[(
batch_size
*
(
ModelHyperParams
.
max_length
+
1
),
1L
),
"int64"
],
# The actual data shape of trg_pos is:
# [batch_size * max_trg_len_in_batch, 1]
"trg_pos"
:
[(
1
*
(
ModelHyperParams
.
max_length
+
1
),
1L
),
"int64"
],
"trg_pos"
:
[(
batch_size
*
(
ModelHyperParams
.
max_length
+
1
),
1L
),
"int64"
],
# This input is used to remove attention weights on paddings and
# subsequent words in the decoder.
# The actual data shape of trg_slf_attn_bias is:
# [batch_size, n_head, max_trg_len_in_batch, max_trg_len_in_batch]
"trg_slf_attn_bias"
:
[(
1
,
ModelHyperParams
.
n_head
,
"trg_slf_attn_bias"
:
[(
batch_size
,
ModelHyperParams
.
n_head
,
(
ModelHyperParams
.
max_length
+
1
),
(
ModelHyperParams
.
max_length
+
1
)),
"float32"
],
# This input is used to remove attention weights on paddings of the source
# input in the encoder-decoder attention.
# The actual data shape of trg_src_attn_bias is:
# [batch_size, n_head, max_trg_len_in_batch, max_src_len_in_batch]
"trg_src_attn_bias"
:
[(
1
,
ModelHyperParams
.
n_head
,
"trg_src_attn_bias"
:
[(
batch_size
,
ModelHyperParams
.
n_head
,
(
ModelHyperParams
.
max_length
+
1
),
(
ModelHyperParams
.
max_length
+
1
)),
"float32"
],
# This shape input is used to reshape the output of embedding layer.
...
...
@@ -170,6 +171,8 @@ input_descs = {
# The actual data shape of label_weight is:
# [batch_size * max_trg_len_in_batch, 1]
"lbl_weight"
:
[(
1
*
(
ModelHyperParams
.
max_length
+
1
),
1L
),
"float32"
],
# These two inputs are used for beam search decoder.
# "start_token": [(1 * 1, 1L), "int64"],
}
# Names of position encoding table which will be initialized externally.
...
...
@@ -200,3 +203,7 @@ decoder_util_input_fields = (
label_data_input_fields
=
(
"lbl_word"
,
"lbl_weight"
,
)
fast_decoder_data_fields
=
(
"trg_word"
,
# "start_token",
"trg_src_attn_bias"
,
)
fluid/neural_machine_translation/transformer/infer.py
浏览文件 @
dead21e4
...
...
@@ -7,6 +7,7 @@ import paddle.fluid as fluid
import
model
from
model
import
wrap_encoder
as
encoder
from
model
import
wrap_decoder
as
decoder
from
model
import
fast_decode
as
fast_decoder
from
config
import
*
from
train
import
pad_batch_data
import
reader
...
...
@@ -416,5 +417,15 @@ def infer(args):
if
__name__
==
"__main__"
:
fast_decoder
(
ModelHyperParams
.
src_vocab_size
,
ModelHyperParams
.
trg_vocab_size
,
ModelHyperParams
.
max_length
+
1
,
ModelHyperParams
.
n_layer
,
ModelHyperParams
.
n_head
,
ModelHyperParams
.
d_key
,
ModelHyperParams
.
d_value
,
ModelHyperParams
.
d_model
,
ModelHyperParams
.
d_inner_hid
,
ModelHyperParams
.
dropout
,
InferTaskConfig
.
beam_size
,
InferTaskConfig
.
max_length
,
ModelHyperParams
.
eos_idx
)
print
(
fluid
.
default_main_program
())
exit
(
0
)
args
=
parse_args
()
infer
(
args
)
fluid/neural_machine_translation/transformer/model.py
浏览文件 @
dead21e4
...
...
@@ -30,7 +30,8 @@ def multi_head_attention(queries,
n_head
=
1
,
dropout_rate
=
0.
,
pre_softmax_shape
=
None
,
post_softmax_shape
=
None
):
post_softmax_shape
=
None
,
cache
=
None
):
"""
Multi-Head Attention. Note that attn_bias is added to the logit before
computing softmax activiation to mask certain selected positions so that
...
...
@@ -128,6 +129,12 @@ def multi_head_attention(queries,
q
,
k
,
v
=
__compute_qkv
(
queries
,
keys
,
values
,
n_head
,
d_key
,
d_value
)
if
cache
is
not
None
:
# use cache and concat time steps
print
cache
[
"k"
].
shape
print
k
.
shape
k
=
cache
[
"k"
]
=
layers
.
concat
([
cache
[
"k"
],
k
],
axis
=
1
)
v
=
cache
[
"v"
]
=
layers
.
concat
([
cache
[
"v"
],
v
],
axis
=
1
)
q
=
__split_heads
(
q
,
n_head
)
k
=
__split_heads
(
k
,
n_head
)
v
=
__split_heads
(
v
,
n_head
)
...
...
@@ -300,7 +307,8 @@ def decoder_layer(dec_input,
slf_attn_pre_softmax_shape
=
None
,
slf_attn_post_softmax_shape
=
None
,
src_attn_pre_softmax_shape
=
None
,
src_attn_post_softmax_shape
=
None
):
src_attn_post_softmax_shape
=
None
,
cache
=
None
):
""" The layer to be stacked in decoder part.
The structure of this module is similar to that in the encoder part except
a multi-head attention is added to implement encoder-decoder attention.
...
...
@@ -316,7 +324,8 @@ def decoder_layer(dec_input,
n_head
,
dropout_rate
,
slf_attn_pre_softmax_shape
,
slf_attn_post_softmax_shape
,
)
slf_attn_post_softmax_shape
,
cache
,
)
slf_attn_output
=
post_process_layer
(
dec_input
,
slf_attn_output
,
...
...
@@ -365,26 +374,18 @@ def decoder(dec_input,
slf_attn_pre_softmax_shape
=
None
,
slf_attn_post_softmax_shape
=
None
,
src_attn_pre_softmax_shape
=
None
,
src_attn_post_softmax_shape
=
None
):
src_attn_post_softmax_shape
=
None
,
caches
=
None
):
"""
The decoder is composed of a stack of identical decoder_layer layers.
"""
for
i
in
range
(
n_layer
):
dec_output
=
decoder_layer
(
dec_input
,
enc_output
,
dec_slf_attn_bias
,
dec_enc_attn_bias
,
n_head
,
d_key
,
d_value
,
d_model
,
d_inner_hid
,
dropout_rate
,
slf_attn_pre_softmax_shape
,
slf_attn_post_softmax_shape
,
src_attn_pre_softmax_shape
,
src_attn_post_softmax_shape
,
)
dec_input
,
enc_output
,
dec_slf_attn_bias
,
dec_enc_attn_bias
,
n_head
,
d_key
,
d_value
,
d_model
,
d_inner_hid
,
dropout_rate
,
slf_attn_pre_softmax_shape
,
slf_attn_post_softmax_shape
,
src_attn_pre_softmax_shape
,
src_attn_post_softmax_shape
,
None
if
caches
is
None
else
caches
[
i
])
dec_input
=
dec_output
return
dec_output
...
...
@@ -523,7 +524,8 @@ def wrap_decoder(trg_vocab_size,
d_inner_hid
,
dropout_rate
,
dec_inputs
=
None
,
enc_output
=
None
):
enc_output
=
None
,
caches
=
None
):
"""
The wrapper assembles together all needed layers for the decoder.
"""
...
...
@@ -563,7 +565,8 @@ def wrap_decoder(trg_vocab_size,
slf_attn_pre_softmax_shape
,
slf_attn_post_softmax_shape
,
src_attn_pre_softmax_shape
,
src_attn_post_softmax_shape
,
)
src_attn_post_softmax_shape
,
caches
,
)
# Return logits for training and probs for inference.
predict
=
layers
.
reshape
(
x
=
layers
.
fc
(
input
=
dec_output
,
...
...
@@ -573,3 +576,112 @@ def wrap_decoder(trg_vocab_size,
shape
=
[
-
1
,
trg_vocab_size
],
act
=
"softmax"
if
dec_inputs
is
None
else
None
)
return
predict
def
fast_decode
(
src_vocab_size
,
trg_vocab_size
,
max_in_len
,
n_layer
,
n_head
,
d_key
,
d_value
,
d_model
,
d_inner_hid
,
dropout_rate
,
beam_size
,
max_out_len
,
eos_idx
,
):
enc_output
=
wrap_encoder
(
src_vocab_size
,
max_in_len
,
n_layer
,
n_head
,
d_key
,
d_value
,
d_model
,
d_inner_hid
,
dropout_rate
)
start_tokens
,
trg_src_attn_bias
,
trg_data_shape
,
\
slf_attn_pre_softmax_shape
,
slf_attn_post_softmax_shape
,
\
src_attn_pre_softmax_shape
,
src_attn_post_softmax_shape
=
\
make_all_inputs
(
fast_decoder_data_fields
+
decoder_util_input_fields
)
def
beam_search
():
cond
=
layers
.
create_tensor
(
dtype
=
'bool'
)
while_op
=
layers
.
While
(
cond
)
max_len
=
layers
.
fill_constant
(
shape
=
[
1
],
dtype
=
'int32'
,
value
=
max_out_len
)
step_idx
=
layers
.
fill_constant
(
shape
=
[
1
],
dtype
=
'int32'
,
value
=
0
)
init_scores
=
layers
.
fill_constant_batch_size_like
(
input
=
start_tokens
,
shape
=
[
-
1
,
1
],
dtype
=
"float32"
,
value
=
0
)
# array states
ids
=
layers
.
array_write
(
start_tokens
,
step_idx
)
scores
=
layers
.
array_write
(
init_scores
,
step_idx
)
# cell states (can be overwrited)
caches
=
[{
"k"
:
layers
.
fill_constant_batch_size_like
(
input
=
start_tokens
,
shape
=
[
-
1
,
0
,
d_model
],
dtype
=
"float32"
,
value
=
0
),
"v"
:
layers
.
fill_constant_batch_size_like
(
input
=
start_tokens
,
shape
=
[
-
1
,
0
,
d_model
],
dtype
=
"float32"
,
value
=
0
)
}
for
i
in
range
(
n_layer
)]
with
while_op
.
block
():
pre_ids
=
layers
.
array_read
(
array
=
ids
,
i
=
step_idx
)
pre_scores
=
layers
.
array_read
(
array
=
scores
,
i
=
step_idx
)
pre_pos
=
layers
.
elementwise_mul
(
x
=
layers
.
fill_constant_batch_size_like
(
input
=
pre_ids
,
value
=
1
,
shape
=
[
-
1
,
1
],
dtype
=
'int32'
),
y
=
layers
.
increment
(
x
=
step_idx
,
value
=
1.0
,
in_place
=
False
))
pre_src_attn_bias
=
layers
.
sequence_expand
(
x
=
trg_src_attn_bias
,
y
=
pre_ids
)
pre_enc_output
=
layers
.
sequence_expand
(
x
=
enc_output
,
y
=
pre_ids
)
print
caches
[
0
][
"k"
].
shape
pre_caches
=
[{
"k"
:
layers
.
sequence_expand
(
x
=
cache
[
"k"
],
y
=
pre_ids
),
"v"
:
layers
.
sequence_expand
(
x
=
cache
[
"v"
],
y
=
pre_ids
),
}
for
cache
in
caches
]
print
pre_caches
[
0
][
"k"
].
shape
logits
=
wrap_decoder
(
trg_vocab_size
,
max_in_len
,
n_layer
,
n_head
,
d_key
,
d_value
,
d_model
,
d_inner_hid
,
dropout_rate
,
dec_inputs
=
(
pre_ids
,
pre_pos
,
None
,
pre_src_attn_bias
,
trg_data_shape
,
slf_attn_pre_softmax_shape
,
slf_attn_post_softmax_shape
,
src_attn_pre_softmax_shape
,
src_attn_post_softmax_shape
),
enc_output
=
pre_enc_output
,
caches
=
pre_caches
)
topk_scores
,
topk_indices
=
layers
.
topk
(
logits
,
k
=
beam_size
)
accu_scores
=
layers
.
elementwise_add
(
x
=
pre_scores
,
y
=
layers
.
log
(
x
=
layers
.
softmax
(
topk_scores
)))
selected_ids
,
selected_scores
=
layers
.
beam_search
(
pre_ids
=
pre_ids
,
ids
=
topk_indices
,
scores
=
accu_scores
,
beam_size
=
beam_size
,
end_id
=
eos_idx
)
layers
.
increment
(
x
=
step_idx
,
value
=
1.0
,
in_place
=
True
)
# update states
layers
.
array_write
(
selected_ids
,
i
=
step_idx
)
layers
.
array_write
(
selected_scores
,
i
=
step_idx
)
layers
.
assign
(
pre_src_attn_bias
,
trg_src_attn_bias
)
layers
.
assign
(
pre_enc_output
,
enc_output
)
for
i
in
range
(
n_layer
):
layers
.
assign
(
pre_caches
[
i
][
"k"
],
caches
[
i
][
"k"
])
layers
.
assign
(
pre_caches
[
i
][
"v"
],
caches
[
i
][
"v"
])
max_len_cond
=
layers
.
less_than
(
x
=
step_idx
,
y
=
max_len
)
all_finish_cond
=
layers
.
less_than
(
x
=
step_idx
,
y
=
max_len
)
layers
.
logical_or
(
x
=
max_len_cond
,
y
=
all_finish_cond
,
out
=
cond
)
beam_search
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录