Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
82ba5c03
M
models
项目概览
PaddlePaddle
/
models
1 年多 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
82ba5c03
编写于
5月 24, 2018
作者:
G
guosheng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Make step outputs between fast_infer and the original python infer alignment in Transformer
上级
2b553441
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
56 addition
and
9 deletion
+56
-9
fluid/neural_machine_translation/transformer/infer.py
fluid/neural_machine_translation/transformer/infer.py
+14
-4
fluid/neural_machine_translation/transformer/model.py
fluid/neural_machine_translation/transformer/model.py
+42
-5
未找到文件。
fluid/neural_machine_translation/transformer/infer.py
浏览文件 @
82ba5c03
...
...
@@ -255,6 +255,8 @@ def translate_batch(exe,
predict_all
=
exe
.
run
(
decoder
,
feed
=
dict
(
zip
(
dec_in_names
,
dec_in_data
)),
fetch_list
=
dec_out_names
)[
0
]
print
predict_all
.
reshape
(
[
len
(
beam_inst_map
)
*
beam_size
,
i
+
1
,
-
1
])[:,
-
1
,
:]
predict_all
=
np
.
log
(
predict_all
.
reshape
([
len
(
beam_inst_map
)
*
beam_size
,
i
+
1
,
-
1
])
[:,
-
1
,
:])
...
...
@@ -273,11 +275,19 @@ def translate_batch(exe,
top_k_indice
=
np
.
argpartition
(
predict
,
-
beam_size
)[
-
beam_size
:]
top_scores_ids
=
top_k_indice
[
np
.
argsort
(
predict
[
top_k_indice
])[::
-
1
]]
top_scores_ids
=
np
.
asarray
(
sorted
(
top_scores_ids
,
lambda
x
,
y
:
x
/
predict_all
.
shape
[
-
1
]
-
y
/
predict_all
.
shape
[
-
1
]
))
# sort by pre_branch and score to compare with fast_infer
top_scores
=
predict
[
top_scores_ids
]
scores
[
beam_idx
]
=
top_scores
prev_branchs
[
beam_idx
].
append
(
top_scores_ids
/
predict_all
.
shape
[
-
1
])
next_ids
[
beam_idx
].
append
(
top_scores_ids
%
predict_all
.
shape
[
-
1
])
print
prev_branchs
[
beam_idx
][
-
1
]
print
next_ids
[
beam_idx
][
-
1
]
print
top_scores
if
next_ids
[
beam_idx
][
-
1
][
0
]
!=
eos_idx
:
active_beams
.
append
(
beam_idx
)
if
len
(
active_beams
)
==
0
:
...
...
@@ -342,10 +352,8 @@ def infer(args):
fluid
.
io
.
load_vars
(
exe
,
InferTaskConfig
.
model_path
,
vars
=
decoder_params
)
# This is used here to set dropout to the test mode.
encoder_program
=
fluid
.
io
.
get_inference_program
(
target_vars
=
[
enc_output
],
main_program
=
encoder_program
)
decoder_program
=
fluid
.
io
.
get_inference_program
(
target_vars
=
[
predict
],
main_program
=
decoder_program
)
encoder_program
=
encoder_program
.
inference_optimize
()
decoder_program
=
decoder_program
.
inference_optimize
()
test_data
=
reader
.
DataReader
(
src_vocab_fpath
=
args
.
src_vocab_fpath
,
...
...
@@ -543,8 +551,10 @@ def fast_infer(args):
for
idx
in
np
.
array
(
seq_ids
)[
sub_start
:
sub_end
]
]))
print
hyps
[
i
]
print
len
(
hyps
[
i
]),
[
len
(
hyp
.
split
())
for
hyp
in
hyps
[
i
]]
if
__name__
==
"__main__"
:
args
=
parse_args
()
fast_infer
(
args
)
# infer(args)
fluid/neural_machine_translation/transformer/model.py
浏览文件 @
82ba5c03
...
...
@@ -6,6 +6,8 @@ import paddle.fluid.layers as layers
from
config
import
*
FLAG
=
False
def
position_encoding_init
(
n_position
,
d_pos_vec
):
"""
...
...
@@ -121,6 +123,15 @@ def multi_head_attention(queries,
act
=
"softmax"
)
weights
=
layers
.
reshape
(
x
=
weights
,
shape
=
product
.
shape
,
actual_shape
=
post_softmax_shape
)
global
FLAG
if
FLAG
:
print
"hehehehehe"
layers
.
Print
(
scaled_q
)
layers
.
Print
(
k
)
layers
.
Print
(
v
)
layers
.
Print
(
product
)
layers
.
Print
(
weights
)
FLAG
=
False
if
dropout_rate
:
weights
=
layers
.
dropout
(
weights
,
dropout_prob
=
dropout_rate
,
is_test
=
False
)
...
...
@@ -133,6 +144,13 @@ def multi_head_attention(queries,
if
cache
is
not
None
:
# use cache and concat time steps
k
=
cache
[
"k"
]
=
layers
.
concat
([
cache
[
"k"
],
k
],
axis
=
1
)
v
=
cache
[
"v"
]
=
layers
.
concat
([
cache
[
"v"
],
v
],
axis
=
1
)
# global FLAG
# if FLAG:
# print "hehehehehe"
# layers.Print(q)
# layers.Print(k)
# layers.Print(v)
# FLAG = False
q
=
__split_heads
(
q
,
n_head
)
k
=
__split_heads
(
k
,
n_head
)
v
=
__split_heads
(
v
,
n_head
)
...
...
@@ -147,6 +165,11 @@ def multi_head_attention(queries,
param_attr
=
fluid
.
initializer
.
Xavier
(
uniform
=
False
),
bias_attr
=
False
,
num_flatten_dims
=
2
)
# global FLAG
# if FLAG:
# print "hehehehehe"
# layers.Print(proj_out)
# FLAG = False
return
proj_out
...
...
@@ -377,6 +400,9 @@ def decoder(dec_input,
The decoder is composed of a stack of identical decoder_layer layers.
"""
for
i
in
range
(
n_layer
):
if
i
==
0
:
#n_layer-1:
global
FLAG
FLAG
=
True
dec_output
=
decoder_layer
(
dec_input
,
enc_output
,
dec_slf_attn_bias
,
dec_enc_attn_bias
,
n_head
,
d_key
,
d_value
,
d_model
,
d_inner_hid
,
dropout_rate
,
...
...
@@ -572,7 +598,7 @@ def wrap_decoder(trg_vocab_size,
bias_attr
=
False
,
num_flatten_dims
=
2
),
shape
=
[
-
1
,
trg_vocab_size
],
act
=
"softmax"
if
dec_inputs
is
None
else
None
)
act
=
"softmax"
)
#
if dec_inputs is None else None)
return
predict
...
...
@@ -645,7 +671,8 @@ def fast_decode(
"v"
:
layers
.
sequence_expand
(
x
=
cache
[
"v"
],
y
=
pre_scores
),
}
for
cache
in
caches
]
layers
.
Print
(
pre_ids
)
# layers.Print(pre_ids)
# layers.Print(pre_pos)
# layers.Print(pre_enc_output)
# layers.Print(pre_src_attn_bias)
# layers.Print(pre_caches[0]["k"])
...
...
@@ -667,9 +694,13 @@ def fast_decode(
src_attn_pre_softmax_shape
,
src_attn_post_softmax_shape
),
enc_output
=
pre_enc_output
,
caches
=
pre_caches
)
layers
.
Print
(
logits
)
topk_scores
,
topk_indices
=
layers
.
topk
(
logits
,
k
=
beam_size
)
# layers.Print(topk_scores)
# layers.Print(topk_indices)
accu_scores
=
layers
.
elementwise_add
(
x
=
layers
.
log
(
x
=
layers
.
softmax
(
topk_scores
)),
# x=layers.log(x=layers.softmax(topk_scores)),
x
=
layers
.
log
(
topk_scores
),
y
=
layers
.
reshape
(
pre_scores
,
shape
=
[
-
1
]),
axis
=
0
)
...
...
@@ -690,8 +721,13 @@ def fast_decode(
for
i
in
range
(
n_layer
):
layers
.
assign
(
pre_caches
[
i
][
"k"
],
caches
[
i
][
"k"
])
layers
.
assign
(
pre_caches
[
i
][
"v"
],
caches
[
i
][
"v"
])
layers
.
Print
(
selected_ids
)
layers
.
Print
(
selected_scores
)
# layers.Print(caches[-1]["k"])
layers
.
assign
(
slf_attn_pre_softmax_shape
+
attn_pre_softmax_shape_delta
,
layers
.
elementwise_add
(
x
=
slf_attn_pre_softmax_shape
,
y
=
attn_pre_softmax_shape_delta
),
slf_attn_pre_softmax_shape
)
layers
.
assign
(
layers
.
elementwise_add
(
...
...
@@ -703,7 +739,8 @@ def fast_decode(
all_finish_cond
=
layers
.
less_than
(
x
=
step_idx
,
y
=
max_len
)
layers
.
logical_or
(
x
=
max_len_cond
,
y
=
all_finish_cond
,
out
=
cond
)
finished_ids
,
finished_scores
=
layers
.
beam_search_decode
(
ids
,
scores
)
finished_ids
,
finished_scores
=
layers
.
beam_search_decode
(
ids
,
scores
,
eos_idx
)
return
finished_ids
,
finished_scores
finished_ids
,
finished_scores
=
beam_search
()
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录