infer.py 22.9 KB
Newer Older
1
import argparse
2 3
import numpy as np

4
import paddle
5 6 7 8 9
import paddle.fluid as fluid

import model
from model import wrap_encoder as encoder
from model import wrap_decoder as decoder
10
from model import fast_decode as fast_decoder
11
from config import *
12
from train import pad_batch_data
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
import reader


def parse_args():
    parser = argparse.ArgumentParser("Training for Transformer.")
    parser.add_argument(
        "--src_vocab_fpath",
        type=str,
        required=True,
        help="The path of vocabulary file of source language.")
    parser.add_argument(
        "--trg_vocab_fpath",
        type=str,
        required=True,
        help="The path of vocabulary file of target language.")
    parser.add_argument(
        "--test_file_pattern",
        type=str,
        required=True,
        help="The pattern to match test data files.")
    parser.add_argument(
        "--batch_size",
        type=int,
        default=50,
        help="The number of examples in one run for sequence generation.")
    parser.add_argument(
        "--pool_size",
        type=int,
        default=10000,
        help="The buffer size to pool data.")
    parser.add_argument(
        "--special_token",
        type=str,
        default=["<s>", "<e>", "<unk>"],
        nargs=3,
        help="The <bos>, <eos> and <unk> tokens in the dictionary.")
    parser.add_argument(
        'opts',
        help='See config.py for all options',
        default=None,
        nargs=argparse.REMAINDER)
    args = parser.parse_args()
55 56 57 58 59 60 61 62 63 64 65
    # Append args related to dict
    src_dict = reader.DataReader.load_dict(args.src_vocab_fpath)
    trg_dict = reader.DataReader.load_dict(args.trg_vocab_fpath)
    dict_args = [
        "src_vocab_size", str(len(src_dict)), "trg_vocab_size",
        str(len(trg_dict)), "bos_idx", str(src_dict[args.special_token[0]]),
        "eos_idx", str(src_dict[args.special_token[1]]), "unk_idx",
        str(src_dict[args.special_token[2]])
    ]
    merge_cfg_from_list(args.opts + dict_args,
                        [InferTaskConfig, ModelHyperParams])
66
    return args
67 68


69 70 71 72 73 74 75 76 77 78 79 80 81
def translate_batch(exe,
                    src_words,
                    encoder,
                    enc_in_names,
                    enc_out_names,
                    decoder,
                    dec_in_names,
                    dec_out_names,
                    beam_size,
                    max_length,
                    n_best,
                    batch_size,
                    n_head,
82
                    d_model,
83 84 85 86 87 88
                    src_pad_idx,
                    trg_pad_idx,
                    bos_idx,
                    eos_idx,
                    unk_idx,
                    output_unk=True):
89 90 91 92 93 94 95 96 97 98
    """
    Run the encoder program once and run the decoder program multiple times to
    implement beam search externally.
    """
    # Prepare data for encoder and run the encoder.
    enc_in_data = pad_batch_data(
        src_words,
        src_pad_idx,
        n_head,
        is_target=False,
99
        is_label=False,
100
        return_attn_bias=True,
G
guosheng 已提交
101
        return_max_len=False)
102 103
    # Append the data shape input to reshape the output of embedding layer.
    enc_in_data = enc_in_data + [
104
        np.array(
105 106
            [-1, enc_in_data[2].shape[-1], d_model], dtype="int32")
    ]
G
guosheng 已提交
107 108 109 110 111 112 113
    # Append the shape inputs to reshape before and after softmax in encoder
    # self attention.
    enc_in_data = enc_in_data + [
        np.array(
            [-1, enc_in_data[2].shape[-1]], dtype="int32"), np.array(
                enc_in_data[2].shape, dtype="int32")
    ]
114 115 116 117 118 119 120
    enc_output = exe.run(encoder,
                         feed=dict(zip(enc_in_names, enc_in_data)),
                         fetch_list=enc_out_names)[0]

    # Beam Search.
    # To store the beam info.
    scores = np.zeros((batch_size, beam_size), dtype="float32")
121 122 123
    prev_branchs = [[] for i in range(batch_size)]
    next_ids = [[] for i in range(batch_size)]
    # Use beam_inst_map to map beam idx to the instance idx in batch, since the
124
    # size of feeded batch is changing.
125 126 127 128 129 130
    beam_inst_map = {
        beam_idx: inst_idx
        for inst_idx, beam_idx in enumerate(range(batch_size))
    }
    # Use active_beams to recode the alive.
    active_beams = range(batch_size)
131

132
    def beam_backtrace(prev_branchs, next_ids, n_best=beam_size):
133 134 135 136 137 138 139 140 141 142 143
        """
        Decode and select n_best sequences for one instance by backtrace.
        """
        seqs = []
        for i in range(n_best):
            k = i
            seq = []
            for j in range(len(prev_branchs) - 1, -1, -1):
                seq.append(next_ids[j][k])
                k = prev_branchs[j][k]
            seq = seq[::-1]
144 145
            # Add the <bos>, since next_ids don't include the <bos>.
            seq = [bos_idx] + seq
146 147 148 149 150 151 152 153 154 155
            seqs.append(seq)
        return seqs

    def init_dec_in_data(batch_size, beam_size, enc_in_data, enc_output):
        """
        Initialize the input data for decoder.
        """
        trg_words = np.array(
            [[bos_idx]] * batch_size * beam_size, dtype="int64")
        trg_pos = np.array([[1]] * batch_size * beam_size, dtype="int64")
G
guosheng 已提交
156 157
        src_max_length, src_slf_attn_bias, trg_max_len = enc_in_data[2].shape[
            -1], enc_in_data[2], 1
158 159 160 161 162 163 164 165
        # This is used to remove attention on subsequent words.
        trg_slf_attn_bias = np.ones((batch_size * beam_size, trg_max_len,
                                     trg_max_len))
        trg_slf_attn_bias = np.triu(trg_slf_attn_bias, 1).reshape(
            [-1, 1, trg_max_len, trg_max_len])
        trg_slf_attn_bias = (np.tile(trg_slf_attn_bias, [1, n_head, 1, 1]) *
                             [-1e9]).astype("float32")
        # This is used to remove attention on the paddings of source sequences.
166
        trg_src_attn_bias = np.tile(
167 168 169 170 171
            src_slf_attn_bias[:, :, ::src_max_length, :][:, np.newaxis],
            [1, beam_size, 1, trg_max_len, 1]).reshape([
                -1, src_slf_attn_bias.shape[1], trg_max_len,
                src_slf_attn_bias.shape[-1]
            ])
172
        # Append the shape input to reshape the output of embedding layer.
173 174
        trg_data_shape = np.array(
            [batch_size * beam_size, trg_max_len, d_model], dtype="int32")
G
guosheng 已提交
175 176 177 178 179 180 181 182 183 184 185 186
        # Append the shape inputs to reshape before and after softmax in
        # decoder self attention.
        trg_slf_attn_pre_softmax_shape = np.array(
            [-1, trg_slf_attn_bias.shape[-1]], dtype="int32")
        trg_slf_attn_post_softmax_shape = np.array(
            trg_slf_attn_bias.shape, dtype="int32")
        # Append the shape inputs to reshape before and after softmax in
        # encoder-decoder attention.
        trg_src_attn_pre_softmax_shape = np.array(
            [-1, trg_src_attn_bias.shape[-1]], dtype="int32")
        trg_src_attn_post_softmax_shape = np.array(
            trg_src_attn_bias.shape, dtype="int32")
187 188 189
        enc_output = np.tile(
            enc_output[:, np.newaxis], [1, beam_size, 1, 1]).reshape(
                [-1, enc_output.shape[-2], enc_output.shape[-1]])
G
guosheng 已提交
190
        return trg_words, trg_pos, trg_slf_attn_bias, trg_src_attn_bias, \
191 192 193
            trg_data_shape, trg_slf_attn_pre_softmax_shape, \
            trg_slf_attn_post_softmax_shape, trg_src_attn_pre_softmax_shape, \
            trg_src_attn_post_softmax_shape, enc_output
194

195
    def update_dec_in_data(dec_in_data, next_ids, active_beams, beam_inst_map):
196 197 198 199
        """
        Update the input data of decoder mainly by slicing from the previous
        input data and dropping the finished instance beams.
        """
G
guosheng 已提交
200
        trg_words, trg_pos, trg_slf_attn_bias, trg_src_attn_bias, \
201 202 203
            trg_data_shape, trg_slf_attn_pre_softmax_shape, \
            trg_slf_attn_post_softmax_shape, trg_src_attn_pre_softmax_shape, \
            trg_src_attn_post_softmax_shape, enc_output = dec_in_data
204
        trg_cur_len = trg_slf_attn_bias.shape[-1] + 1
205 206
        trg_words = np.array(
            [
207
                beam_backtrace(prev_branchs[beam_idx], next_ids[beam_idx])
208 209 210 211 212
                for beam_idx in active_beams
            ],
            dtype="int64")
        trg_words = trg_words.reshape([-1, 1])
        trg_pos = np.array(
213
            [range(1, trg_cur_len + 1)] * len(active_beams) * beam_size,
214
            dtype="int64").reshape([-1, 1])
215
        active_beams = [beam_inst_map[beam_idx] for beam_idx in active_beams]
216 217 218
        active_beams_indice = (
            (np.array(active_beams) * beam_size)[:, np.newaxis] +
            np.array(range(beam_size))[np.newaxis, :]).flatten()
219 220 221 222 223 224 225 226
        # This is used to remove attention on subsequent words.
        trg_slf_attn_bias = np.ones((len(active_beams) * beam_size, trg_cur_len,
                                     trg_cur_len))
        trg_slf_attn_bias = np.triu(trg_slf_attn_bias, 1).reshape(
            [-1, 1, trg_cur_len, trg_cur_len])
        trg_slf_attn_bias = (np.tile(trg_slf_attn_bias, [1, n_head, 1, 1]) *
                             [-1e9]).astype("float32")
        # This is used to remove attention on the paddings of source sequences.
227 228
        trg_src_attn_bias = np.tile(trg_src_attn_bias[
            active_beams_indice, :, ::trg_src_attn_bias.shape[2], :],
229
                                    [1, 1, trg_cur_len, 1])
230
        # Append the shape input to reshape the output of embedding layer.
231 232 233
        trg_data_shape = np.array(
            [len(active_beams) * beam_size, trg_cur_len, d_model],
            dtype="int32")
G
guosheng 已提交
234 235 236 237 238 239 240 241 242 243 244 245
        # Append the shape inputs to reshape before and after softmax in
        # decoder self attention.
        trg_slf_attn_pre_softmax_shape = np.array(
            [-1, trg_slf_attn_bias.shape[-1]], dtype="int32")
        trg_slf_attn_post_softmax_shape = np.array(
            trg_slf_attn_bias.shape, dtype="int32")
        # Append the shape inputs to reshape before and after softmax in
        # encoder-decoder attention.
        trg_src_attn_pre_softmax_shape = np.array(
            [-1, trg_src_attn_bias.shape[-1]], dtype="int32")
        trg_src_attn_post_softmax_shape = np.array(
            trg_src_attn_bias.shape, dtype="int32")
246
        enc_output = enc_output[active_beams_indice, :, :]
G
guosheng 已提交
247
        return trg_words, trg_pos, trg_slf_attn_bias, trg_src_attn_bias, \
248 249 250
            trg_data_shape, trg_slf_attn_pre_softmax_shape, \
            trg_slf_attn_post_softmax_shape, trg_src_attn_pre_softmax_shape, \
            trg_src_attn_post_softmax_shape, enc_output
251 252 253 254 255

    dec_in_data = init_dec_in_data(batch_size, beam_size, enc_in_data,
                                   enc_output)
    for i in range(max_length):
        predict_all = exe.run(decoder,
256
                              feed=dict(zip(dec_in_names, dec_in_data)),
257
                              fetch_list=dec_out_names)[0]
258
        predict_all = np.log(
259 260
            predict_all.reshape([len(beam_inst_map) * beam_size, i + 1, -1])
            [:, -1, :])
261
        predict_all = (predict_all + scores[active_beams].reshape(
262 263
            [len(beam_inst_map) * beam_size, -1])).reshape(
                [len(beam_inst_map), beam_size, -1])
264 265
        if not output_unk:  # To exclude the <unk> token.
            predict_all[:, :, unk_idx] = -1e9
266
        active_beams = []
267 268 269 270
        for beam_idx in range(batch_size):
            if not beam_inst_map.has_key(beam_idx):
                continue
            inst_idx = beam_inst_map[beam_idx]
271 272 273 274 275 276 277 278 279 280 281 282
            predict = (predict_all[inst_idx, :, :]
                       if i != 0 else predict_all[inst_idx, 0, :]).flatten()
            top_k_indice = np.argpartition(predict, -beam_size)[-beam_size:]
            top_scores_ids = top_k_indice[np.argsort(predict[top_k_indice])[::
                                                                            -1]]
            top_scores = predict[top_scores_ids]
            scores[beam_idx] = top_scores
            prev_branchs[beam_idx].append(top_scores_ids /
                                          predict_all.shape[-1])
            next_ids[beam_idx].append(top_scores_ids % predict_all.shape[-1])
            if next_ids[beam_idx][-1][0] != eos_idx:
                active_beams.append(beam_idx)
283
        if len(active_beams) == 0:
284
            break
285 286 287 288 289 290
        dec_in_data = update_dec_in_data(dec_in_data, next_ids, active_beams,
                                         beam_inst_map)
        beam_inst_map = {
            beam_idx: inst_idx
            for inst_idx, beam_idx in enumerate(active_beams)
        }
291 292

    # Decode beams and select n_best sequences for each instance by backtrace.
293 294 295 296
    seqs = [
        beam_backtrace(prev_branchs[beam_idx], next_ids[beam_idx], n_best)
        for beam_idx in range(batch_size)
    ]
297 298 299 300

    return seqs, scores[:, :n_best].tolist()


301
def infer(args):
302 303
    place = fluid.CUDAPlace(0) if InferTaskConfig.use_gpu else fluid.CPUPlace()
    exe = fluid.Executor(place)
304

305 306 307
    encoder_program = fluid.Program()
    with fluid.program_guard(main_program=encoder_program):
        enc_output = encoder(
G
guosheng 已提交
308
            ModelHyperParams.src_vocab_size, ModelHyperParams.max_length + 1,
G
guosheng 已提交
309 310 311 312
            ModelHyperParams.n_layer, ModelHyperParams.n_head,
            ModelHyperParams.d_key, ModelHyperParams.d_value,
            ModelHyperParams.d_model, ModelHyperParams.d_inner_hid,
            ModelHyperParams.dropout)
313 314 315

    decoder_program = fluid.Program()
    with fluid.program_guard(main_program=decoder_program):
G
guosheng 已提交
316 317 318 319 320 321
        predict = decoder(
            ModelHyperParams.trg_vocab_size, ModelHyperParams.max_length + 1,
            ModelHyperParams.n_layer, ModelHyperParams.n_head,
            ModelHyperParams.d_key, ModelHyperParams.d_value,
            ModelHyperParams.d_model, ModelHyperParams.d_inner_hid,
            ModelHyperParams.dropout)
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349

    # Load model parameters of encoder and decoder separately from the saved
    # transformer model.
    encoder_var_names = []
    for op in encoder_program.block(0).ops:
        encoder_var_names += op.input_arg_names
    encoder_param_names = filter(
        lambda var_name: isinstance(encoder_program.block(0).var(var_name),
            fluid.framework.Parameter),
        encoder_var_names)
    encoder_params = map(encoder_program.block(0).var, encoder_param_names)
    decoder_var_names = []
    for op in decoder_program.block(0).ops:
        decoder_var_names += op.input_arg_names
    decoder_param_names = filter(
        lambda var_name: isinstance(decoder_program.block(0).var(var_name),
            fluid.framework.Parameter),
        decoder_var_names)
    decoder_params = map(decoder_program.block(0).var, decoder_param_names)
    fluid.io.load_vars(exe, InferTaskConfig.model_path, vars=encoder_params)
    fluid.io.load_vars(exe, InferTaskConfig.model_path, vars=decoder_params)

    # This is used here to set dropout to the test mode.
    encoder_program = fluid.io.get_inference_program(
        target_vars=[enc_output], main_program=encoder_program)
    decoder_program = fluid.io.get_inference_program(
        target_vars=[predict], main_program=decoder_program)

350 351 352 353 354 355 356 357 358 359 360 361 362 363
    test_data = reader.DataReader(
        src_vocab_fpath=args.src_vocab_fpath,
        trg_vocab_fpath=args.trg_vocab_fpath,
        fpattern=args.test_file_pattern,
        batch_size=args.batch_size,
        use_token_batch=False,
        pool_size=args.pool_size,
        sort_type=reader.SortType.NONE,
        shuffle=False,
        shuffle_batch=False,
        start_mark=args.special_token[0],
        end_mark=args.special_token[1],
        unk_mark=args.special_token[2],
        clip_last_batch=False)
364

365
    trg_idx2word = test_data.load_dict(
366
        dict_path=args.trg_vocab_fpath, reverse=True)
367

368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
    def post_process_seq(seq,
                         bos_idx=ModelHyperParams.bos_idx,
                         eos_idx=ModelHyperParams.eos_idx,
                         output_bos=InferTaskConfig.output_bos,
                         output_eos=InferTaskConfig.output_eos):
        """
        Post-process the beam-search decoded sequence. Truncate from the first
        <eos> and remove the <bos> and <eos> tokens currently.
        """
        eos_pos = len(seq) - 1
        for i, idx in enumerate(seq):
            if idx == eos_idx:
                eos_pos = i
                break
        seq = seq[:eos_pos + 1]
        return filter(
            lambda idx: (output_bos or idx != bos_idx) and \
                (output_eos or idx != eos_idx),
            seq)

388
    for batch_id, data in enumerate(test_data.batch_generator()):
389
        batch_seqs, batch_scores = translate_batch(
G
guosheng 已提交
390 391
            exe,
            [item[0] for item in data],
392
            encoder_program,
393
            encoder_data_input_fields + encoder_util_input_fields,
G
guosheng 已提交
394
            [enc_output.name],
395
            decoder_program,
396 397
            decoder_data_input_fields[:-1] + decoder_util_input_fields +
            (decoder_data_input_fields[-1], ),
G
guosheng 已提交
398
            [predict.name],
399
            InferTaskConfig.beam_size,
400
            InferTaskConfig.max_out_len,
401 402 403
            InferTaskConfig.n_best,
            len(data),
            ModelHyperParams.n_head,
404
            ModelHyperParams.d_model,
G
guosheng 已提交
405 406
            ModelHyperParams.eos_idx,  # Use eos_idx to pad.
            ModelHyperParams.eos_idx,  # Use eos_idx to pad.
407 408 409 410
            ModelHyperParams.bos_idx,
            ModelHyperParams.eos_idx,
            ModelHyperParams.unk_idx,
            output_unk=InferTaskConfig.output_unk)
411
        for i in range(len(batch_seqs)):
412 413
            # Post-process the beam-search decoded sequences.
            seqs = map(post_process_seq, batch_seqs[i])
414 415 416 417 418
            scores = batch_scores[i]
            for seq in seqs:
                print(" ".join([trg_idx2word[idx] for idx in seq]))


419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
def prepare_batch_input(insts, data_input_names, util_input_names, src_pad_idx,
                        bos_idx, n_head, d_model, place):
    """
    Put all padded data needed by inference into a dict.
    """
    src_word, src_pos, src_slf_attn_bias, src_max_len = pad_batch_data(
        [inst[0] for inst in insts], src_pad_idx, n_head, is_target=False)
    # start tokens
    trg_word = np.asarray([[bos_idx]] * len(insts), dtype="int64")
    trg_src_attn_bias = np.tile(src_slf_attn_bias[:, :, ::src_max_len, :],
                                [1, 1, 1, 1]).astype("float32")

    # These shape tensors are used in reshape_op.
    src_data_shape = np.array([-1, src_max_len, d_model], dtype="int32")
    trg_data_shape = np.array([-1, 1, d_model], dtype="int32")
    src_slf_attn_pre_softmax_shape = np.array(
        [-1, src_slf_attn_bias.shape[-1]], dtype="int32")
    src_slf_attn_post_softmax_shape = np.array(
        [-1] + list(src_slf_attn_bias.shape[1:]), dtype="int32")
    trg_slf_attn_pre_softmax_shape = np.array(
        [-1, 1], dtype="int32")  # only the first time step
    trg_slf_attn_post_softmax_shape = np.array(
        [-1, n_head, 1, 1], dtype="int32")  # only the first time step
    trg_src_attn_pre_softmax_shape = np.array(
        [-1, trg_src_attn_bias.shape[-1]], dtype="int32")
    trg_src_attn_post_softmax_shape = np.array(
        [-1] + list(trg_src_attn_bias.shape[1:]), dtype="int32")
    # These inputs are used to change the shapes in the loop of while op.
    attn_pre_softmax_shape_delta = np.array([0, 1], dtype="int32")
    attn_post_softmax_shape_delta = np.array([0, 0, 0, 1], dtype="int32")

    def to_lodtensor(data, place, lod=None):
        data_tensor = fluid.LoDTensor()
        data_tensor.set(data, place)
        if lod is not None:
            data_tensor.set_lod(lod)
        return data_tensor

    # beamsearch_op must use tensors with lod
    init_score = to_lodtensor(
        np.zeros_like(
            trg_word, dtype="float32"),
        place, [range(trg_word.shape[0] + 1)] * 2)
    trg_word = to_lodtensor(trg_word, place, [range(trg_word.shape[0] + 1)] * 2)

    data_input_dict = dict(
        zip(data_input_names, [
            src_word, src_pos, src_slf_attn_bias, trg_word, init_score,
            trg_src_attn_bias
        ]))
    util_input_dict = dict(
        zip(util_input_names, [
            src_data_shape, src_slf_attn_pre_softmax_shape,
            src_slf_attn_post_softmax_shape, trg_data_shape,
            trg_slf_attn_pre_softmax_shape, trg_slf_attn_post_softmax_shape,
            trg_src_attn_pre_softmax_shape, trg_src_attn_post_softmax_shape,
            attn_pre_softmax_shape_delta, attn_post_softmax_shape_delta
        ]))

    input_dict = dict(data_input_dict.items() + util_input_dict.items())
    return input_dict


def fast_infer(args):
    place = fluid.CUDAPlace(0) if InferTaskConfig.use_gpu else fluid.CPUPlace()
    exe = fluid.Executor(place)

    ids, scores = fast_decoder(
        ModelHyperParams.src_vocab_size, ModelHyperParams.trg_vocab_size,
        ModelHyperParams.max_length + 1, ModelHyperParams.n_layer,
        ModelHyperParams.n_head, ModelHyperParams.d_key,
        ModelHyperParams.d_value, ModelHyperParams.d_model,
        ModelHyperParams.d_inner_hid, ModelHyperParams.dropout,
        InferTaskConfig.beam_size, InferTaskConfig.max_out_len,
        ModelHyperParams.eos_idx)

    fluid.io.load_vars(
        exe,
        InferTaskConfig.model_path,
        vars=filter(lambda var: isinstance(var, fluid.framework.Parameter),
                    fluid.default_main_program().list_vars()))

    # This is used here to set dropout to the test mode.
    infer_program = fluid.default_main_program().inference_optimize()

    test_data = reader.DataReader(
        src_vocab_fpath=args.src_vocab_fpath,
        trg_vocab_fpath=args.trg_vocab_fpath,
        fpattern=args.test_file_pattern,
        batch_size=args.batch_size,
        use_token_batch=False,
        pool_size=args.pool_size,
        sort_type=reader.SortType.NONE,
        shuffle=False,
        shuffle_batch=False,
        start_mark=args.special_token[0],
        end_mark=args.special_token[1],
        unk_mark=args.special_token[2],
        clip_last_batch=False)

    trg_idx2word = test_data.load_dict(
        dict_path=args.trg_vocab_fpath, reverse=True)

    for batch_id, data in enumerate(test_data.batch_generator()):
        data_input = prepare_batch_input(
            data, encoder_data_input_fields + fast_decoder_data_input_fields,
            encoder_util_input_fields + fast_decoder_util_input_fields,
            ModelHyperParams.eos_idx, ModelHyperParams.bos_idx,
            ModelHyperParams.n_head, ModelHyperParams.d_model, place)
        seq_ids, seq_scores = exe.run(infer_program,
                                      feed=data_input,
                                      fetch_list=[ids, scores],
                                      return_numpy=False)
        # print np.array(seq_ids)#, np.array(seq_scores)
        # print seq_ids.lod()#, seq_scores.lod()
        hyps = [[] for i in range(len(data))]
        for i in range(len(seq_ids.lod()[0]) - 1):  # for each source sentence
            start = seq_ids.lod()[0][i]
            end = seq_ids.lod()[0][i + 1]
            for j in range(end - start):  # for each candidate
                sub_start = seq_ids.lod()[1][start + j]
                sub_end = seq_ids.lod()[1][start + j + 1]
                hyps[i].append(" ".join([
                    trg_idx2word[idx]
                    for idx in np.array(seq_ids)[sub_start:sub_end]
                ]))
            print hyps[i]


548
if __name__ == "__main__":
549
    args = parse_args()
550
    fast_infer(args)