Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
ff80721e
M
models
项目概览
PaddlePaddle
/
models
1 年多 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
ff80721e
编写于
3月 13, 2018
作者:
G
guosheng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add inference program for Transformer.
上级
3b549867
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
496 addition
and
156 deletion
+496
-156
fluid/neural_machine_translation/transformer/config.py
fluid/neural_machine_translation/transformer/config.py
+32
-3
fluid/neural_machine_translation/transformer/infer.py
fluid/neural_machine_translation/transformer/infer.py
+220
-0
fluid/neural_machine_translation/transformer/model.py
fluid/neural_machine_translation/transformer/model.py
+146
-78
fluid/neural_machine_translation/transformer/train.py
fluid/neural_machine_translation/transformer/train.py
+98
-75
未找到文件。
fluid/neural_machine_translation/transformer/config.py
浏览文件 @
ff80721e
...
...
@@ -15,6 +15,23 @@ class TrainTaskConfig(object):
# the params for learning rate scheduling
warmup_steps
=
4000
# the directory for saving inference models
model_dir
=
"transformer_model"
class
InferTaskConfig
(
object
):
use_gpu
=
False
# number of sequences contained in a mini-batch
batch_size
=
1
# the params for beam search
beam_size
=
5
max_length
=
30
n_best
=
1
# the directory for loading inference model
model_path
=
"transformer_model/pass_1.infer.model"
class
ModelHyperParams
(
object
):
# Dictionary size for source and target language. This model directly uses
...
...
@@ -33,6 +50,11 @@ class ModelHyperParams(object):
# index for <pad> token in target language.
trg_pad_idx
=
trg_vocab_size
# index for <bos> token
bos_idx
=
0
# index for <eos> token
eos_idx
=
1
# position value corresponding to the <pad> token.
pos_pad_idx
=
0
...
...
@@ -64,14 +86,21 @@ pos_enc_param_names = (
"src_pos_enc_table"
,
"trg_pos_enc_table"
,
)
# Names of all data layers listed in order.
input_data_names
=
(
# Names of all data layers
in encoder
listed in order.
encoder_
input_data_names
=
(
"src_word"
,
"src_pos"
,
"src_slf_attn_bias"
,
)
# Names of all data layers in decoder listed in order.
decoder_input_data_names
=
(
"trg_word"
,
"trg_pos"
,
"src_slf_attn_bias"
,
"trg_slf_attn_bias"
,
"trg_src_attn_bias"
,
"enc_output"
,
)
# Names of label related data layers listed in order.
label_data_names
=
(
"lbl_word"
,
"lbl_weight"
,
)
fluid/neural_machine_translation/transformer/infer.py
0 → 100644
浏览文件 @
ff80721e
import
numpy
as
np
import
paddle.v2
as
paddle
import
paddle.fluid
as
fluid
import
model
from
model
import
wrap_encoder
as
encoder
from
model
import
wrap_decoder
as
decoder
from
config
import
InferTaskConfig
,
ModelHyperParams
,
\
encoder_input_data_names
,
decoder_input_data_names
from
train
import
pad_batch_data
def
translate_batch
(
exe
,
src_words
,
encoder
,
enc_in_names
,
enc_out_names
,
decoder
,
dec_in_names
,
dec_out_names
,
beam_size
,
max_length
,
n_best
,
batch_size
,
n_head
,
src_pad_idx
,
trg_pad_idx
,
bos_idx
,
eos_idx
):
"""
Run the encoder program once and run the decoder program multiple times to
implement beam search externally.
"""
# Prepare data for encoder and run the encoder.
enc_in_data
=
pad_batch_data
(
src_words
,
src_pad_idx
,
n_head
,
is_target
=
False
,
return_pos
=
True
,
return_attn_bias
=
True
,
return_max_len
=
True
)
enc_output
=
exe
.
run
(
encoder
,
feed
=
dict
(
zip
(
enc_in_names
,
enc_in_data
)),
fetch_list
=
enc_out_names
)[
0
]
# Beam Search.
# To store the beam info.
scores
=
np
.
zeros
((
batch_size
,
beam_size
),
dtype
=
"float32"
)
prev_branchs
=
[[]]
*
batch_size
next_ids
=
[[]]
*
batch_size
# Use beam_map to map the instance idx in batch to beam idx, since the
# size of feeded batch is changing.
beam_map
=
range
(
batch_size
)
def
beam_backtrace
(
prev_branchs
,
next_ids
,
n_best
=
beam_size
,
add_bos
=
True
):
"""
Decode and select n_best sequences for one instance by backtrace.
"""
seqs
=
[]
for
i
in
range
(
n_best
):
k
=
i
seq
=
[]
for
j
in
range
(
len
(
prev_branchs
)
-
1
,
-
1
,
-
1
):
seq
.
append
(
next_ids
[
j
][
k
])
k
=
prev_branchs
[
j
][
k
]
seq
=
seq
[::
-
1
]
seq
=
[
bos_idx
]
+
seq
if
add_bos
else
seq
seqs
.
append
(
seq
)
return
seqs
def
init_dec_in_data
(
batch_size
,
beam_size
,
enc_in_data
,
enc_output
):
"""
Initialize the input data for decoder.
"""
trg_words
=
np
.
array
(
[[
bos_idx
]]
*
batch_size
*
beam_size
,
dtype
=
"int64"
)
trg_pos
=
np
.
array
([[
1
]]
*
batch_size
*
beam_size
,
dtype
=
"int64"
)
src_max_length
,
src_slf_attn_bias
,
trg_max_len
=
enc_in_data
[
-
1
],
enc_in_data
[
-
2
],
1
trg_src_attn_bias
=
np
.
tile
(
src_slf_attn_bias
[:,
:,
::
src_max_length
,
:],
[
beam_size
,
1
,
trg_max_len
,
1
])
enc_output
=
np
.
tile
(
enc_output
,
[
beam_size
,
1
,
1
])
# No need for trg_slf_attn_bias because of no paddings.
return
trg_words
,
trg_pos
,
None
,
trg_src_attn_bias
,
enc_output
def
update_dec_in_data
(
dec_in_data
,
next_ids
,
active_beams
):
"""
Update the input data of decoder mainly by slicing from the previous
input data and dropping the finished instance beams.
"""
trg_words
,
trg_pos
,
trg_slf_attn_bias
,
trg_src_attn_bias
,
enc_output
=
dec_in_data
trg_words
=
np
.
array
(
[
beam_backtrace
(
prev_branchs
[
beam_idx
],
next_ids
[
beam_idx
],
add_bos
=
True
)
for
beam_idx
in
active_beams
],
dtype
=
"int64"
)
trg_words
=
trg_words
.
reshape
([
-
1
,
1
])
trg_pos
=
np
.
array
(
[
range
(
1
,
len
(
next_ids
[
0
])
+
2
)]
*
len
(
active_beams
)
*
beam_size
,
dtype
=
"int64"
).
reshape
([
-
1
,
1
])
active_beams_indice
=
(
(
np
.
array
(
active_beams
)
*
beam_size
)[:,
np
.
newaxis
]
+
np
.
array
(
range
(
beam_size
))[
np
.
newaxis
,
:]).
flatten
()
trg_src_attn_bias
=
np
.
tile
(
trg_src_attn_bias
[
active_beams_indice
,
:,
::
trg_src_attn_bias
.
shape
[
2
],
:],
[
1
,
1
,
len
(
next_ids
[
0
])
+
1
,
1
])
enc_output
=
enc_output
[
active_beams_indice
,
:,
:]
return
trg_words
,
trg_pos
,
trg_slf_attn_bias
,
trg_src_attn_bias
,
enc_output
dec_in_data
=
init_dec_in_data
(
batch_size
,
beam_size
,
enc_in_data
,
enc_output
)
for
i
in
range
(
max_length
):
predict_all
=
exe
.
run
(
decoder
,
feed
=
dict
(
filter
(
lambda
item
:
item
[
1
]
is
not
None
,
zip
(
dec_in_names
,
dec_in_data
))),
fetch_list
=
dec_out_names
)[
0
]
predict_all
=
np
.
log
(
predict_all
)
predict_all
=
(
predict_all
.
reshape
(
[
len
(
beam_map
)
*
beam_size
,
i
+
1
,
-
1
])[:,
-
1
,
:]
+
scores
[
beam_map
].
reshape
([
len
(
beam_map
)
*
beam_size
,
-
1
])).
reshape
(
[
len
(
beam_map
),
beam_size
,
-
1
])
active_beams
=
[]
for
inst_idx
,
beam_idx
in
enumerate
(
beam_map
):
predict
=
(
predict_all
[
inst_idx
,
:,
:]
if
i
!=
0
else
predict_all
[
inst_idx
,
0
,
:]).
flatten
()
top_k_indice
=
np
.
argpartition
(
predict
,
-
beam_size
)[
-
beam_size
:]
top_scores_ids
=
top_k_indice
[
np
.
argsort
(
predict
[
top_k_indice
])[::
-
1
]]
top_scores
=
predict
[
top_scores_ids
]
scores
[
beam_idx
]
=
top_scores
prev_branchs
[
beam_idx
].
append
(
top_scores_ids
/
predict_all
.
shape
[
-
1
])
next_ids
[
beam_idx
].
append
(
top_scores_ids
%
predict_all
.
shape
[
-
1
])
if
next_ids
[
beam_idx
][
-
1
][
0
]
!=
eos_idx
:
active_beams
.
append
(
beam_idx
)
beam_map
=
active_beams
if
len
(
beam_map
)
==
0
:
break
dec_in_data
=
update_dec_in_data
(
dec_in_data
,
next_ids
,
active_beams
)
# Decode beams and select n_best sequences for each instance by backtrace.
seqs
=
[
beam_backtrace
(
prev_branchs
[
beam_idx
],
next_ids
[
beam_idx
],
n_best
)]
return
seqs
,
scores
[:,
:
n_best
].
tolist
()
def
main
():
place
=
fluid
.
CUDAPlace
(
0
)
if
InferTaskConfig
.
use_gpu
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
# The current program desc is coupled with batch_size and the only
# supported batch size is 1 currently.
encoder_program
=
fluid
.
Program
()
model
.
batch_size
=
InferTaskConfig
.
batch_size
with
fluid
.
program_guard
(
main_program
=
encoder_program
):
enc_output
=
encoder
(
ModelHyperParams
.
src_vocab_size
+
1
,
ModelHyperParams
.
max_length
+
1
,
ModelHyperParams
.
n_layer
,
ModelHyperParams
.
n_head
,
ModelHyperParams
.
d_key
,
ModelHyperParams
.
d_value
,
ModelHyperParams
.
d_model
,
ModelHyperParams
.
d_inner_hid
,
ModelHyperParams
.
dropout
,
ModelHyperParams
.
src_pad_idx
,
ModelHyperParams
.
pos_pad_idx
)
model
.
batch_size
=
InferTaskConfig
.
batch_size
*
InferTaskConfig
.
beam_size
decoder_program
=
fluid
.
Program
()
with
fluid
.
program_guard
(
main_program
=
decoder_program
):
predict
=
decoder
(
ModelHyperParams
.
trg_vocab_size
+
1
,
ModelHyperParams
.
max_length
+
1
,
ModelHyperParams
.
n_layer
,
ModelHyperParams
.
n_head
,
ModelHyperParams
.
d_key
,
ModelHyperParams
.
d_value
,
ModelHyperParams
.
d_model
,
ModelHyperParams
.
d_inner_hid
,
ModelHyperParams
.
dropout
,
ModelHyperParams
.
trg_pad_idx
,
ModelHyperParams
.
pos_pad_idx
)
# Load model parameters of encoder and decoder separately from the saved
# transformer model.
encoder_var_names
=
[]
for
op
in
encoder_program
.
block
(
0
).
ops
:
encoder_var_names
+=
op
.
input_arg_names
encoder_param_names
=
filter
(
lambda
var_name
:
isinstance
(
encoder_program
.
block
(
0
).
var
(
var_name
),
fluid
.
framework
.
Parameter
),
encoder_var_names
)
encoder_params
=
map
(
encoder_program
.
block
(
0
).
var
,
encoder_param_names
)
decoder_var_names
=
[]
for
op
in
decoder_program
.
block
(
0
).
ops
:
decoder_var_names
+=
op
.
input_arg_names
decoder_param_names
=
filter
(
lambda
var_name
:
isinstance
(
decoder_program
.
block
(
0
).
var
(
var_name
),
fluid
.
framework
.
Parameter
),
decoder_var_names
)
decoder_params
=
map
(
decoder_program
.
block
(
0
).
var
,
decoder_param_names
)
fluid
.
io
.
load_vars
(
exe
,
InferTaskConfig
.
model_path
,
vars
=
encoder_params
)
fluid
.
io
.
load_vars
(
exe
,
InferTaskConfig
.
model_path
,
vars
=
decoder_params
)
# This is used here to set dropout to the test mode.
encoder_program
=
fluid
.
io
.
get_inference_program
(
target_vars
=
[
enc_output
],
main_program
=
encoder_program
)
decoder_program
=
fluid
.
io
.
get_inference_program
(
target_vars
=
[
predict
],
main_program
=
decoder_program
)
test_data
=
paddle
.
batch
(
paddle
.
dataset
.
wmt16
.
test
(
ModelHyperParams
.
src_vocab_size
,
ModelHyperParams
.
trg_vocab_size
),
batch_size
=
InferTaskConfig
.
batch_size
)
trg_idx2word
=
paddle
.
dataset
.
wmt16
.
get_dict
(
"de"
,
dict_size
=
ModelHyperParams
.
trg_vocab_size
,
reverse
=
True
)
for
batch_id
,
data
in
enumerate
(
test_data
()):
batch_seqs
,
batch_scores
=
translate_batch
(
exe
,
[
item
[
0
]
for
item
in
data
],
encoder_program
,
encoder_input_data_names
,
[
enc_output
.
name
],
decoder_program
,
decoder_input_data_names
,
[
predict
.
name
],
InferTaskConfig
.
beam_size
,
InferTaskConfig
.
max_length
,
InferTaskConfig
.
n_best
,
InferTaskConfig
.
batch_size
,
ModelHyperParams
.
n_head
,
ModelHyperParams
.
src_pad_idx
,
ModelHyperParams
.
trg_pad_idx
,
ModelHyperParams
.
bos_idx
,
ModelHyperParams
.
eos_idx
)
for
i
in
range
(
len
(
batch_seqs
)):
seqs
=
batch_seqs
[
i
]
scores
=
batch_scores
[
i
]
for
seq
in
seqs
:
print
(
" "
.
join
([
trg_idx2word
[
idx
]
for
idx
in
seq
]))
if
__name__
==
"__main__"
:
main
()
fluid/neural_machine_translation/transformer/model.py
浏览文件 @
ff80721e
...
...
@@ -4,7 +4,8 @@ import numpy as np
import
paddle.fluid
as
fluid
import
paddle.fluid.layers
as
layers
from
config
import
TrainTaskConfig
,
input_data_names
,
pos_enc_param_names
from
config
import
TrainTaskConfig
,
pos_enc_param_names
,
\
encoder_input_data_names
,
decoder_input_data_names
,
label_data_names
# FIXME(guosheng): Remove out the batch_size from the model.
batch_size
=
TrainTaskConfig
.
batch_size
...
...
@@ -127,7 +128,9 @@ def multi_head_attention(queries,
scaled_q
=
layers
.
scale
(
x
=
q
,
scale
=
d_model
**-
0.5
)
product
=
layers
.
matmul
(
x
=
scaled_q
,
y
=
k
,
transpose_y
=
True
)
weights
=
__softmax
(
layers
.
elementwise_add
(
x
=
product
,
y
=
attn_bias
))
weights
=
__softmax
(
layers
.
elementwise_add
(
x
=
product
,
y
=
attn_bias
)
if
attn_bias
else
product
)
if
dropout_rate
:
weights
=
layers
.
dropout
(
weights
,
dropout_prob
=
dropout_rate
,
is_test
=
False
)
...
...
@@ -373,6 +376,53 @@ def decoder(dec_input,
return
dec_output
def
make_inputs
(
input_data_names
,
n_head
,
d_model
,
batch_size
,
max_length
,
slf_attn_bias_flag
,
src_attn_bias_flag
,
pos_flag
=
1
):
"""
Define the input data layers for the transformer model.
"""
input_layers
=
[]
# The shapes here act as placeholder.
# The shapes set here is to pass the infer-shape in compile time.
word
=
layers
.
data
(
name
=
input_data_names
[
0
],
shape
=
[
batch_size
*
max_length
,
1
],
dtype
=
"int64"
,
append_batch_size
=
False
)
input_layers
+=
[
word
]
# This is used for position data or label weight.
pos
=
layers
.
data
(
name
=
input_data_names
[
1
],
shape
=
[
batch_size
*
max_length
,
1
],
dtype
=
"int64"
if
pos_flag
else
"float32"
,
append_batch_size
=
False
)
input_layers
+=
[
pos
]
if
slf_attn_bias_flag
:
# This is used for attention bias or encoder output.
slf_attn_bias
=
layers
.
data
(
name
=
input_data_names
[
2
]
if
slf_attn_bias_flag
==
1
else
input_data_names
[
-
1
],
shape
=
[
batch_size
,
n_head
,
max_length
,
max_length
]
if
slf_attn_bias_flag
==
1
else
[
batch_size
,
max_length
,
d_model
],
dtype
=
"float32"
,
append_batch_size
=
False
)
input_layers
+=
[
slf_attn_bias
]
if
src_attn_bias_flag
:
src_attn_bias
=
layers
.
data
(
name
=
input_data_names
[
3
],
shape
=
[
batch_size
,
n_head
,
max_length
,
max_length
],
dtype
=
"float32"
,
append_batch_size
=
False
)
input_layers
+=
[
src_attn_bias
]
return
input_layers
def
transformer
(
src_vocab_size
,
trg_vocab_size
,
...
...
@@ -387,61 +437,72 @@ def transformer(
src_pad_idx
,
trg_pad_idx
,
pos_pad_idx
,
):
# The shapes here act as placeholder.
# The shapes set here is to pass the infer-shape in compile time. The actual
# shape of src_word in run time is:
# [batch_size * max_src_length_in_a_batch, 1].
src_word
=
layers
.
data
(
name
=
input_data_names
[
0
],
shape
=
[
batch_size
*
max_length
,
1
],
dtype
=
"int64"
,
append_batch_size
=
False
)
# The actual shape of src_pos in runtime is:
# [batch_size * max_src_length_in_a_batch, 1].
src_pos
=
layers
.
data
(
name
=
input_data_names
[
1
],
shape
=
[
batch_size
*
max_length
,
1
],
dtype
=
"int64"
,
append_batch_size
=
False
)
# The actual shape of trg_word is in runtime is:
# [batch_size * max_trg_length_in_a_batch, 1].
trg_word
=
layers
.
data
(
name
=
input_data_names
[
2
],
shape
=
[
batch_size
*
max_length
,
1
],
dtype
=
"int64"
,
append_batch_size
=
False
)
# The actual shape of trg_pos in runtime is:
# [batch_size * max_trg_length_in_a_batch, 1].
trg_pos
=
layers
.
data
(
name
=
input_data_names
[
3
],
shape
=
[
batch_size
*
max_length
,
1
],
dtype
=
"int64"
,
append_batch_size
=
False
)
# The actual shape of src_slf_attn_bias in runtime is:
# [batch_size, n_head, max_src_length_in_a_batch, max_src_length_in_a_batch].
# This input is used to remove attention weights on paddings.
src_slf_attn_bias
=
layers
.
data
(
name
=
input_data_names
[
4
],
shape
=
[
batch_size
,
n_head
,
max_length
,
max_length
],
dtype
=
"float32"
,
append_batch_size
=
False
)
# The actual shape of trg_slf_attn_bias in runtime is:
# [batch_size, n_head, max_trg_length_in_batch, max_trg_length_in_batch].
# This is used to remove attention weights on paddings and subsequent words.
trg_slf_attn_bias
=
layers
.
data
(
name
=
input_data_names
[
5
],
shape
=
[
batch_size
,
n_head
,
max_length
,
max_length
],
dtype
=
"float32"
,
append_batch_size
=
False
)
# The actual shape of trg_src_attn_bias in runtime is:
# [batch_size, n_head, max_trg_length_in_batch, max_src_length_in_batch].
# This is used to remove attention weights on paddings.
trg_src_attn_bias
=
layers
.
data
(
name
=
input_data_names
[
6
],
shape
=
[
batch_size
,
n_head
,
max_length
,
max_length
],
dtype
=
"float32"
,
append_batch_size
=
False
)
enc_input_layers
=
make_inputs
(
encoder_input_data_names
,
n_head
,
d_model
,
batch_size
,
max_length
,
1
,
0
)
enc_output
=
wrap_encoder
(
src_vocab_size
,
max_length
,
n_layer
,
n_head
,
d_key
,
d_value
,
d_model
,
d_inner_hid
,
dropout_rate
,
src_pad_idx
,
pos_pad_idx
,
enc_input_layers
,
)
dec_input_layers
=
make_inputs
(
decoder_input_data_names
,
n_head
,
d_model
,
batch_size
,
max_length
,
1
,
1
)
predict
=
wrap_decoder
(
trg_vocab_size
,
max_length
,
n_layer
,
n_head
,
d_key
,
d_value
,
d_model
,
d_inner_hid
,
dropout_rate
,
trg_pad_idx
,
pos_pad_idx
,
dec_input_layers
,
enc_output
,
)
# Padding index do not contribute to the total loss. The weights is used to
# cancel padding index in calculating the loss.
gold
,
weights
=
make_inputs
(
label_data_names
,
n_head
,
d_model
,
batch_size
,
max_length
,
0
,
0
,
0
)
cost
=
layers
.
cross_entropy
(
input
=
predict
,
label
=
gold
)
weighted_cost
=
cost
*
weights
return
layers
.
reduce_sum
(
weighted_cost
),
predict
def
wrap_encoder
(
src_vocab_size
,
max_length
,
n_layer
,
n_head
,
d_key
,
d_value
,
d_model
,
d_inner_hid
,
dropout_rate
,
src_pad_idx
,
pos_pad_idx
,
enc_input_layers
=
None
):
"""
The wrapper assembles together all needed layers for the encoder.
"""
if
enc_input_layers
is
None
:
# This is used to implement independent encoder program in inference.
src_word
,
src_pos
,
src_slf_attn_bias
=
make_inputs
(
encoder_input_data_names
,
n_head
,
d_model
,
batch_size
,
max_length
,
True
,
False
)
else
:
src_word
,
src_pos
,
src_slf_attn_bias
=
enc_input_layers
enc_input
=
prepare_encoder
(
src_word
,
src_pos
,
...
...
@@ -460,6 +521,34 @@ def transformer(
d_model
,
d_inner_hid
,
dropout_rate
,
)
return
enc_output
def
wrap_decoder
(
trg_vocab_size
,
max_length
,
n_layer
,
n_head
,
d_key
,
d_value
,
d_model
,
d_inner_hid
,
dropout_rate
,
trg_pad_idx
,
pos_pad_idx
,
dec_input_layers
=
None
,
enc_output
=
None
):
"""
The wrapper assembles together all needed layers for the decoder.
"""
if
dec_input_layers
is
None
:
# This is used to implement independent decoder program in inference.
# No need for trg_slf_attn_bias because of no paddings in inference.
trg_word
,
trg_pos
,
enc_output
,
trg_src_attn_bias
=
make_inputs
(
decoder_input_data_names
,
n_head
,
d_model
,
batch_size
,
max_length
,
2
,
1
)
trg_slf_attn_bias
=
None
else
:
trg_word
,
trg_pos
,
trg_slf_attn_bias
,
trg_src_attn_bias
=
dec_input_layers
dec_input
=
prepare_decoder
(
trg_word
,
...
...
@@ -482,32 +571,11 @@ def transformer(
d_inner_hid
,
dropout_rate
,
)
# TODO(guosheng): Share the weight matrix between the embedding layers and
# the pre-softmax linear transformation.
predict
=
layers
.
reshape
(
x
=
layers
.
fc
(
input
=
dec_output
,
size
=
trg_vocab_size
,
param_attr
=
fluid
.
initializer
.
Xavier
(
uniform
=
False
),
bias_attr
=
False
,
num_flatten_dims
=
2
),
shape
=
[
-
1
,
trg_vocab_size
],
act
=
"softmax"
)
# The actual shape of gold in runtime is:
# [batch_size * max_trg_length_in_a_batch, 1].
gold
=
layers
.
data
(
name
=
input_data_names
[
7
],
shape
=
[
batch_size
*
max_length
,
1
],
dtype
=
"int64"
,
append_batch_size
=
False
)
cost
=
layers
.
cross_entropy
(
input
=
predict
,
label
=
gold
)
# The actual shape of weights in runtime is:
# [batch_size * max_trg_length_in_a_batch, 1].
# Padding index do not contribute to the total loss. This Weight is used to
# cancel padding index in calculating the loss.
weights
=
layers
.
data
(
name
=
input_data_names
[
8
],
shape
=
[
batch_size
*
max_length
,
1
],
dtype
=
"float32"
,
append_batch_size
=
False
)
weighted_cost
=
cost
*
weights
return
layers
.
reduce_sum
(
weighted_cost
)
return
predict
fluid/neural_machine_translation/transformer/train.py
浏览文件 @
ff80721e
import
os
import
numpy
as
np
import
paddle.v2
as
paddle
...
...
@@ -5,86 +6,74 @@ import paddle.fluid as fluid
from
model
import
transformer
,
position_encoding_init
from
optim
import
LearningRateScheduler
from
config
import
TrainTaskConfig
,
ModelHyperParams
,
\
pos_enc_param_names
,
input
_data_names
from
config
import
TrainTaskConfig
,
ModelHyperParams
,
pos_enc_param_names
,
\
encoder_input_data_names
,
decoder_input_data_names
,
label
_data_names
def
prepare_batch_input
(
insts
,
input_data_names
,
src_pad_idx
,
trg_pad_idx
,
max_length
,
n_head
,
place
):
def
pad_batch_data
(
insts
,
pad_idx
,
n_head
,
is_target
=
False
,
return_pos
=
True
,
return_attn_bias
=
True
,
return_max_len
=
True
):
"""
Pad the instances to the max sequence length in batch, and generate the
corresponding position data and attention bias. Then, convert the numpy
data to tensors and return a dict mapping names to tensors.
corresponding position data and attention bias.
"""
return_list
=
[]
max_len
=
max
(
len
(
inst
)
for
inst
in
insts
)
inst_data
=
np
.
array
(
[
inst
+
[
pad_idx
]
*
(
max_len
-
len
(
inst
))
for
inst
in
insts
])
return_list
+=
[
inst_data
.
astype
(
"int64"
).
reshape
([
-
1
,
1
])]
if
return_pos
:
inst_pos
=
np
.
array
([[
pos_i
+
1
if
w_i
!=
pad_idx
else
0
for
pos_i
,
w_i
in
enumerate
(
inst
)
]
for
inst
in
inst_data
])
return_list
+=
[
inst_pos
.
astype
(
"int64"
).
reshape
([
-
1
,
1
])]
if
return_attn_bias
:
if
is_target
:
# This is used to avoid attention on paddings and subsequent
# words.
slf_attn_bias_data
=
np
.
ones
((
inst_data
.
shape
[
0
],
max_len
,
max_len
))
slf_attn_bias_data
=
np
.
triu
(
slf_attn_bias_data
,
1
).
reshape
(
[
-
1
,
1
,
max_len
,
max_len
])
slf_attn_bias_data
=
np
.
tile
(
slf_attn_bias_data
,
[
1
,
n_head
,
1
,
1
])
*
[
-
1e9
]
else
:
# This is used to avoid attention on paddings.
slf_attn_bias_data
=
np
.
array
([[
0
]
*
len
(
inst
)
+
[
-
1e9
]
*
(
max_len
-
len
(
inst
))
for
inst
in
insts
])
slf_attn_bias_data
=
np
.
tile
(
slf_attn_bias_data
.
reshape
([
-
1
,
1
,
1
,
max_len
]),
[
1
,
n_head
,
max_len
,
1
])
return_list
+=
[
slf_attn_bias_data
.
astype
(
"float32"
)]
if
return_max_len
:
return_list
+=
[
max_len
]
return
return_list
if
len
(
return_list
)
>
1
else
return_list
[
0
]
def
prepare_batch_input
(
insts
,
input_data_names
,
src_pad_idx
,
trg_pad_idx
,
max_length
,
n_head
):
"""
Put all padded data needed by training into a dict.
"""
input_dict
=
{}
def
__pad_batch_data
(
insts
,
pad_idx
,
is_target
=
False
,
return_pos
=
True
,
return_attn_bias
=
True
,
return_max_len
=
True
):
"""
Pad the instances to the max sequence length in batch, and generate the
corresponding position data and attention bias.
"""
return_list
=
[]
max_len
=
max
(
len
(
inst
)
for
inst
in
insts
)
inst_data
=
np
.
array
(
[
inst
+
[
pad_idx
]
*
(
max_len
-
len
(
inst
))
for
inst
in
insts
])
return_list
+=
[
inst_data
.
astype
(
"int64"
).
reshape
([
-
1
,
1
])]
if
return_pos
:
inst_pos
=
np
.
array
([[
pos_i
+
1
if
w_i
!=
pad_idx
else
0
for
pos_i
,
w_i
in
enumerate
(
inst
)
]
for
inst
in
inst_data
])
return_list
+=
[
inst_pos
.
astype
(
"int64"
).
reshape
([
-
1
,
1
])]
if
return_attn_bias
:
if
is_target
:
# This is used to avoid attention on paddings and subsequent
# words.
slf_attn_bias_data
=
np
.
ones
((
inst_data
.
shape
[
0
],
max_len
,
max_len
))
slf_attn_bias_data
=
np
.
triu
(
slf_attn_bias_data
,
1
).
reshape
(
[
-
1
,
1
,
max_len
,
max_len
])
slf_attn_bias_data
=
np
.
tile
(
slf_attn_bias_data
,
[
1
,
n_head
,
1
,
1
])
*
[
-
1e9
]
else
:
# This is used to avoid attention on paddings.
slf_attn_bias_data
=
np
.
array
([[
0
]
*
len
(
inst
)
+
[
-
1e9
]
*
(
max_len
-
len
(
inst
))
for
inst
in
insts
])
slf_attn_bias_data
=
np
.
tile
(
slf_attn_bias_data
.
reshape
([
-
1
,
1
,
1
,
max_len
]),
[
1
,
n_head
,
max_len
,
1
])
return_list
+=
[
slf_attn_bias_data
.
astype
(
"float32"
)]
if
return_max_len
:
return_list
+=
[
max_len
]
return
return_list
if
len
(
return_list
)
>
1
else
return_list
[
0
]
def
data_to_tensor
(
data_list
,
name_list
,
input_dict
,
place
):
assert
len
(
data_list
)
==
len
(
name_list
)
for
i
in
range
(
len
(
name_list
)):
tensor
=
fluid
.
LoDTensor
()
tensor
.
set
(
data_list
[
i
],
place
)
input_dict
[
name_list
[
i
]]
=
tensor
src_word
,
src_pos
,
src_slf_attn_bias
,
src_max_len
=
__pad_batch_data
(
[
inst
[
0
]
for
inst
in
insts
],
src_pad_idx
,
is_target
=
False
)
trg_word
,
trg_pos
,
trg_slf_attn_bias
,
trg_max_len
=
__pad_batch_data
(
[
inst
[
1
]
for
inst
in
insts
],
trg_pad_idx
,
is_target
=
True
)
src_word
,
src_pos
,
src_slf_attn_bias
,
src_max_len
=
pad_batch_data
(
[
inst
[
0
]
for
inst
in
insts
],
src_pad_idx
,
n_head
,
is_target
=
False
)
trg_word
,
trg_pos
,
trg_slf_attn_bias
,
trg_max_len
=
pad_batch_data
(
[
inst
[
1
]
for
inst
in
insts
],
trg_pad_idx
,
n_head
,
is_target
=
True
)
trg_src_attn_bias
=
np
.
tile
(
src_slf_attn_bias
[:,
:,
::
src_max_len
,
:],
[
1
,
1
,
trg_max_len
,
1
]).
astype
(
"float32"
)
lbl_word
=
__pad_batch_data
([
inst
[
2
]
for
inst
in
insts
],
trg_pad_idx
,
False
,
False
,
False
,
False
)
lbl_word
=
pad_batch_data
([
inst
[
2
]
for
inst
in
insts
],
trg_pad_idx
,
n_head
,
False
,
False
,
False
,
False
)
lbl_weight
=
(
lbl_word
!=
trg_pad_idx
).
astype
(
"float32"
).
reshape
([
-
1
,
1
])
data_to_tensor
([
src_word
,
src_pos
,
trg_word
,
trg_pos
,
src_slf_attn_bias
,
trg_slf_attn_bias
,
trg_src_attn_bias
,
lbl_word
,
lbl_weight
],
input_data_names
,
input_dict
,
place
)
input_dict
=
dict
(
zip
(
input_data_names
,
[
src_word
,
src_pos
,
src_slf_attn_bias
,
trg_word
,
trg_pos
,
trg_slf_attn_bias
,
trg_src_attn_bias
,
lbl_word
,
lbl_weight
]))
return
input_dict
...
...
@@ -92,7 +81,7 @@ def main():
place
=
fluid
.
CUDAPlace
(
0
)
if
TrainTaskConfig
.
use_gpu
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
cost
=
transformer
(
cost
,
predict
=
transformer
(
ModelHyperParams
.
src_vocab_size
+
1
,
ModelHyperParams
.
trg_vocab_size
+
1
,
ModelHyperParams
.
max_length
+
1
,
ModelHyperParams
.
n_layer
,
ModelHyperParams
.
n_head
,
...
...
@@ -118,6 +107,31 @@ def main():
buf_size
=
100000
),
batch_size
=
TrainTaskConfig
.
batch_size
)
# Program to do validation.
test_program
=
fluid
.
default_main_program
().
clone
()
with
fluid
.
program_guard
(
test_program
):
test_program
=
fluid
.
io
.
get_inference_program
([
cost
])
val_data
=
paddle
.
batch
(
paddle
.
dataset
.
wmt16
.
validation
(
ModelHyperParams
.
src_vocab_size
,
ModelHyperParams
.
trg_vocab_size
),
batch_size
=
TrainTaskConfig
.
batch_size
)
def
test
(
exe
):
test_costs
=
[]
for
batch_id
,
data
in
enumerate
(
val_data
()):
if
len
(
data
)
!=
TrainTaskConfig
.
batch_size
:
continue
data_input
=
prepare_batch_input
(
data
,
encoder_input_data_names
+
decoder_input_data_names
[:
-
1
]
+
label_data_names
,
ModelHyperParams
.
src_pad_idx
,
ModelHyperParams
.
trg_pad_idx
,
ModelHyperParams
.
max_length
,
ModelHyperParams
.
n_head
)
test_cost
=
exe
.
run
(
test_program
,
feed
=
data_input
,
fetch_list
=
[
cost
])[
0
]
test_costs
.
append
(
test_cost
)
return
np
.
mean
(
test_costs
)
# Initialize the parameters.
exe
.
run
(
fluid
.
framework
.
default_startup_program
())
for
pos_enc_param_name
in
pos_enc_param_names
:
...
...
@@ -134,9 +148,10 @@ def main():
if
len
(
data
)
!=
TrainTaskConfig
.
batch_size
:
continue
data_input
=
prepare_batch_input
(
data
,
input_data_names
,
ModelHyperParams
.
src_pad_idx
,
data
,
encoder_input_data_names
+
decoder_input_data_names
[:
-
1
]
+
label_data_names
,
ModelHyperParams
.
src_pad_idx
,
ModelHyperParams
.
trg_pad_idx
,
ModelHyperParams
.
max_length
,
ModelHyperParams
.
n_head
,
place
)
ModelHyperParams
.
n_head
)
lr_scheduler
.
update_learning_rate
(
data_input
)
outs
=
exe
.
run
(
fluid
.
framework
.
default_main_program
(),
feed
=
data_input
,
...
...
@@ -144,6 +159,14 @@ def main():
cost_val
=
np
.
array
(
outs
[
0
])
print
(
"pass_id = "
+
str
(
pass_id
)
+
" batch = "
+
str
(
batch_id
)
+
" cost = "
+
str
(
cost_val
))
# Validate and save the model for inference.
val_cost
=
test
(
exe
)
print
(
"pass_id = "
+
str
(
pass_id
)
+
" val_cost = "
+
str
(
val_cost
))
fluid
.
io
.
save_inference_model
(
os
.
path
.
join
(
TrainTaskConfig
.
model_dir
,
"pass_"
+
str
(
pass_id
)
+
".infer.model"
),
encoder_input_data_names
+
decoder_input_data_names
[:
-
1
],
[
predict
],
exe
)
if
__name__
==
"__main__"
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录