reader.py 11.4 KB
Newer Older
G
gaoyuan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import image_util
from paddle.utils.image_util import *
import random
from PIL import Image
X
Xingyuan Bu 已提交
19
from PIL import ImageDraw
G
gaoyuan 已提交
20 21 22
import numpy as np
import xml.etree.ElementTree
import os
X
Xingyuan Bu 已提交
23 24 25
import time
import copy

G
gaoyuan 已提交
26 27

class Settings(object):
D
Dang Qingqing 已提交
28 29 30 31 32 33 34 35 36
    def __init__(self,
                 dataset=None,
                 data_dir=None,
                 label_file=None,
                 resize_h=300,
                 resize_w=300,
                 mean_value=[127.5, 127.5, 127.5],
                 apply_distort=True,
                 apply_expand=True,
37
                 ap_version='11point',
D
Dang Qingqing 已提交
38
                 toy=0):
X
Xingyuan Bu 已提交
39
        self._dataset = dataset
40
        self._ap_version = ap_version
X
Xingyuan Bu 已提交
41
        self._toy = toy
G
gaoyuan 已提交
42
        self._data_dir = data_dir
43
        if 'pascalvoc' in dataset:
X
Xingyuan Bu 已提交
44 45 46 47
            self._label_list = []
            label_fpath = os.path.join(data_dir, label_file)
            for line in open(label_fpath):
                self._label_list.append(line.strip())
G
gaoyuan 已提交
48

G
gaoyuan 已提交
49 50
        self._apply_distort = apply_distort
        self._apply_expand = apply_expand
G
gaoyuan 已提交
51 52 53 54
        self._resize_height = resize_h
        self._resize_width = resize_w
        self._img_mean = np.array(mean_value)[:, np.newaxis, np.newaxis].astype(
            'float32')
G
gaoyuan 已提交
55 56 57 58 59 60 61 62 63 64 65
        self._expand_prob = 0.5
        self._expand_max_ratio = 4
        self._hue_prob = 0.5
        self._hue_delta = 18
        self._contrast_prob = 0.5
        self._contrast_delta = 0.5
        self._saturation_prob = 0.5
        self._saturation_delta = 0.5
        self._brightness_prob = 0.5
        self._brightness_delta = 0.125

X
Xingyuan Bu 已提交
66 67 68 69
    @property
    def dataset(self):
        return self._dataset

70 71 72 73
    @property
    def ap_version(self):
        return self._ap_version

X
Xingyuan Bu 已提交
74 75 76 77
    @property
    def toy(self):
        return self._toy

G
gaoyuan 已提交
78 79 80 81 82 83 84
    @property
    def apply_distort(self):
        return self._apply_expand

    @property
    def apply_distort(self):
        return self._apply_distort
G
gaoyuan 已提交
85 86 87 88 89

    @property
    def data_dir(self):
        return self._data_dir

X
Xingyuan Bu 已提交
90 91 92 93
    @data_dir.setter
    def data_dir(self, data_dir):
        self._data_dir = data_dir

G
gaoyuan 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
    @property
    def label_list(self):
        return self._label_list

    @property
    def resize_h(self):
        return self._resize_height

    @property
    def resize_w(self):
        return self._resize_width

    @property
    def img_mean(self):
        return self._img_mean


D
Dang Qingqing 已提交
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
def preprocess(img, bbox_labels, mode, settings):
    img_width, img_height = img.size
    sampled_labels = bbox_labels
    if mode == 'train':
        if settings._apply_distort:
            img = image_util.distort_image(img, settings)
        if settings._apply_expand:
            img, bbox_labels, img_width, img_height = image_util.expand_image(
                img, bbox_labels, img_width, img_height, settings)
        # sampling
        batch_sampler = []
        # hard-code here
        batch_sampler.append(
            image_util.sampler(1, 1, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0))
        batch_sampler.append(
            image_util.sampler(1, 50, 0.3, 1.0, 0.5, 2.0, 0.1, 0.0))
        batch_sampler.append(
            image_util.sampler(1, 50, 0.3, 1.0, 0.5, 2.0, 0.3, 0.0))
        batch_sampler.append(
            image_util.sampler(1, 50, 0.3, 1.0, 0.5, 2.0, 0.5, 0.0))
        batch_sampler.append(
            image_util.sampler(1, 50, 0.3, 1.0, 0.5, 2.0, 0.7, 0.0))
        batch_sampler.append(
            image_util.sampler(1, 50, 0.3, 1.0, 0.5, 2.0, 0.9, 0.0))
        batch_sampler.append(
            image_util.sampler(1, 50, 0.3, 1.0, 0.5, 2.0, 0.0, 1.0))
        sampled_bbox = image_util.generate_batch_samples(batch_sampler,
                                                         bbox_labels)

        img = np.array(img)
        if len(sampled_bbox) > 0:
            idx = int(random.uniform(0, len(sampled_bbox)))
            img, sampled_labels = image_util.crop_image(
                img, bbox_labels, sampled_bbox[idx], img_width, img_height)

        img = Image.fromarray(img)
    img = img.resize((settings.resize_w, settings.resize_h), Image.ANTIALIAS)
    img = np.array(img)

    if mode == 'train':
        mirror = int(random.uniform(0, 2))
        if mirror == 1:
            img = img[:, ::-1, :]
            for i in xrange(len(sampled_labels)):
                tmp = sampled_labels[i][1]
                sampled_labels[i][1] = 1 - sampled_labels[i][3]
                sampled_labels[i][3] = 1 - tmp
    # HWC to CHW
    if len(img.shape) == 3:
        img = np.swapaxes(img, 1, 2)
        img = np.swapaxes(img, 1, 0)
    # RBG to BGR
    img = img[[2, 1, 0], :, :]
    img = img.astype('float32')
    img -= settings.img_mean
    img = img * 0.007843
    return img, sampled_labels


def coco(settings, file_list, mode, shuffle):
    # cocoapi
    from pycocotools.coco import COCO
    from pycocotools.cocoeval import COCOeval

    coco = COCO(file_list)
    image_ids = coco.getImgIds()
    images = coco.loadImgs(image_ids)
    category_ids = coco.getCatIds()
    category_names = [item['name'] for item in coco.loadCats(category_ids)]

    if not settings.toy == 0:
        images = images[:settings.toy] if len(images) > settings.toy else images
    print("{} on {} with {} images".format(mode, settings.dataset, len(images)))

G
gaoyuan 已提交
185
    def reader():
D
Dang Qingqing 已提交
186
        if mode == 'train' and shuffle:
X
Xingyuan Bu 已提交
187 188
            random.shuffle(images)
        for image in images:
D
Dang Qingqing 已提交
189 190 191 192 193 194 195
            image_name = image['file_name']
            image_path = os.path.join(settings.data_dir, image_name)

            im = Image.open(image_path)
            if im.mode == 'L':
                im = im.convert('RGB')
            im_width, im_height = im.size
196
            im_id = image['id']
D
Dang Qingqing 已提交
197

198
            # layout: category_id | xmin | ymin | xmax | ymax | iscrowd
D
Dang Qingqing 已提交
199 200 201 202 203 204
            bbox_labels = []
            annIds = coco.getAnnIds(imgIds=image['id'])
            anns = coco.loadAnns(annIds)
            for ann in anns:
                bbox_sample = []
                # start from 1, leave 0 to background
205 206
                bbox_sample.append(float(ann['category_id']))
                #float(category_ids.index(ann['category_id'])) + 1)
D
Dang Qingqing 已提交
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
                bbox = ann['bbox']
                xmin, ymin, w, h = bbox
                xmax = xmin + w
                ymax = ymin + h
                bbox_sample.append(float(xmin) / im_width)
                bbox_sample.append(float(ymin) / im_height)
                bbox_sample.append(float(xmax) / im_width)
                bbox_sample.append(float(ymax) / im_height)
                bbox_sample.append(float(ann['iscrowd']))
                bbox_labels.append(bbox_sample)
            im, sample_labels = preprocess(im, bbox_labels, mode, settings)
            sample_labels = np.array(sample_labels)
            if len(sample_labels) == 0: continue
            im = im.astype('float32')
            boxes = sample_labels[:, 1:5]
            lbls = sample_labels[:, 0].astype('int32')
223 224 225 226 227 228
            iscrowd = sample_labels[:, -1].astype('int32')
            if 'cocoMAP' in settings.ap_version:
                yield im, boxes, lbls, iscrowd, \
                    [im_id, im_width, im_height]
            else:
                yield im, boxes, lbls, iscrowd
D
Dang Qingqing 已提交
229 230 231

    return reader

X
Xingyuan Bu 已提交
232

D
Dang Qingqing 已提交
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
def pascalvoc(settings, file_list, mode, shuffle):
    flist = open(file_list)
    images = [line.strip() for line in flist]
    if not settings.toy == 0:
        images = images[:settings.toy] if len(images) > settings.toy else images
    print("{} on {} with {} images".format(mode, settings.dataset, len(images)))

    def reader():
        if mode == 'train' and shuffle:
            random.shuffle(images)
        for image in images:
            image_path, label_path = image.split()
            image_path = os.path.join(settings.data_dir, image_path)
            label_path = os.path.join(settings.data_dir, label_path)

            im = Image.open(image_path)
            if im.mode == 'L':
                im = im.convert('RGB')
            im_width, im_height = im.size

            # layout: label | xmin | ymin | xmax | ymax | difficult
            bbox_labels = []
            root = xml.etree.ElementTree.parse(label_path).getroot()
            for object in root.findall('object'):
                bbox_sample = []
                # start from 1
                bbox_sample.append(
                    float(settings.label_list.index(object.find('name').text)))
                bbox = object.find('bndbox')
                difficult = float(object.find('difficult').text)
                bbox_sample.append(float(bbox.find('xmin').text) / im_width)
                bbox_sample.append(float(bbox.find('ymin').text) / im_height)
                bbox_sample.append(float(bbox.find('xmax').text) / im_width)
                bbox_sample.append(float(bbox.find('ymax').text) / im_height)
                bbox_sample.append(difficult)
                bbox_labels.append(bbox_sample)
            im, sample_labels = preprocess(im, bbox_labels, mode, settings)
X
Xingyuan Bu 已提交
270
            sample_labels = np.array(sample_labels)
D
Dang Qingqing 已提交
271 272 273 274 275 276
            if len(sample_labels) == 0: continue
            im = im.astype('float32')
            boxes = sample_labels[:, 1:5]
            lbls = sample_labels[:, 0].astype('int32')
            difficults = sample_labels[:, -1].astype('int32')
            yield im, boxes, lbls, difficults
G
gaoyuan 已提交
277 278 279 280 281

    return reader


def train(settings, file_list, shuffle=True):
282
    file_list = os.path.join(settings.data_dir, file_list)
283
    if 'coco' in settings.dataset:
X
Xingyuan Bu 已提交
284 285 286 287 288 289
        train_settings = copy.copy(settings)
        if '2014' in file_list:
            sub_dir = "train2014"
        elif '2017' in file_list:
            sub_dir = "train2017"
        train_settings.data_dir = os.path.join(settings.data_dir, sub_dir)
D
Dang Qingqing 已提交
290
        return coco(train_settings, file_list, 'train', shuffle)
D
Dang Qingqing 已提交
291
    else:
D
Dang Qingqing 已提交
292
        return pascalvoc(settings, file_list, 'train', shuffle)
G
gaoyuan 已提交
293 294 295


def test(settings, file_list):
296
    file_list = os.path.join(settings.data_dir, file_list)
297
    if 'coco' in settings.dataset:
X
Xingyuan Bu 已提交
298 299 300 301 302 303
        test_settings = copy.copy(settings)
        if '2014' in file_list:
            sub_dir = "val2014"
        elif '2017' in file_list:
            sub_dir = "val2017"
        test_settings.data_dir = os.path.join(settings.data_dir, sub_dir)
D
Dang Qingqing 已提交
304
        return coco(test_settings, file_list, 'test', False)
D
Dang Qingqing 已提交
305
    else:
D
Dang Qingqing 已提交
306 307 308 309
        return pascalvoc(settings, file_list, 'test', False)


def infer(settings, image_path):
D
Dang Qingqing 已提交
310
    def reader():
311 312 313 314
        img = Image.open(image_path)
        if img.mode == 'L':
            img = im.convert('RGB')
        im_width, im_height = img.size
D
Dang Qingqing 已提交
315 316 317 318 319 320 321 322 323 324 325 326
        img = img.resize((settings.resize_w, settings.resize_h),
                         Image.ANTIALIAS)
        img = np.array(img)
        # HWC to CHW
        if len(img.shape) == 3:
            img = np.swapaxes(img, 1, 2)
            img = np.swapaxes(img, 1, 0)
        # RBG to BGR
        img = img[[2, 1, 0], :, :]
        img = img.astype('float32')
        img -= settings.img_mean
        img = img * 0.007843
327
        return img
D
Dang Qingqing 已提交
328 329

    return reader