Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
547b3918
M
models
项目概览
PaddlePaddle
/
models
1 年多 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
547b3918
编写于
4月 16, 2018
作者:
D
Dang Qingqing
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add eval.py and fix bug.
上级
2b8a3dfb
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
144 addition
and
24 deletion
+144
-24
fluid/object_detection/.gitignore
fluid/object_detection/.gitignore
+1
-0
fluid/object_detection/eval.py
fluid/object_detection/eval.py
+106
-0
fluid/object_detection/image_util.py
fluid/object_detection/image_util.py
+1
-1
fluid/object_detection/reader.py
fluid/object_detection/reader.py
+14
-6
fluid/object_detection/train.py
fluid/object_detection/train.py
+22
-17
未找到文件。
fluid/object_detection/.gitignore
浏览文件 @
547b3918
...
...
@@ -6,3 +6,4 @@ pretrained/ssd_mobilenet_v1_coco
pretrained/mobilenet_v1_imagenet.tar.gz
pretrained/mobilenet_v1_imagenet
log*
*.log
fluid/object_detection/eval.py
0 → 100644
浏览文件 @
547b3918
import
os
import
time
import
numpy
as
np
import
argparse
import
functools
import
paddle
import
paddle.fluid
as
fluid
import
reader
from
mobilenet_ssd
import
mobile_net
from
utility
import
add_arguments
,
print_arguments
parser
=
argparse
.
ArgumentParser
(
description
=
__doc__
)
add_arg
=
functools
.
partial
(
add_arguments
,
argparser
=
parser
)
# yapf: disable
add_arg
(
'dataset'
,
str
,
'pascalvoc'
,
"coco or pascalvoc."
)
add_arg
(
'batch_size'
,
int
,
32
,
"Minibatch size."
)
add_arg
(
'use_gpu'
,
bool
,
True
,
"Whether use GPU."
)
add_arg
(
'data_dir'
,
str
,
''
,
"The path to save model."
)
add_arg
(
'test_list'
,
str
,
''
,
"The path to save model."
)
add_arg
(
'label_file'
,
str
,
''
,
"Label file."
)
add_arg
(
'model_dir'
,
str
,
''
,
"The path to save model."
)
add_arg
(
'ap_version'
,
str
,
'11point'
,
"11point or integral"
)
add_arg
(
'resize_h'
,
int
,
300
,
"resize image size"
)
add_arg
(
'resize_w'
,
int
,
300
,
"resize image size"
)
add_arg
(
'mean_value_B'
,
float
,
127.5
,
"mean value which will be subtracted"
)
#123.68
add_arg
(
'mean_value_G'
,
float
,
127.5
,
"mean value which will be subtracted"
)
#116.78
add_arg
(
'mean_value_R'
,
float
,
127.5
,
"mean value which will be subtracted"
)
#103.94
# yapf: disable
def
eval
(
args
,
data_args
,
test_list
,
batch_size
,
model_dir
=
None
):
image_shape
=
[
3
,
data_args
.
resize_h
,
data_args
.
resize_w
]
if
data_args
.
dataset
==
'coco'
:
num_classes
=
81
elif
data_args
.
dataset
==
'pascalvoc'
:
num_classes
=
21
image
=
fluid
.
layers
.
data
(
name
=
'image'
,
shape
=
image_shape
,
dtype
=
'float32'
)
gt_box
=
fluid
.
layers
.
data
(
name
=
'gt_box'
,
shape
=
[
4
],
dtype
=
'float32'
,
lod_level
=
1
)
gt_label
=
fluid
.
layers
.
data
(
name
=
'gt_label'
,
shape
=
[
1
],
dtype
=
'int32'
,
lod_level
=
1
)
difficult
=
fluid
.
layers
.
data
(
name
=
'gt_difficult'
,
shape
=
[
1
],
dtype
=
'int32'
,
lod_level
=
1
)
locs
,
confs
,
box
,
box_var
=
mobile_net
(
num_classes
,
image
,
image_shape
)
nmsed_out
=
fluid
.
layers
.
detection_output
(
locs
,
confs
,
box
,
box_var
,
nms_threshold
=
0.45
)
loss
=
fluid
.
layers
.
ssd_loss
(
locs
,
confs
,
gt_box
,
gt_label
,
box
,
box_var
)
loss
=
fluid
.
layers
.
reduce_sum
(
loss
)
test_program
=
fluid
.
default_main_program
().
clone
(
for_test
=
True
)
with
fluid
.
program_guard
(
test_program
):
map_eval
=
fluid
.
evaluator
.
DetectionMAP
(
nmsed_out
,
gt_label
,
gt_box
,
difficult
,
num_classes
,
overlap_threshold
=
0.5
,
evaluate_difficult
=
False
,
ap_version
=
args
.
ap_version
)
place
=
fluid
.
CUDAPlace
(
0
)
if
args
.
use_gpu
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
#exe.run(fluid.default_startup_program())
if
model_dir
:
def
if_exist
(
var
):
return
os
.
path
.
exists
(
os
.
path
.
join
(
model_dir
,
var
.
name
))
fluid
.
io
.
load_vars
(
exe
,
model_dir
,
predicate
=
if_exist
)
#fluid.io.load_persistables(exe, model_dir, main_program=test_program)
test_reader
=
paddle
.
batch
(
reader
.
test
(
data_args
,
test_list
),
batch_size
=
batch_size
)
feeder
=
fluid
.
DataFeeder
(
place
=
place
,
feed_list
=
[
image
,
gt_box
,
gt_label
,
difficult
])
_
,
accum_map
=
map_eval
.
get_map_var
()
map_eval
.
reset
(
exe
)
for
_
,
data
in
enumerate
(
test_reader
()):
test_map
=
exe
.
run
(
test_program
,
feed
=
feeder
.
feed
(
data
),
fetch_list
=
[
accum_map
])
print
(
"Test model {0}, map {1}"
.
format
(
model_dir
,
test_map
[
0
]))
if
__name__
==
'__main__'
:
args
=
parser
.
parse_args
()
print_arguments
(
args
)
data_args
=
reader
.
Settings
(
dataset
=
args
.
dataset
,
data_dir
=
args
.
data_dir
,
label_file
=
args
.
label_file
,
resize_h
=
args
.
resize_h
,
resize_w
=
args
.
resize_w
,
mean_value
=
[
args
.
mean_value_B
,
args
.
mean_value_G
,
args
.
mean_value_R
])
eval
(
args
,
test_list
=
args
.
test_list
,
data_args
=
data_args
,
batch_size
=
args
.
batch_size
,
model_dir
=
args
.
model_dir
)
fluid/object_detection/image_util.py
浏览文件 @
547b3918
...
...
@@ -216,7 +216,7 @@ def distort_image(img, settings):
def
expand_image
(
img
,
bbox_labels
,
img_width
,
img_height
,
settings
):
prob
=
random
.
uniform
(
0
,
1
)
if
prob
<
settings
.
_expand_prob
:
if
_expand_max_ratio
-
1
>=
0.01
:
if
settings
.
_expand_max_ratio
-
1
>=
0.01
:
expand_ratio
=
random
.
uniform
(
1
,
settings
.
_expand_max_ratio
)
height
=
int
(
img_height
*
expand_ratio
)
width
=
int
(
img_width
*
expand_ratio
)
...
...
fluid/object_detection/reader.py
浏览文件 @
547b3918
...
...
@@ -25,8 +25,16 @@ import copy
class
Settings
(
object
):
def
__init__
(
self
,
dataset
,
toy
,
data_dir
,
label_file
,
resize_h
,
resize_w
,
mean_value
,
apply_distort
,
apply_expand
):
def
__init__
(
self
,
dataset
=
None
,
data_dir
=
None
,
label_file
=
None
,
resize_h
=
300
,
resize_w
=
300
,
mean_value
=
[
127.5
,
127.5
,
127.5
],
apply_distort
=
True
,
apply_expand
=
True
,
toy
=
0
):
self
.
_dataset
=
dataset
self
.
_toy
=
toy
self
.
_data_dir
=
data_dir
...
...
@@ -108,7 +116,7 @@ def _reader_creator(settings, file_list, mode, shuffle):
category_names
=
[
item
[
'name'
]
for
item
in
coco
.
loadCats
(
category_ids
)
]
el
if
settings
.
dataset
==
'pascalvoc'
:
el
se
:
flist
=
open
(
file_list
)
images
=
[
line
.
strip
()
for
line
in
flist
]
...
...
@@ -213,7 +221,7 @@ def _reader_creator(settings, file_list, mode, shuffle):
image_util
.
sampler
(
1
,
50
,
0.3
,
1.0
,
0.5
,
2.0
,
0.0
,
1.0
))
""" random crop """
sampled_bbox
=
image_util
.
generate_batch_samples
(
batch_sampler
,
bbox_labels
,
img_width
,
img_height
)
batch_sampler
,
bbox_labels
)
img
=
np
.
array
(
img
)
if
len
(
sampled_bbox
)
>
0
:
...
...
@@ -302,7 +310,7 @@ def train(settings, file_list, shuffle=True):
sub_dir
=
"train2017"
train_settings
.
data_dir
=
os
.
path
.
join
(
settings
.
data_dir
,
sub_dir
)
return
_reader_creator
(
train_settings
,
file_list
,
'train'
,
shuffle
)
el
if
settings
.
dataset
==
'pascalvoc'
:
el
se
:
return
_reader_creator
(
settings
,
file_list
,
'train'
,
shuffle
)
...
...
@@ -316,7 +324,7 @@ def test(settings, file_list):
sub_dir
=
"val2017"
test_settings
.
data_dir
=
os
.
path
.
join
(
settings
.
data_dir
,
sub_dir
)
return
_reader_creator
(
test_settings
,
file_list
,
'test'
,
False
)
el
if
settings
.
dataset
==
'pascalvoc'
:
el
se
:
return
_reader_creator
(
settings
,
file_list
,
'test'
,
False
)
...
...
fluid/object_detection/train.py
浏览文件 @
547b3918
import
paddle
import
paddle.fluid
as
fluid
import
reader
import
load_model
as
load_model
from
mobilenet_ssd
import
mobile_net
from
utility
import
add_arguments
,
print_arguments
import
os
import
time
import
numpy
as
np
import
argparse
import
functools
import
paddle
import
paddle.fluid
as
fluid
import
reader
from
mobilenet_ssd
import
mobile_net
from
utility
import
add_arguments
,
print_arguments
parser
=
argparse
.
ArgumentParser
(
description
=
__doc__
)
add_arg
=
functools
.
partial
(
add_arguments
,
argparser
=
parser
)
# yapf: disable
add_arg
(
'learning_rate'
,
float
,
0.001
,
"Learning rate."
)
add_arg
(
'batch_size'
,
int
,
32
,
"Minibatch size."
)
add_arg
(
'num_passes'
,
int
,
25
,
"Epoch number."
)
add_arg
(
'num_passes'
,
int
,
120
,
"Epoch number."
)
add_arg
(
'parallel'
,
bool
,
True
,
"Whether use parallel training."
)
add_arg
(
'use_gpu'
,
bool
,
True
,
"Whether use GPU."
)
add_arg
(
'use_nccl'
,
bool
,
False
,
"Whether use NCCL."
)
add_arg
(
'dataset'
,
str
,
'pascalvoc'
,
"coco or pascalvoc."
)
add_arg
(
'model_save_dir'
,
str
,
'model'
,
"The path to save model."
)
add_arg
(
'pretrained_model'
,
str
,
'pretrained/ssd_mobilenet_v1_coco/'
,
"The init model path."
)
add_arg
(
'apply_distort'
,
bool
,
True
,
"Whether apply distort"
)
add_arg
(
'apply_expand'
,
bool
,
False
,
"Whether appley expand"
)
add_arg
(
'apply_distort'
,
bool
,
True
,
"Whether apply distort"
)
add_arg
(
'apply_expand'
,
bool
,
True
,
"Whether appley expand"
)
add_arg
(
'ap_version'
,
str
,
'11point'
,
"11point or integral"
)
add_arg
(
'resize_h'
,
int
,
300
,
"resize image size"
)
add_arg
(
'resize_w'
,
int
,
300
,
"resize image size"
)
add_arg
(
'mean_value_B'
,
float
,
127.5
,
"mean value which will be subtracted"
)
#123.68
...
...
@@ -94,7 +95,7 @@ def parallel_do(args,
num_classes
,
overlap_threshold
=
0.5
,
evaluate_difficult
=
False
,
ap_version
=
'integral'
)
ap_version
=
args
.
ap_version
)
if
data_args
.
dataset
==
'coco'
:
# learning rate decay in 12, 19 pass, respectively
...
...
@@ -202,17 +203,21 @@ def parallel_exe(args,
num_classes
,
overlap_threshold
=
0.5
,
evaluate_difficult
=
False
,
ap_version
=
'integral'
)
ap_version
=
args
.
ap_version
)
print
(
'ParallelExecutor, ap_version = '
,
args
.
ap_version
)
if
data_args
.
dataset
==
'coco'
:
# learning rate decay in 12, 19 pass, respectively
if
'2014'
in
train_file_list
:
boundaries
=
[
82783
/
batch_size
*
12
,
82783
/
batch_size
*
19
]
epocs
=
82783
/
batch_size
boundaries
=
[
epocs
*
12
,
epocs
*
19
]
elif
'2017'
in
train_file_list
:
boundaries
=
[
118287
/
batch_size
*
12
,
118287
/
batch_size
*
19
]
epocs
=
118287
/
batch_size
boundaries
=
[
epcos
*
12
,
epocs
*
19
]
elif
data_args
.
dataset
==
'pascalvoc'
:
boundaries
=
[
40000
,
60000
]
values
=
[
learning_rate
,
learning_rate
*
0.5
,
learning_rate
*
0.25
]
epocs
=
19200
/
batch_size
boundaries
=
[
epocs
*
40
,
epocs
*
60
,
epocs
*
80
,
epocs
*
100
]
values
=
[
learning_rate
,
learning_rate
*
0.5
,
learning_rate
*
0.25
,
learning_rate
*
0.1
,
learning_rate
*
0.01
]
optimizer
=
fluid
.
optimizer
.
RMSProp
(
learning_rate
=
fluid
.
layers
.
piecewise_decay
(
boundaries
,
values
),
regularization
=
fluid
.
regularizer
.
L2Decay
(
0.00005
),
)
...
...
@@ -287,14 +292,14 @@ if __name__ == '__main__':
data_args
=
reader
.
Settings
(
dataset
=
args
.
dataset
,
toy
=
args
.
is_toy
,
data_dir
=
data_dir
,
label_file
=
label_file
,
apply_distort
=
args
.
apply_distort
,
apply_expand
=
args
.
apply_expand
,
resize_h
=
args
.
resize_h
,
resize_w
=
args
.
resize_w
,
mean_value
=
[
args
.
mean_value_B
,
args
.
mean_value_G
,
args
.
mean_value_R
])
mean_value
=
[
args
.
mean_value_B
,
args
.
mean_value_G
,
args
.
mean_value_R
],
toy
=
args
.
is_toy
)
#method = parallel_do
method
=
parallel_exe
method
(
args
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录