Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
19f9260b
M
models
项目概览
PaddlePaddle
/
models
1 年多 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
19f9260b
编写于
4月 16, 2018
作者:
D
Dang Qingqing
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Update argument comments.
上级
f1789a58
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
107 addition
and
97 deletion
+107
-97
fluid/image_classification/train.py
fluid/image_classification/train.py
+31
-35
fluid/object_detection/eval.py
fluid/object_detection/eval.py
+23
-23
fluid/object_detection/reader.py
fluid/object_detection/reader.py
+20
-15
fluid/object_detection/train.py
fluid/object_detection/train.py
+33
-24
未找到文件。
fluid/image_classification/train.py
浏览文件 @
19f9260b
...
...
@@ -18,17 +18,19 @@ add_arg('batch_size', int, 256, "Minibatch size.")
add_arg
(
'num_layers'
,
int
,
50
,
"How many layers for SE-ResNeXt model."
)
add_arg
(
'with_mem_opt'
,
bool
,
True
,
"Whether to use memory optimization or not."
)
add_arg
(
'parallel_exe'
,
bool
,
True
,
"Whether to use ParallelExecutor to train or not."
)
def
train_paralle_do
(
args
,
learning_rate
,
batch_size
,
num_passes
,
init_model
=
None
,
model_save_dir
=
'model'
,
parallel
=
True
,
use_nccl
=
True
,
lr_strategy
=
None
,
layers
=
50
):
# yapf: enable
def
train_parallel_do
(
args
,
learning_rate
,
batch_size
,
num_passes
,
init_model
=
None
,
model_save_dir
=
'model'
,
parallel
=
True
,
use_nccl
=
True
,
lr_strategy
=
None
,
layers
=
50
):
class_dim
=
1000
image_shape
=
[
3
,
224
,
224
]
...
...
@@ -62,6 +64,8 @@ def train_paralle_do(args,
acc_top1
=
fluid
.
layers
.
accuracy
(
input
=
out
,
label
=
label
,
k
=
1
)
acc_top5
=
fluid
.
layers
.
accuracy
(
input
=
out
,
label
=
label
,
k
=
5
)
inference_program
=
fluid
.
default_main_program
().
clone
(
for_test
=
True
)
if
lr_strategy
is
None
:
optimizer
=
fluid
.
optimizer
.
Momentum
(
learning_rate
=
learning_rate
,
...
...
@@ -76,12 +80,9 @@ def train_paralle_do(args,
momentum
=
0.9
,
regularization
=
fluid
.
regularizer
.
L2Decay
(
1e-4
))
inference_program
=
fluid
.
default_main_program
().
clone
(
for_test
=
True
)
opts
=
optimizer
.
minimize
(
avg_cost
)
if
args
.
with_mem_opt
:
fluid
.
memory_optimize
(
fluid
.
default_main_program
())
fluid
.
memory_optimize
(
inference_program
)
place
=
fluid
.
CUDAPlace
(
0
)
exe
=
fluid
.
Executor
(
place
)
...
...
@@ -154,6 +155,7 @@ def train_paralle_do(args,
os
.
makedirs
(
model_path
)
fluid
.
io
.
save_persistables
(
exe
,
model_path
)
def
train_parallel_exe
(
args
,
learning_rate
,
batch_size
,
...
...
@@ -195,7 +197,6 @@ def train_parallel_exe(args,
if
args
.
with_mem_opt
:
fluid
.
memory_optimize
(
fluid
.
default_main_program
())
fluid
.
memory_optimize
(
test_program
)
place
=
fluid
.
CUDAPlace
(
0
)
exe
=
fluid
.
Executor
(
place
)
...
...
@@ -210,9 +211,7 @@ def train_parallel_exe(args,
train_exe
=
fluid
.
ParallelExecutor
(
use_cuda
=
True
,
loss_name
=
avg_cost
.
name
)
test_exe
=
fluid
.
ParallelExecutor
(
use_cuda
=
True
,
main_program
=
test_program
,
share_vars_from
=
train_exe
)
use_cuda
=
True
,
main_program
=
test_program
,
share_vars_from
=
train_exe
)
fetch_list
=
[
avg_cost
.
name
,
acc_top1
.
name
,
acc_top5
.
name
]
...
...
@@ -221,9 +220,8 @@ def train_parallel_exe(args,
test_info
=
[[],
[],
[]]
for
batch_id
,
data
in
enumerate
(
train_reader
()):
t1
=
time
.
time
()
loss
,
acc1
,
acc5
=
train_exe
.
run
(
fetch_list
,
feed_dict
=
feeder
.
feed
(
data
))
loss
,
acc1
,
acc5
=
train_exe
.
run
(
fetch_list
,
feed_dict
=
feeder
.
feed
(
data
))
t2
=
time
.
time
()
period
=
t2
-
t1
loss
=
np
.
mean
(
np
.
array
(
loss
))
...
...
@@ -245,9 +243,8 @@ def train_parallel_exe(args,
train_acc5
=
np
.
array
(
train_info
[
2
]).
mean
()
for
data
in
test_reader
():
t1
=
time
.
time
()
loss
,
acc1
,
acc5
=
test_exe
.
run
(
fetch_list
,
feed_dict
=
feeder
.
feed
(
data
))
loss
,
acc1
,
acc5
=
test_exe
.
run
(
fetch_list
,
feed_dict
=
feeder
.
feed
(
data
))
t2
=
time
.
time
()
period
=
t2
-
t1
loss
=
np
.
mean
(
np
.
array
(
loss
))
...
...
@@ -281,8 +278,6 @@ def train_parallel_exe(args,
fluid
.
io
.
save_persistables
(
exe
,
model_path
)
if
__name__
==
'__main__'
:
args
=
parser
.
parse_args
()
print_arguments
(
args
)
...
...
@@ -300,12 +295,13 @@ if __name__ == '__main__':
# layers: 50, 152
layers
=
args
.
num_layers
method
=
train_parallel_exe
if
args
.
parallel_exe
else
train_parallel_do
method
(
args
,
learning_rate
=
0.1
,
batch_size
=
batch_size
,
num_passes
=
120
,
init_model
=
None
,
parallel
=
True
,
use_nccl
=
True
,
lr_strategy
=
lr_strategy
,
layers
=
layers
)
method
(
args
,
learning_rate
=
0.1
,
batch_size
=
batch_size
,
num_passes
=
120
,
init_model
=
None
,
parallel
=
True
,
use_nccl
=
True
,
lr_strategy
=
lr_strategy
,
layers
=
layers
)
fluid/object_detection/eval.py
浏览文件 @
19f9260b
...
...
@@ -15,24 +15,21 @@ add_arg = functools.partial(add_arguments, argparser=parser)
# yapf: disable
add_arg
(
'dataset'
,
str
,
'pascalvoc'
,
"coco or pascalvoc."
)
add_arg
(
'batch_size'
,
int
,
32
,
"Minibatch size."
)
add_arg
(
'use_gpu'
,
bool
,
True
,
"Whether
use GPU
."
)
add_arg
(
'data_dir'
,
str
,
''
,
"The
path to save model
."
)
add_arg
(
'test_list'
,
str
,
''
,
"The
path to save model
."
)
add_arg
(
'label_file'
,
str
,
''
,
"
Label file
."
)
add_arg
(
'model_dir'
,
str
,
''
,
"The
path to save model
."
)
add_arg
(
'use_gpu'
,
bool
,
True
,
"Whether
to use GPU or not
."
)
add_arg
(
'data_dir'
,
str
,
''
,
"The
data root path
."
)
add_arg
(
'test_list'
,
str
,
''
,
"The
testing data lists
."
)
add_arg
(
'label_file'
,
str
,
''
,
"
The label file, which save the real name and is only used for Pascal VOC
."
)
add_arg
(
'model_dir'
,
str
,
''
,
"The
model path
."
)
add_arg
(
'ap_version'
,
str
,
'11point'
,
"11point or integral"
)
add_arg
(
'resize_h'
,
int
,
300
,
"resize image size"
)
add_arg
(
'resize_w'
,
int
,
300
,
"resize image size"
)
add_arg
(
'mean_value_B'
,
float
,
127.5
,
"mean value which will be subtracted"
)
#123.68
add_arg
(
'mean_value_G'
,
float
,
127.5
,
"mean value which will be subtracted"
)
#116.78
add_arg
(
'mean_value_R'
,
float
,
127.5
,
"mean value which will be subtracted"
)
#103.94
# yapf: disable
add_arg
(
'resize_h'
,
int
,
300
,
"The resized image height."
)
add_arg
(
'resize_w'
,
int
,
300
,
"The resized image width."
)
add_arg
(
'mean_value_B'
,
float
,
127.5
,
"mean value for B channel which will be subtracted"
)
#123.68
add_arg
(
'mean_value_G'
,
float
,
127.5
,
"mean value for G channel which will be subtracted"
)
#116.78
add_arg
(
'mean_value_R'
,
float
,
127.5
,
"mean value for R channel which will be subtracted"
)
#103.94
# yapf: enable
def
eval
(
args
,
data_args
,
test_list
,
batch_size
,
model_dir
=
None
):
def
eval
(
args
,
data_args
,
test_list
,
batch_size
,
model_dir
=
None
):
image_shape
=
[
3
,
data_args
.
resize_h
,
data_args
.
resize_w
]
if
data_args
.
dataset
==
'coco'
:
num_classes
=
81
...
...
@@ -50,8 +47,7 @@ def eval(args,
locs
,
confs
,
box
,
box_var
=
mobile_net
(
num_classes
,
image
,
image_shape
)
nmsed_out
=
fluid
.
layers
.
detection_output
(
locs
,
confs
,
box
,
box_var
,
nms_threshold
=
0.45
)
loss
=
fluid
.
layers
.
ssd_loss
(
locs
,
confs
,
gt_box
,
gt_label
,
box
,
box_var
)
loss
=
fluid
.
layers
.
ssd_loss
(
locs
,
confs
,
gt_box
,
gt_label
,
box
,
box_var
)
loss
=
fluid
.
layers
.
reduce_sum
(
loss
)
test_program
=
fluid
.
default_main_program
().
clone
(
for_test
=
True
)
...
...
@@ -71,8 +67,10 @@ def eval(args,
#exe.run(fluid.default_startup_program())
if
model_dir
:
def
if_exist
(
var
):
return
os
.
path
.
exists
(
os
.
path
.
join
(
model_dir
,
var
.
name
))
fluid
.
io
.
load_vars
(
exe
,
model_dir
,
predicate
=
if_exist
)
#fluid.io.load_persistables(exe, model_dir, main_program=test_program)
...
...
@@ -89,6 +87,7 @@ def eval(args,
fetch_list
=
[
accum_map
])
print
(
"Test model {0}, map {1}"
.
format
(
model_dir
,
test_map
[
0
]))
if
__name__
==
'__main__'
:
args
=
parser
.
parse_args
()
print_arguments
(
args
)
...
...
@@ -99,8 +98,9 @@ if __name__ == '__main__':
resize_h
=
args
.
resize_h
,
resize_w
=
args
.
resize_w
,
mean_value
=
[
args
.
mean_value_B
,
args
.
mean_value_G
,
args
.
mean_value_R
])
eval
(
args
,
test_list
=
args
.
test_list
,
data_args
=
data_args
,
batch_size
=
args
.
batch_size
,
model_dir
=
args
.
model_dir
)
eval
(
args
,
test_list
=
args
.
test_list
,
data_args
=
data_args
,
batch_size
=
args
.
batch_size
,
model_dir
=
args
.
model_dir
)
fluid/object_detection/reader.py
浏览文件 @
19f9260b
...
...
@@ -329,18 +329,23 @@ def test(settings, file_list):
def
infer
(
settings
,
image_path
):
im
=
Image
.
open
(
image_path
)
if
im
.
mode
==
'L'
:
im
=
im
.
convert
(
'RGB'
)
im_width
,
im_height
=
im
.
size
img
=
img
.
resize
((
settings
.
resize_w
,
settings
.
resize_h
),
Image
.
ANTIALIAS
)
img
=
np
.
array
(
img
)
# HWC to CHW
if
len
(
img
.
shape
)
==
3
:
img
=
np
.
swapaxes
(
img
,
1
,
2
)
img
=
np
.
swapaxes
(
img
,
1
,
0
)
# RBG to BGR
img
=
img
[[
2
,
1
,
0
],
:,
:]
img
=
img
.
astype
(
'float32'
)
img
-=
settings
.
img_mean
img
=
img
*
0.007843
def
reader
():
im
=
Image
.
open
(
image_path
)
if
im
.
mode
==
'L'
:
im
=
im
.
convert
(
'RGB'
)
im_width
,
im_height
=
im
.
size
img
=
img
.
resize
((
settings
.
resize_w
,
settings
.
resize_h
),
Image
.
ANTIALIAS
)
img
=
np
.
array
(
img
)
# HWC to CHW
if
len
(
img
.
shape
)
==
3
:
img
=
np
.
swapaxes
(
img
,
1
,
2
)
img
=
np
.
swapaxes
(
img
,
1
,
0
)
# RBG to BGR
img
=
img
[[
2
,
1
,
0
],
:,
:]
img
=
img
.
astype
(
'float32'
)
img
-=
settings
.
img_mean
img
=
img
*
0.007843
yield
img
return
reader
fluid/object_detection/train.py
浏览文件 @
19f9260b
...
...
@@ -16,23 +16,23 @@ add_arg = functools.partial(add_arguments, argparser=parser)
# yapf: disable
add_arg
(
'learning_rate'
,
float
,
0.001
,
"Learning rate."
)
add_arg
(
'batch_size'
,
int
,
32
,
"Minibatch size."
)
add_arg
(
'num_passes'
,
int
,
120
,
"Epoch number."
)
add_arg
(
'num_passes'
,
int
,
120
,
"Epoch number."
)
add_arg
(
'parallel'
,
bool
,
True
,
"Whether use parallel training."
)
add_arg
(
'use_gpu'
,
bool
,
True
,
"Whether
use GPU
."
)
add_arg
(
'use_nccl'
,
bool
,
False
,
"Whether
use NCCL
."
)
add_arg
(
'use_gpu'
,
bool
,
True
,
"Whether
to use GPU or not
."
)
add_arg
(
'use_nccl'
,
bool
,
False
,
"Whether
to use NCCL or not
."
)
add_arg
(
'dataset'
,
str
,
'pascalvoc'
,
"coco or pascalvoc."
)
add_arg
(
'model_save_dir'
,
str
,
'model'
,
"The path to save model."
)
add_arg
(
'pretrained_model'
,
str
,
'pretrained/ssd_mobilenet_v1_coco/'
,
"The init model path."
)
add_arg
(
'apply_distort'
,
bool
,
True
,
"Whether apply distort"
)
add_arg
(
'apply_expand'
,
bool
,
True
,
"Whether appley expand"
)
add_arg
(
'ap_version'
,
str
,
'11point'
,
"11point or integral"
)
add_arg
(
'resize_h'
,
int
,
300
,
"resize image size
"
)
add_arg
(
'resize_w'
,
int
,
300
,
"resize image size
"
)
add_arg
(
'mean_value_B'
,
float
,
127.5
,
"mean value
which will be subtracted"
)
#123.68
add_arg
(
'mean_value_G'
,
float
,
127.5
,
"mean value
which will be subtracted"
)
#116.78
add_arg
(
'mean_value_R'
,
float
,
127.5
,
"mean value
which will be subtracted"
)
#103.94
add_arg
(
'resize_h'
,
int
,
300
,
"The resized image height.
"
)
add_arg
(
'resize_w'
,
int
,
300
,
"The resized image width.
"
)
add_arg
(
'mean_value_B'
,
float
,
127.5
,
"mean value for B channel
which will be subtracted"
)
#123.68
add_arg
(
'mean_value_G'
,
float
,
127.5
,
"mean value for G channel
which will be subtracted"
)
#116.78
add_arg
(
'mean_value_R'
,
float
,
127.5
,
"mean value for R channel
which will be subtracted"
)
#103.94
add_arg
(
'is_toy'
,
int
,
0
,
"Toy for quick debug, 0 means using all data, while n means using only n sample"
)
# yapf:
dis
able
# yapf:
en
able
def
parallel_do
(
args
,
...
...
@@ -118,8 +118,10 @@ def parallel_do(args,
exe
.
run
(
fluid
.
default_startup_program
())
if
pretrained_model
:
def
if_exist
(
var
):
return
os
.
path
.
exists
(
os
.
path
.
join
(
pretrained_model
,
var
.
name
))
fluid
.
io
.
load_vars
(
exe
,
pretrained_model
,
predicate
=
if_exist
)
train_reader
=
paddle
.
batch
(
...
...
@@ -190,8 +192,7 @@ def parallel_exe(args,
locs
,
confs
,
box
,
box_var
=
mobile_net
(
num_classes
,
image
,
image_shape
)
nmsed_out
=
fluid
.
layers
.
detection_output
(
locs
,
confs
,
box
,
box_var
,
nms_threshold
=
0.45
)
loss
=
fluid
.
layers
.
ssd_loss
(
locs
,
confs
,
gt_box
,
gt_label
,
box
,
box_var
)
loss
=
fluid
.
layers
.
ssd_loss
(
locs
,
confs
,
gt_box
,
gt_label
,
box
,
box_var
)
loss
=
fluid
.
layers
.
reduce_sum
(
loss
)
test_program
=
fluid
.
default_main_program
().
clone
(
for_test
=
True
)
...
...
@@ -217,7 +218,10 @@ def parallel_exe(args,
elif
data_args
.
dataset
==
'pascalvoc'
:
epocs
=
19200
/
batch_size
boundaries
=
[
epocs
*
40
,
epocs
*
60
,
epocs
*
80
,
epocs
*
100
]
values
=
[
learning_rate
,
learning_rate
*
0.5
,
learning_rate
*
0.25
,
learning_rate
*
0.1
,
learning_rate
*
0.01
]
values
=
[
learning_rate
,
learning_rate
*
0.5
,
learning_rate
*
0.25
,
learning_rate
*
0.1
,
learning_rate
*
0.01
]
optimizer
=
fluid
.
optimizer
.
RMSProp
(
learning_rate
=
fluid
.
layers
.
piecewise_decay
(
boundaries
,
values
),
regularization
=
fluid
.
regularizer
.
L2Decay
(
0.00005
),
)
...
...
@@ -229,12 +233,14 @@ def parallel_exe(args,
exe
.
run
(
fluid
.
default_startup_program
())
if
pretrained_model
:
def
if_exist
(
var
):
return
os
.
path
.
exists
(
os
.
path
.
join
(
pretrained_model
,
var
.
name
))
fluid
.
io
.
load_vars
(
exe
,
pretrained_model
,
predicate
=
if_exist
)
train_exe
=
fluid
.
ParallelExecutor
(
use_cuda
=
args
.
use_gpu
,
loss_name
=
loss
.
name
)
train_exe
=
fluid
.
ParallelExecutor
(
use_cuda
=
args
.
use_gpu
,
loss_name
=
loss
.
name
)
train_reader
=
paddle
.
batch
(
reader
.
train
(
data_args
,
train_file_list
),
batch_size
=
batch_size
)
...
...
@@ -251,6 +257,7 @@ def parallel_exe(args,
fluid
.
io
.
save_persistables
(
exe
,
model_path
)
best_map
=
0.
def
test
(
pass_id
,
best_map
):
_
,
accum_map
=
map_eval
.
get_map_var
()
map_eval
.
reset
(
exe
)
...
...
@@ -273,7 +280,7 @@ def parallel_exe(args,
start_time
=
time
.
time
()
if
len
(
data
)
<
devices_num
:
continue
loss_v
,
=
train_exe
.
run
(
fetch_list
=
[
loss
.
name
],
feed_dict
=
feeder
.
feed
(
data
))
feed_dict
=
feeder
.
feed
(
data
))
end_time
=
time
.
time
()
loss_v
=
np
.
mean
(
np
.
array
(
loss_v
))
if
batch_id
%
20
==
0
:
...
...
@@ -284,6 +291,7 @@ def parallel_exe(args,
save_model
(
str
(
pass_id
))
print
(
"Best test map {0}"
.
format
(
best_map
))
if
__name__
==
'__main__'
:
args
=
parser
.
parse_args
()
print_arguments
(
args
)
...
...
@@ -311,12 +319,13 @@ if __name__ == '__main__':
toy
=
args
.
is_toy
)
#method = parallel_do
method
=
parallel_exe
method
(
args
,
train_file_list
=
train_file_list
,
val_file_list
=
val_file_list
,
data_args
=
data_args
,
learning_rate
=
args
.
learning_rate
,
batch_size
=
args
.
batch_size
,
num_passes
=
args
.
num_passes
,
model_save_dir
=
model_save_dir
,
pretrained_model
=
args
.
pretrained_model
)
method
(
args
,
train_file_list
=
train_file_list
,
val_file_list
=
val_file_list
,
data_args
=
data_args
,
learning_rate
=
args
.
learning_rate
,
batch_size
=
args
.
batch_size
,
num_passes
=
args
.
num_passes
,
model_save_dir
=
model_save_dir
,
pretrained_model
=
args
.
pretrained_model
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录