reader.py 12.1 KB
Newer Older
G
gaoyuan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import image_util
from paddle.utils.image_util import *
import random
from PIL import Image
X
Xingyuan Bu 已提交
19
from PIL import ImageDraw
G
gaoyuan 已提交
20 21 22
import numpy as np
import xml.etree.ElementTree
import os
X
Xingyuan Bu 已提交
23 24 25
import time
import copy

G
gaoyuan 已提交
26 27

class Settings(object):
D
Dang Qingqing 已提交
28 29 30 31 32 33 34 35 36 37
    def __init__(self,
                 dataset=None,
                 data_dir=None,
                 label_file=None,
                 resize_h=300,
                 resize_w=300,
                 mean_value=[127.5, 127.5, 127.5],
                 apply_distort=True,
                 apply_expand=True,
                 toy=0):
X
Xingyuan Bu 已提交
38 39
        self._dataset = dataset
        self._toy = toy
G
gaoyuan 已提交
40
        self._data_dir = data_dir
X
Xingyuan Bu 已提交
41 42 43 44 45
        if dataset == "pascalvoc":
            self._label_list = []
            label_fpath = os.path.join(data_dir, label_file)
            for line in open(label_fpath):
                self._label_list.append(line.strip())
G
gaoyuan 已提交
46

G
gaoyuan 已提交
47 48
        self._apply_distort = apply_distort
        self._apply_expand = apply_expand
G
gaoyuan 已提交
49 50 51 52
        self._resize_height = resize_h
        self._resize_width = resize_w
        self._img_mean = np.array(mean_value)[:, np.newaxis, np.newaxis].astype(
            'float32')
G
gaoyuan 已提交
53 54 55 56 57 58 59 60 61 62 63
        self._expand_prob = 0.5
        self._expand_max_ratio = 4
        self._hue_prob = 0.5
        self._hue_delta = 18
        self._contrast_prob = 0.5
        self._contrast_delta = 0.5
        self._saturation_prob = 0.5
        self._saturation_delta = 0.5
        self._brightness_prob = 0.5
        self._brightness_delta = 0.125

X
Xingyuan Bu 已提交
64 65 66 67 68 69 70 71
    @property
    def dataset(self):
        return self._dataset

    @property
    def toy(self):
        return self._toy

G
gaoyuan 已提交
72 73 74 75 76 77 78
    @property
    def apply_distort(self):
        return self._apply_expand

    @property
    def apply_distort(self):
        return self._apply_distort
G
gaoyuan 已提交
79 80 81 82 83

    @property
    def data_dir(self):
        return self._data_dir

X
Xingyuan Bu 已提交
84 85 86 87
    @data_dir.setter
    def data_dir(self, data_dir):
        self._data_dir = data_dir

G
gaoyuan 已提交
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
    @property
    def label_list(self):
        return self._label_list

    @property
    def resize_h(self):
        return self._resize_height

    @property
    def resize_w(self):
        return self._resize_width

    @property
    def img_mean(self):
        return self._img_mean


D
Dang Qingqing 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
def preprocess(img, bbox_labels, mode, settings):
    img_width, img_height = img.size
    sampled_labels = bbox_labels
    if mode == 'train':
        if settings._apply_distort:
            img = image_util.distort_image(img, settings)
        if settings._apply_expand:
            img, bbox_labels, img_width, img_height = image_util.expand_image(
                img, bbox_labels, img_width, img_height, settings)
        # sampling
        batch_sampler = []
        # hard-code here
        batch_sampler.append(
            image_util.sampler(1, 1, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0))
        batch_sampler.append(
            image_util.sampler(1, 50, 0.3, 1.0, 0.5, 2.0, 0.1, 0.0))
        batch_sampler.append(
            image_util.sampler(1, 50, 0.3, 1.0, 0.5, 2.0, 0.3, 0.0))
        batch_sampler.append(
            image_util.sampler(1, 50, 0.3, 1.0, 0.5, 2.0, 0.5, 0.0))
        batch_sampler.append(
            image_util.sampler(1, 50, 0.3, 1.0, 0.5, 2.0, 0.7, 0.0))
        batch_sampler.append(
            image_util.sampler(1, 50, 0.3, 1.0, 0.5, 2.0, 0.9, 0.0))
        batch_sampler.append(
            image_util.sampler(1, 50, 0.3, 1.0, 0.5, 2.0, 0.0, 1.0))
        sampled_bbox = image_util.generate_batch_samples(batch_sampler,
                                                         bbox_labels)

        img = np.array(img)
        if len(sampled_bbox) > 0:
            idx = int(random.uniform(0, len(sampled_bbox)))
            img, sampled_labels = image_util.crop_image(
                img, bbox_labels, sampled_bbox[idx], img_width, img_height)

        img = Image.fromarray(img)
    img = img.resize((settings.resize_w, settings.resize_h), Image.ANTIALIAS)
    img = np.array(img)

    if mode == 'train':
        mirror = int(random.uniform(0, 2))
        if mirror == 1:
            img = img[:, ::-1, :]
            for i in xrange(len(sampled_labels)):
                tmp = sampled_labels[i][1]
                sampled_labels[i][1] = 1 - sampled_labels[i][3]
                sampled_labels[i][3] = 1 - tmp
    # HWC to CHW
    if len(img.shape) == 3:
        img = np.swapaxes(img, 1, 2)
        img = np.swapaxes(img, 1, 0)
    # RBG to BGR
    img = img[[2, 1, 0], :, :]
    img = img.astype('float32')
    img -= settings.img_mean
    #img = img.flatten()
    img = img * 0.007843
    return img, sampled_labels


def coco(settings, file_list, mode, shuffle):
    # cocoapi
    from pycocotools.coco import COCO
    from pycocotools.cocoeval import COCOeval

    coco = COCO(file_list)
    image_ids = coco.getImgIds()
    images = coco.loadImgs(image_ids)
    category_ids = coco.getCatIds()
    category_names = [item['name'] for item in coco.loadCats(category_ids)]

    if not settings.toy == 0:
        images = images[:settings.toy] if len(images) > settings.toy else images
    print("{} on {} with {} images".format(mode, settings.dataset, len(images)))

G
gaoyuan 已提交
180
    def reader():
D
Dang Qingqing 已提交
181
        if mode == 'train' and shuffle:
X
Xingyuan Bu 已提交
182 183
            random.shuffle(images)
        for image in images:
D
Dang Qingqing 已提交
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
            image_name = image['file_name']
            image_path = os.path.join(settings.data_dir, image_name)

            im = Image.open(image_path)
            if im.mode == 'L':
                im = im.convert('RGB')
            im_width, im_height = im.size

            # layout: category_id | xmin | ymin | xmax | ymax | iscrowd |
            # origin_coco_bbox | segmentation | area | image_id | annotation_id
            bbox_labels = []
            annIds = coco.getAnnIds(imgIds=image['id'])
            anns = coco.loadAnns(annIds)
            for ann in anns:
                bbox_sample = []
                # start from 1, leave 0 to background
                bbox_sample.append(
                    float(category_ids.index(ann['category_id'])) + 1)
                bbox = ann['bbox']
                xmin, ymin, w, h = bbox
                xmax = xmin + w
                ymax = ymin + h
                bbox_sample.append(float(xmin) / im_width)
                bbox_sample.append(float(ymin) / im_height)
                bbox_sample.append(float(xmax) / im_width)
                bbox_sample.append(float(ymax) / im_height)
                bbox_sample.append(float(ann['iscrowd']))
                bbox_labels.append(bbox_sample)
            im, sample_labels = preprocess(im, bbox_labels, mode, settings)
            sample_labels = np.array(sample_labels)
            if len(sample_labels) == 0: continue
            im = im.astype('float32')
            boxes = sample_labels[:, 1:5]
            lbls = sample_labels[:, 0].astype('int32')
            difficults = sample_labels[:, -1].astype('int32')
            yield im, boxes, lbls, difficults

    return reader

X
Xingyuan Bu 已提交
223

D
Dang Qingqing 已提交
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
def pascalvoc(settings, file_list, mode, shuffle):
    flist = open(file_list)
    images = [line.strip() for line in flist]
    if not settings.toy == 0:
        images = images[:settings.toy] if len(images) > settings.toy else images
    print("{} on {} with {} images".format(mode, settings.dataset, len(images)))

    def reader():
        if mode == 'train' and shuffle:
            random.shuffle(images)
        for image in images:
            image_path, label_path = image.split()
            image_path = os.path.join(settings.data_dir, image_path)
            label_path = os.path.join(settings.data_dir, label_path)

            im = Image.open(image_path)
            if im.mode == 'L':
                im = im.convert('RGB')
            im_width, im_height = im.size

            # layout: label | xmin | ymin | xmax | ymax | difficult
            bbox_labels = []
            root = xml.etree.ElementTree.parse(label_path).getroot()
            for object in root.findall('object'):
                bbox_sample = []
                # start from 1
                bbox_sample.append(
                    float(settings.label_list.index(object.find('name').text)))
                bbox = object.find('bndbox')
                difficult = float(object.find('difficult').text)
                bbox_sample.append(float(bbox.find('xmin').text) / im_width)
                bbox_sample.append(float(bbox.find('ymin').text) / im_height)
                bbox_sample.append(float(bbox.find('xmax').text) / im_width)
                bbox_sample.append(float(bbox.find('ymax').text) / im_height)
                bbox_sample.append(difficult)
                bbox_labels.append(bbox_sample)
            im, sample_labels = preprocess(im, bbox_labels, mode, settings)
X
Xingyuan Bu 已提交
261
            sample_labels = np.array(sample_labels)
D
Dang Qingqing 已提交
262 263 264 265 266 267
            if len(sample_labels) == 0: continue
            im = im.astype('float32')
            boxes = sample_labels[:, 1:5]
            lbls = sample_labels[:, 0].astype('int32')
            difficults = sample_labels[:, -1].astype('int32')
            yield im, boxes, lbls, difficults
G
gaoyuan 已提交
268 269 270 271

    return reader


X
Xingyuan Bu 已提交
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
def draw_bounding_box_on_image(image,
                               sample_labels,
                               image_name,
                               category_names,
                               color='red',
                               thickness=4,
                               with_text=True,
                               normalized=True):
    image = Image.fromarray(image)
    draw = ImageDraw.Draw(image)
    im_width, im_height = image.size
    if not normalized:
        im_width, im_height = 1, 1
    for item in sample_labels:
        label = item[0]
        category_name = category_names[int(label)]
        bbox = item[1:5]
        xmin, ymin, xmax, ymax = bbox
        (left, right, top, bottom) = (xmin * im_width, xmax * im_width,
                                      ymin * im_height, ymax * im_height)
        draw.line(
            [(left, top), (left, bottom), (right, bottom), (right, top),
             (left, top)],
            width=thickness,
            fill=color)
        if with_text:
            if image.mode == 'RGB':
                draw.text((left, top), category_name, (255, 255, 0))
    image.save(image_name)


G
gaoyuan 已提交
303
def train(settings, file_list, shuffle=True):
304
    file_list = os.path.join(settings.data_dir, file_list)
X
Xingyuan Bu 已提交
305 306 307 308 309 310 311
    if settings.dataset == 'coco':
        train_settings = copy.copy(settings)
        if '2014' in file_list:
            sub_dir = "train2014"
        elif '2017' in file_list:
            sub_dir = "train2017"
        train_settings.data_dir = os.path.join(settings.data_dir, sub_dir)
D
Dang Qingqing 已提交
312
        return coco(train_settings, file_list, 'train', shuffle)
D
Dang Qingqing 已提交
313
    else:
D
Dang Qingqing 已提交
314
        return pascalvoc(settings, file_list, 'train', shuffle)
G
gaoyuan 已提交
315 316 317


def test(settings, file_list):
318
    file_list = os.path.join(settings.data_dir, file_list)
X
Xingyuan Bu 已提交
319 320 321 322 323 324 325
    if settings.dataset == 'coco':
        test_settings = copy.copy(settings)
        if '2014' in file_list:
            sub_dir = "val2014"
        elif '2017' in file_list:
            sub_dir = "val2017"
        test_settings.data_dir = os.path.join(settings.data_dir, sub_dir)
D
Dang Qingqing 已提交
326
        return coco(test_settings, file_list, 'test', False)
D
Dang Qingqing 已提交
327
    else:
D
Dang Qingqing 已提交
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
        return pascalvoc(settings, file_list, 'test', False)


def infer(settings, image_path):
    im = Image.open(image_path)
    if im.mode == 'L':
        im = im.convert('RGB')
    im_width, im_height = im.size
    img = img.resize((settings.resize_w, settings.resize_h), Image.ANTIALIAS)
    img = np.array(img)
    # HWC to CHW
    if len(img.shape) == 3:
        img = np.swapaxes(img, 1, 2)
        img = np.swapaxes(img, 1, 0)
    # RBG to BGR
    img = img[[2, 1, 0], :, :]
    img = img.astype('float32')
    img -= settings.img_mean
    img = img * 0.007843