reader.py 8.2 KB
Newer Older
G
gaoyuan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import image_util
from paddle.utils.image_util import *
import random
from PIL import Image
import numpy as np
import xml.etree.ElementTree
import os


class Settings(object):
G
gaoyuan 已提交
25 26
    def __init__(self, data_dir, label_file, resize_h, resize_w, mean_value,
                 apply_distort, apply_expand):
G
gaoyuan 已提交
27 28 29 30 31 32
        self._data_dir = data_dir
        self._label_list = []
        label_fpath = os.path.join(data_dir, label_file)
        for line in open(label_fpath):
            self._label_list.append(line.strip())

G
gaoyuan 已提交
33 34
        self._apply_distort = apply_distort
        self._apply_expand = apply_expand
G
gaoyuan 已提交
35 36 37 38
        self._resize_height = resize_h
        self._resize_width = resize_w
        self._img_mean = np.array(mean_value)[:, np.newaxis, np.newaxis].astype(
            'float32')
G
gaoyuan 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
        self._expand_prob = 0.5
        self._expand_max_ratio = 4
        self._hue_prob = 0.5
        self._hue_delta = 18
        self._contrast_prob = 0.5
        self._contrast_delta = 0.5
        self._saturation_prob = 0.5
        self._saturation_delta = 0.5
        self._brightness_prob = 0.5
        self._brightness_delta = 0.125

    @property
    def apply_distort(self):
        return self._apply_expand

    @property
    def apply_distort(self):
        return self._apply_distort
G
gaoyuan 已提交
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121

    @property
    def data_dir(self):
        return self._data_dir

    @property
    def label_list(self):
        return self._label_list

    @property
    def resize_h(self):
        return self._resize_height

    @property
    def resize_w(self):
        return self._resize_width

    @property
    def img_mean(self):
        return self._img_mean


def _reader_creator(settings, file_list, mode, shuffle):
    def reader():
        with open(file_list) as flist:
            lines = [line.strip() for line in flist]
            if shuffle:
                random.shuffle(lines)
            for line in lines:
                if mode == 'train' or mode == 'test':
                    img_path, label_path = line.split()
                    img_path = os.path.join(settings.data_dir, img_path)
                    label_path = os.path.join(settings.data_dir, label_path)
                elif mode == 'infer':
                    img_path = os.path.join(settings.data_dir, line)

                img = Image.open(img_path)
                img_width, img_height = img.size

                # layout: label | xmin | ymin | xmax | ymax | difficult
                if mode == 'train' or mode == 'test':
                    bbox_labels = []
                    root = xml.etree.ElementTree.parse(label_path).getroot()
                    for object in root.findall('object'):
                        bbox_sample = []
                        # start from 1
                        bbox_sample.append(
                            float(
                                settings.label_list.index(
                                    object.find('name').text)))
                        bbox = object.find('bndbox')
                        difficult = float(object.find('difficult').text)
                        bbox_sample.append(
                            float(bbox.find('xmin').text) / img_width)
                        bbox_sample.append(
                            float(bbox.find('ymin').text) / img_height)
                        bbox_sample.append(
                            float(bbox.find('xmax').text) / img_width)
                        bbox_sample.append(
                            float(bbox.find('ymax').text) / img_height)
                        bbox_sample.append(difficult)
                        bbox_labels.append(bbox_sample)

                    sample_labels = bbox_labels
                    if mode == 'train':
G
gaoyuan 已提交
122 123 124 125 126 127
                        if settings._apply_distort:
                            img = image_util.distort_image(img, settings)
                        if settings._apply_expand:
                            img, bbox_labels = image_util.expand_image(
                                img, bbox_labels, img_width, img_height,
                                settings)
G
gaoyuan 已提交
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
                        batch_sampler = []
                        # hard-code here
                        batch_sampler.append(
                            image_util.sampler(1, 1, 1.0, 1.0, 1.0, 1.0, 0.0,
                                               0.0))
                        batch_sampler.append(
                            image_util.sampler(1, 50, 0.3, 1.0, 0.5, 2.0, 0.1,
                                               0.0))
                        batch_sampler.append(
                            image_util.sampler(1, 50, 0.3, 1.0, 0.5, 2.0, 0.3,
                                               0.0))
                        batch_sampler.append(
                            image_util.sampler(1, 50, 0.3, 1.0, 0.5, 2.0, 0.5,
                                               0.0))
                        batch_sampler.append(
                            image_util.sampler(1, 50, 0.3, 1.0, 0.5, 2.0, 0.7,
                                               0.0))
                        batch_sampler.append(
                            image_util.sampler(1, 50, 0.3, 1.0, 0.5, 2.0, 0.9,
                                               0.0))
                        batch_sampler.append(
                            image_util.sampler(1, 50, 0.3, 1.0, 0.5, 2.0, 0.0,
                                               1.0))
                        """ random crop """
                        sampled_bbox = image_util.generate_batch_samples(
                            batch_sampler, bbox_labels, img_width, img_height)

G
gaoyuan 已提交
155
                        img = np.array(img)
G
gaoyuan 已提交
156 157 158 159 160 161
                        if len(sampled_bbox) > 0:
                            idx = int(random.uniform(0, len(sampled_bbox)))
                            img, sample_labels = image_util.crop_image(
                                img, bbox_labels, sampled_bbox[idx], img_width,
                                img_height)

G
gaoyuan 已提交
162
                        img = Image.fromarray(img)
G
gaoyuan 已提交
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
                img = img.resize((settings.resize_w, settings.resize_h),
                                 Image.ANTIALIAS)
                img = np.array(img)

                if mode == 'train':
                    mirror = int(random.uniform(0, 2))
                    if mirror == 1:
                        img = img[:, ::-1, :]
                        for i in xrange(len(sample_labels)):
                            tmp = sample_labels[i][1]
                            sample_labels[i][1] = 1 - sample_labels[i][3]
                            sample_labels[i][3] = 1 - tmp

                if len(img.shape) == 3:
                    img = np.swapaxes(img, 1, 2)
                    img = np.swapaxes(img, 1, 0)

G
gaoyuan 已提交
180
                img = img[[2, 1, 0], :, :]
G
gaoyuan 已提交
181 182 183
                img = img.astype('float32')
                img -= settings.img_mean
                img = img.flatten()
D
dangqingqing 已提交
184
                img = img * 0.007843
G
gaoyuan 已提交
185 186 187 188 189 190

                sample_labels = np.array(sample_labels)
                if mode == 'train' or mode == 'test':
                    if mode == 'train' and len(sample_labels) == 0: continue
                    yield img.astype(
                        'float32'
D
dangqingqing 已提交
191
                    ), sample_labels[:, 1:5], sample_labels[:, 0].astype(
D
dangqingqing 已提交
192
                        'int32'), sample_labels[:, -1].astype('int32')
G
gaoyuan 已提交
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
                elif mode == 'infer':
                    yield img.astype('float32')

    return reader


def train(settings, file_list, shuffle=True):
    return _reader_creator(settings, file_list, 'train', shuffle)


def test(settings, file_list):
    return _reader_creator(settings, file_list, 'test', False)


def infer(settings, file_list):
    return _reader_creator(settings, file_list, 'infer', False)