onnx_op_mapper.py 62.1 KB
Newer Older
C
update  
channingss 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
#   Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from x2paddle.core.graph import GraphNode
from x2paddle.core.op_mapper import OpMapper
from x2paddle.core.fluid_code import Layer
from x2paddle.core.fluid_code import FluidCode
from x2paddle.decoder.onnx_decoder import ONNXGraph, ONNXGraphNode, ONNXGraphDataNode
from x2paddle.op_mapper.onnx_directly_map import default_op_mapping_field_values
from x2paddle.op_mapper.onnx_directly_map import default_op_mapping
from x2paddle.op_mapper.onnx_directly_map import default_ioa_constraint
C
channingss 已提交
23
from x2paddle.op_mapper.onnx_custom_layer import *
C
channingss 已提交
24
from x2paddle.core.util import string
C
update  
channingss 已提交
25
import numpy as np
C
channingss 已提交
26
import onnx
C
channingss 已提交
27
import onnx.numpy_helper as numpy_helper
C
channingss 已提交
28
from onnx.mapping import TENSOR_TYPE_TO_NP_TYPE
C
update  
channingss 已提交
29 30
import logging as _logging
from collections import OrderedDict as _dict
C
channingss 已提交
31
import math
C
channingss 已提交
32 33
import os
import shutil
R
root 已提交
34
from functools import reduce
35
import onnxruntime as rt
C
update  
channingss 已提交
36 37 38 39
_logger = _logging.getLogger(__name__)


def _const_weight_or_none(node):
C
channings 已提交
40
    if 'Constant' in node.layer_type:
C
channingss 已提交
41
        return node.value
C
update  
channingss 已提交
42 43 44 45 46
    if isinstance(node, ONNXGraphDataNode):
        return node.weight
    return None


C
channingss 已提交
47 48 49 50 51 52 53 54
def get_same_padding(in_size, kernel_size, stride):
    new_size = int(math.ceil(in_size * 1.0 / stride))
    pad_size = (new_size - 1) * stride + kernel_size - in_size
    pad0 = int(pad_size / 2)
    pad1 = pad_size - pad0
    return [pad0, pad1]


R
root 已提交
55
class ONNXOpMapper(OpMapper):
56 57 58 59 60
    elementwise_ops = {
        'Add': 'elementwise_add',
        'Div': 'elementwise_div',
        'Sub': 'elementwise_sub',
        'Mul': 'elementwise_mul',
R
root 已提交
61 62
        'Pow': 'elementwise_pow',
    }
63

C
channingss 已提交
64
    def __init__(self, decoder, save_dir):
C
update  
channingss 已提交
65 66 67 68 69 70
        super(ONNXOpMapper, self).__init__()
        self.decoder = decoder
        self.graph = decoder.onnx_graph
        self.input_shapes = []
        self.weights = dict()
        self.omit_nodes = list()
C
channingss 已提交
71
        self.used_custom_layers = dict()
C
channingss 已提交
72 73
        self.is_inference = False
        self.tmp_data_dir = os.path.join(save_dir, 'tmp_data')
74
        self.tmp_outputs_dict = {}
C
channingss 已提交
75
        self.get_output_shapes()
R
root 已提交
76

C
update  
channingss 已提交
77 78
        if not self.op_checker():
            raise Exception("Model are not supported yet.")
R
root 已提交
79

C
update  
channingss 已提交
80
        #mapping op
C
updatea  
channingss 已提交
81 82 83 84 85
        print("Total nodes: {}".format(
            sum([
                isinstance(node, ONNXGraphNode)
                for name, node in self.graph.node_map.items()
            ])))
C
update  
channingss 已提交
86 87 88 89 90 91 92
        for node_name in self.graph.topo_sort:
            node = self.graph.get_node(node_name)
            op = node.layer_type
            if hasattr(self, op):
                func = getattr(self, op)
                func(node)
            elif op in default_op_mapping:
C
channingss 已提交
93
                self.directly_map(node)
C
channingss 已提交
94 95
            elif op in custom_layers:
                self.deal_custom_layer(node)
96 97
            elif op in self.elementwise_ops:
                self.elementwise_map(node)
C
update  
channingss 已提交
98

C
channingss 已提交
99 100
        self.remove_tmp_data()

C
update  
channingss 已提交
101 102 103 104 105
    def op_checker(self):
        unsupported_ops = set()
        for node_name in self.graph.topo_sort:
            node = self.graph.get_node(node_name)
            op = node.layer_type
106 107 108 109
            if not hasattr(self, op) and \
                op not in default_op_mapping and \
                op not in custom_layers and \
                op not in self.elementwise_ops:
C
update  
channingss 已提交
110 111 112 113 114 115 116 117 118 119
                unsupported_ops.add(op)
        if len(unsupported_ops) == 0:
            return True
        else:
            print("There are {} ops not supported yet, list as below".format(
                len(unsupported_ops)))
            for op in unsupported_ops:
                print(op)
            return False

C
channingss 已提交
120
    def get_results_of_inference(self, model, value_infos, data_nodes):
121 122
        if not os.path.exists(self.tmp_data_dir):
            os.makedirs(self.tmp_data_dir)
123
        inputs_dict = {}
C
channingss 已提交
124 125
        for data_node in data_nodes:
            value_info = value_infos[data_node]
C
channings 已提交
126 127
            shape = value_info['shape']
            for i, dim_shape in enumerate(shape):
R
root 已提交
128 129 130
                if dim_shape == 0 and i == 0:
                    shape[i] = 1
                if dim_shape == 0 and i != 0:
C
channings 已提交
131
                    assert 'shape of input is not assigned'
R
root 已提交
132
            ipt = np.random.random(shape).astype(value_info['dtype'])
133
            inputs_dict[data_node] = ipt
R
root 已提交
134

C
channingss 已提交
135 136
        model = onnx.shape_inference.infer_shapes(model)
        outputs = []
137

C
channingss 已提交
138
        for value_info in model.graph.value_info:
139
            outputs.append(value_info.name)
C
channingss 已提交
140 141

        model.graph.ClearField('output')
142
        model.graph.output.MergeFrom(model.graph.value_info)
C
channingss 已提交
143 144
        onnx.save(model, os.path.join(self.tmp_data_dir,
                                      'onnx_model_infer.onnx'))
145 146 147 148
        sess = rt.InferenceSession(
            os.path.join(self.tmp_data_dir, 'onnx_model_infer.onnx'))
        res = sess.run(None, input_feed=inputs_dict)
        self.tmp_outputs_dict = dict(zip(outputs, res))
C
channingss 已提交
149

C
channingss 已提交
150 151 152 153 154 155
        return

    def get_dynamic_shape(self, layer):
        """
        get dynamic shape from infer_result
        """
156
        if layer not in self.tmp_outputs_dict:
157
            return [None, None, None]
158
        output = self.tmp_outputs_dict[layer]
C
channingss 已提交
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
        return output.tolist(), output.dtype, output.shape

    def get_output_shapes(self):
        """
        build topo_sort of ONNX model
        """
        nodes = self.decoder.model.graph.node
        node_map = self.decoder.onnx_graph.node_map
        value_infos = self.decoder.onnx_graph.value_infos
        onnx_model = self.decoder.model
        for layer in nodes:
            node = node_map[layer.name]
            for opt in layer.output:
                if opt in value_infos:
                    value_info = value_infos[opt]
R
root 已提交
174 175
                    if len(value_info['shape']) == 0 or value_info[
                            'dtype'] is None or 0 in value_info['shape']:
C
channingss 已提交
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
                        if self.is_inference == False:
                            self.get_results_of_inference(
                                onnx_model, value_infos,
                                self.decoder.onnx_graph.place_holder_nodes)
                            self.is_inference = True
                        _, dtype, shape = self.get_dynamic_shape(opt)
                        node.out_shapes.append(shape)
                        node.dtype = dtype
                    else:
                        node.dtype = value_info['dtype']
                        node.out_shapes.append(value_info['shape'])
                else:
                    if self.is_inference == False:
                        self.get_results_of_inference(
                            onnx_model, value_infos,
                            self.decoder.onnx_graph.place_holder_nodes)
                        self.is_inference = True
                    _, dtype, shape = self.get_dynamic_shape(opt)
                    node.dtype = dtype
                    node.out_shapes.append(shape)

    def remove_tmp_data(self):
        """
        remove temporarily generated file
        """
        if os.path.exists(self.tmp_data_dir):
            import shutil
            shutil.rmtree(self.tmp_data_dir)

C
channingss 已提交
205
    def directly_map(self, node, name='', *args, **kwargs):
C
update  
channingss 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
        inputs = node.layer.input
        outputs = node.layer.output
        op_type = node.layer_type
        attrs = node.attr_map
        info = default_op_mapping[op_type]
        info.extend(list(default_op_mapping_field_values.values())[len(info):])
        (
            fluid_op,
            fluid_input_args,
            fluid_output_args,
            attr_mapping,
            default_attrs,
            input_perm,
            output_perm,
            fill_name_field,
        ) = info

        if fluid_op in default_ioa_constraint:
            for predicate, message in default_ioa_constraint[fluid_op]:
                assert predicate(inputs, outputs, attrs), message

        mapped_attrs = {
            attr_mapping.get(key, key): value
            for key, value in attrs.items()
        }
        if '' in mapped_attrs:
            mapped_attrs.pop('')
        if '_' in mapped_attrs:
            mapped_attrs.pop('_')
        fluid_attrs = default_attrs.copy()
        fluid_attrs.update(mapped_attrs)
C
channingss 已提交
237
        inputs = inputs if input_perm is None else list(
C
update  
channingss 已提交
238
            map(lambda i: inputs[i], input_perm))
C
channingss 已提交
239 240 241 242
        val_inps = []
        for idx, ipt in enumerate(inputs):
            val_inps.append(self.graph.get_input_node(node, idx=idx, copy=True))

C
update  
channingss 已提交
243 244 245
        val_outs = outputs if output_perm is None else list(
            map(lambda i: outputs[i], output_perm))
        attr = fluid_attrs
C
channingss 已提交
246 247
        assert len(val_inps) == 1, 'directly_map error with multi inputs'
        if fluid_op not in ['shape']:
C
update  
channingss 已提交
248
            attr['name'] = string(node.layer_name)
249 250 251 252
        node.fluid_code.add_layer(fluid_op,
                                  inputs=val_inps[0],
                                  output=val_outs[0],
                                  param_attr=attr)
C
update  
channingss 已提交
253

C
channingss 已提交
254 255 256
    def deal_custom_layer(self, node):
        op = node.layer_type
        custom_code, func = make_custom_layer(node)
C
channingss 已提交
257
        child_func_code, child_func = make_custom_child_func(node)
C
channingss 已提交
258 259 260
        params = get_params(node.layer, node.layer_type)
        arg_names, kwargs = set_args(func, params)
        kwargs['name'] = string(node.layer_name)
261 262 263 264 265
        node.fluid_code.add_layer(func.__code__.co_name,
                                  inputs=node.inputs,
                                  output=node,
                                  param_attr=kwargs,
                                  is_custom_layer=True)
C
channingss 已提交
266 267
        if op not in self.used_custom_layers:
            self.used_custom_layers[op] = custom_code
C
channingss 已提交
268
            if op + '_child_func' not in self.used_custom_layers:
C
channingss 已提交
269 270 271
                if child_func_code is not None:
                    self.used_custom_layers[op +
                                            '_child_func'] = child_func_code
R
root 已提交
272

273 274 275
    def elementwise_map(self, node):
        assert node.layer_type in self.elementwise_ops
        op_type = self.elementwise_ops[node.layer_type]
R
root 已提交
276

277 278 279 280
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
        val_y_shape = val_y.out_shapes[0]
        val_x_shape = val_x.out_shapes[0]
R
root 已提交
281 282

        if len(val_x_shape) < len(val_y_shape):
283 284 285 286
            val_x, val_y = val_y, val_x

        str_y_shape = ','.join(str(e) for e in val_y_shape)
        str_x_shape = ','.join(str(e) for e in val_x_shape)
287
        slice_idx = 0
288 289 290 291 292 293
        if str_y_shape not in str_x_shape:
            for dim in val_y_shape:
                if dim == 1:
                    slice_idx += 1
                else:
                    break
294 295 296 297 298 299 300 301
        attr = {"name": string(node.layer_name)}
        if slice_idx < len(val_y_shape) and slice_idx > 0:
            val_y_reshaped = val_y_shape[slice_idx:]
            var_y_reshaped = val_y.layer_name + '_reshaped'
            attr_reshaped = {
                'shape': val_y_reshaped,
                'name': string(var_y_reshaped)
            }
302 303 304 305
            node.fluid_code.add_layer('reshape',
                                      inputs=val_y,
                                      output=var_y_reshaped,
                                      param_attr=attr_reshaped)
306
            inputs = {'x': val_x, 'y': var_y_reshaped}
307 308 309 310
            node.fluid_code.add_layer(op_type,
                                      inputs=inputs,
                                      output=node,
                                      param_attr=attr)
311 312
        else:
            inputs = {'x': val_x, 'y': val_y}
313 314 315 316
            node.fluid_code.add_layer(op_type,
                                      inputs=inputs,
                                      output=node,
                                      param_attr=attr)
C
channingss 已提交
317

C
update  
channingss 已提交
318
    def place_holder(self, node):
C
channingss 已提交
319
        self.input_shapes.append(node.out_shapes[0])
R
root 已提交
320

C
channings 已提交
321 322
        shape = node.out_shapes[0]
        for i, dim_shape in enumerate(shape):
R
root 已提交
323 324 325
            if dim_shape == 0 and i == 0:
                shape[i] = 1
            if dim_shape == 0 and i != 0:
C
channings 已提交
326
                assert 'shape of input is not assigned'
C
update  
channingss 已提交
327 328
        attr = {
            "dtype": string(node.dtype),
C
channings 已提交
329
            "shape": shape,
C
update  
channingss 已提交
330 331 332 333
            "name": string(node.layer_name),
            "append_batch_size": 'False'
        }

334 335 336 337
        node.fluid_code.add_layer("data",
                                  inputs=None,
                                  output=node,
                                  param_attr=attr)
C
update  
channingss 已提交
338 339 340 341 342

    def create_parameter(self, node, parameter=None):
        if parameter is not None:
            node = parameter
        dtype = node.dtype
C
channingss 已提交
343
        shape = node.out_shapes[0]
C
channingss 已提交
344 345
        if len(node.weight.shape) == 0:
            shape = [1]
C
update  
channingss 已提交
346 347 348 349 350 351 352 353
        self.weights[node.layer_name] = node.weight
        attr = {
            'dtype': string(dtype),
            'shape': shape,
            'name': string(node.layer_name),
            'attr': string(node.layer_name),
            'default_initializer': 'Constant(0.0)'
        }
354 355 356 357
        node.fluid_code.add_layer("create_parameter",
                                  inputs=None,
                                  output=node,
                                  param_attr=attr)
C
update  
channingss 已提交
358 359 360 361 362 363 364 365 366 367 368 369 370 371

    def _pad_if_asymmetric(self, node, pads, val_name):  # pads: SSEE
        assert len(pads) & 1 == 0
        symmetric = True
        ndims = len(pads) // 2
        for idx_dim in range(ndims):
            if pads[idx_dim] != pads[ndims + idx_dim]:
                symmetric = False
                break
        if symmetric:
            return pads[:ndims], val_name
        val_padded = self.Pad(node, op_independent=False)
        return [0] * ndims, val_padded

C
channingss 已提交
372
    def _interpolate(self, node):
C
channingss 已提交
373 374
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_scales = self.graph.get_input_node(node, idx=1, copy=True)
C
channingss 已提交
375
        val_y = self.graph.get_node(node.layer.output[0], copy=True)
376 377 378 379
        out_shape = val_y.out_shapes[0]
        if out_shape is not None:
            assert len(out_shape) == 4, 'only 4-D Tensor as X and Y supported'
            out_shape = out_shape[2:]
R
root 已提交
380

C
channingss 已提交
381
        scales = _const_weight_or_none(val_scales)
R
root 已提交
382

383 384
        if isinstance(val_scales, ONNXGraphNode):
            scales, _, _ = self.get_dynamic_shape(val_scales.layer_name)
R
root 已提交
385
        attr = {'name': string(node.layer_name)}
386
        use_scales = True
C
channingss 已提交
387
        if scales is not None:
388 389 390
            try:
                assert len(scales) == 4, 'only 4-D Tensor as X and Y supported'
                assert scales[0] == 1 and scales[
R
root 已提交
391
                    1] == 1, 'only scale on (NC)HW supported'
392
                assert scales[2] == scales[
R
root 已提交
393
                    3], 'only aspect-ratio-invariant scale supported'
394
            except:
R
root 已提交
395
                use_scales = False
C
channingss 已提交
396 397
        scale = scales[2] if scales else None
        if scale is None:
398
            assert out_shape, 'neither scales nor output shape is available'
C
channingss 已提交
399
        else:
400
            if out_shape is None:
C
channingss 已提交
401 402 403 404
                in_shape = val_x.out_shapes[0]
                assert in_shape is not None, 'out_shape required but not inferrable'
                assert len(
                    in_shape) == 4, 'only 4-D Tensor as X and Y supported'
405
                out_shape = [in_shape[2] * scale, in_shape[3] * scale]
406

C
channingss 已提交
407
        mode = node.get_attr('mode', 'nearest')
R
root 已提交
408

C
channingss 已提交
409
        fluid_op = 'resize_{}'.format(mode)
410
        if 'linear' in mode:
R
root 已提交
411 412 413
            print(
                'Warnning: paddle not support op:resize wiht mode: linear, we use bilinear replace linear'
            )
414
            fluid_op = 'resize_bilinear'
R
root 已提交
415

416 417
        if use_scales and scale is not None:
            attr['scale'] = scale
R
root 已提交
418
        else:
419
            attr['out_shape'] = out_shape
420

421 422 423 424
        node.fluid_code.add_layer(fluid_op,
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)
R
root 已提交
425

C
channings 已提交
426 427 428
    def RoiAlign(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_rois = self.graph.get_input_node(node, idx=1, copy=True)
R
root 已提交
429 430 431

        pooled_height = node.get_attr('output_height')
        pooled_width = node.get_attr('output_width')
C
channings 已提交
432 433 434
        spatial_scale = node.get_attr('spatial_scale')
        sampling_ratio = node.get_attr('sampling_ratio')
        attr = {
R
root 已提交
435 436 437 438 439
            'pooled_height': pooled_height,
            'pooled_width': pooled_width,
            'spatial_scale': spatial_scale,
            'sampling_ratio': sampling_ratio,
        }
440 441 442 443 444 445 446
        node.fluid_code.add_layer('roi_align',
                                  inputs={
                                      'input': val_x,
                                      'rois': val_rois
                                  },
                                  output=node,
                                  param_attr=attr)
C
channingss 已提交
447

C
channings 已提交
448 449 450
    def MaxRoiPool(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_rois = self.graph.get_input_node(node, idx=1, copy=True)
R
root 已提交
451

C
channings 已提交
452 453 454
        spatial_scale = node.get_attr('spatial_scale')
        pooled_height, pooled_width = node.get_attr('pooled_shape')
        attr = {
R
root 已提交
455 456 457 458
            'pooled_height': pooled_height,
            'pooled_width': pooled_width,
            'spatial_scale': spatial_scale,
        }
459 460 461 462 463 464 465
        node.fluid_code.add_layer('roi_pool',
                                  inputs={
                                      'input': val_x,
                                      'rois': val_rois
                                  },
                                  output=node,
                                  param_attr=attr)
R
root 已提交
466

C
update  
channingss 已提交
467
    def Pad(self, node, op_independent=True):
C
channingss 已提交
468
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
469 470 471
        pads = node.get_attr('pads')
        mode = node.get_attr('mode', 'constant')
        value = node.get_attr('value', 0.)
C
channingss 已提交
472 473
        data_shape = val_x.out_shapes[0]
        output_shape = node.out_shapes[0]
C
update  
channingss 已提交
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
        assume_pad2d = False
        attr = {}
        if len(pads) == 4:
            assume_pad2d |= mode != 'constant'
            if data_shape:
                assume_pad2d |= data_shape and len(data_shape) == 4  # NCHW
            if output_shape:
                assume_pad2d |= output_shape and len(output_shape) == 4  # NCHW
        if assume_pad2d:
            fluid_op = 'pad2d'
            attr['data_format'] = string('NCHW')
            attr['mode'] = string(mode)
        else:
            attr = {'pad_value': value}
            fluid_op = 'pad'
        if len(pads) == 4:
            paddings = np.array(pads).reshape(
                (-1, 2)).transpose().flatten().tolist()  # SSEE -> SESE
        elif len(pads) == 8:
            paddings = np.array(pads).reshape(
                (-1, 4)).transpose().flatten().tolist()  # SSEE -> SESE
C
channingss 已提交
495 496 497 498
            if sum(paddings[:4]) == 0:
                fluid_op = 'pad2d'
                paddings = paddings[4:]
                attr['mode'] = string(mode)
C
update  
channingss 已提交
499 500 501
        attr['paddings'] = paddings
        if op_independent:
            attr['name'] = string(node.layer_name)
502 503 504 505
            node.fluid_code.add_layer(fluid_op,
                                      inputs=val_x,
                                      output=node,
                                      param_attr=attr)
C
update  
channingss 已提交
506 507
        else:
            attr['name'] = string(node.layer_name + '_paded')
508 509 510 511
            node.fluid_code.add_layer(fluid_op,
                                      inputs=val_x,
                                      output=node.layer_name + '_paded',
                                      param_attr=attr)
C
update  
channingss 已提交
512 513 514
            return node.layer_name + '_paded'

    def Unsqueeze(self, node):
C
channingss 已提交
515
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
516
        axes = node.get_attr('axes')
R
root 已提交
517
        if len(val_x.out_shapes[0]) == 0:
518 519 520 521
            node.fluid_code.add_layer('assign',
                                      inputs=val_x,
                                      output=node,
                                      param_attr=None)
522 523
        else:
            attr = {'axes': axes, 'name': string(node.layer_name)}
524 525 526 527
            node.fluid_code.add_layer('unsqueeze',
                                      inputs=val_x,
                                      output=node,
                                      param_attr=attr)
528

C
channingss 已提交
529
    def Shrink(self, node):
C
channingss 已提交
530
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
channingss 已提交
531 532 533 534
        bias = node.get_attr('bias')
        lambd = node.get_attr('lambd')
        assert bias == 0.0, 'not support bias!=0'
        attr = {'threshold': lambd, 'name': node.layer_name}
535 536 537 538
        node.fluid_code.add_layer('hard_shrink',
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)
C
channingss 已提交
539

C
update  
channingss 已提交
540 541 542 543 544 545 546 547
    def Constant(self, node):
        val_output = self.graph.get_node(node.layer.output[0], copy=True)

        value = node.get_attr('value')
        dtype = np.dtype(value.dtype)
        output_dtype = val_output.dtype
        if output_dtype:
            assert dtype == output_dtype, 'tensor dtype unmatches storage dtype'
R
root 已提交
548

C
update  
channingss 已提交
549
        shape = node.get_attr('shape', None)
R
root 已提交
550

C
update  
channingss 已提交
551
        if shape is None:
C
channingss 已提交
552
            shape = val_output.out_shapes[0]
C
update  
channingss 已提交
553 554 555 556 557 558 559 560
        if shape is None:
            shape = list(value.shape)
            _logger.warning(
                'in (Constant -> %s): '
                'attribute "shape" of %s not inferred, '
                'using value as 1-D tensor may lead to fails',
                val_output.layer_name, val_output.layer_name)

561
        if len(value) == 1:
C
channingss 已提交
562
            value = value.tolist()
C
update  
channingss 已提交
563 564 565 566 567
            shape = [1]
            value = value[0]
            if dtype.name == 'int64':
                dtype = 'int32'
            attr = {'shape': shape, 'dtype': string(dtype), 'value': value}
568 569 570 571
            node.fluid_code.add_layer('fill_constant',
                                      inputs=None,
                                      output=node,
                                      param_attr=attr)
C
channingss 已提交
572 573 574 575 576 577 578 579 580 581
        else:
            value = np.reshape(value, shape)
            self.weights[node.layer_name] = value
            attr = {
                'dtype': string(dtype),
                'shape': shape,
                'name': string(node.layer_name),
                'attr': string(node.layer_name),
                'default_initializer': 'Constant(0.0)'
            }
582 583 584 585
            node.fluid_code.add_layer("create_parameter",
                                      inputs=None,
                                      output=node,
                                      param_attr=attr)
C
update  
channingss 已提交
586 587

    def Resize(self, node):
588 589 590 591 592 593
        self._interpolate(node)

    def Upsample(self, node):
        self._interpolate(node)

    def Expand(self, node):
C
channingss 已提交
594
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
595
        val_shape = self.graph.get_input_node(node, idx=1, copy=True)
R
root 已提交
596 597

        if len(val_shape.outputs) == 1:
598 599
            self.omit_nodes.append(val_shape.layer_name)

C
channingss 已提交
600
        val_y = self.graph.get_node(node.layer.output[0], copy=True)
601
        out_shape = node.out_shapes[0]
602
        val_x_dtype = val_x.dtype
R
root 已提交
603 604 605

        name_ones = node.layer_name + '_ones'
        attr_ones = {'shape': out_shape, 'dtype': string(val_x_dtype)}
606 607 608 609
        node.fluid_code.add_layer('ones',
                                  inputs=None,
                                  output=name_ones,
                                  param_attr=attr_ones)
R
root 已提交
610 611
        inputs = {'x': name_ones, 'y': val_x}
        attr = {'name': string(node.layer_name)}
612 613 614 615
        node.fluid_code.add_layer('elementwise_mul',
                                  inputs=inputs,
                                  output=node.layer_name,
                                  param_attr=attr)
C
update  
channingss 已提交
616

C
channingss 已提交
617 618 619 620
    def Gather(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        indices = self.graph.get_input_node(node, idx=1, copy=True)
        indices_shape = indices.out_shapes[0]
C
Channingss 已提交
621
        axis = node.get_attr('axis', 0)
C
channingss 已提交
622
        assert len(
C
Channingss 已提交
623
            indices_shape) <= 2, "Gather op don't support dim of indice >2 "
R
root 已提交
624
        if axis == 0 and len(indices_shape) <= 1:
625 626 627 628 629 630 631
            node.fluid_code.add_layer('gather',
                                      inputs={
                                          'input': val_x,
                                          'index': indices
                                      },
                                      output=node,
                                      param_attr=None)
C
channingss 已提交
632 633
        elif axis > 0 and len(indices_shape) <= 1:
            perm = list(range(len(val_x.out_shapes[0])))
C
channingss 已提交
634 635 636
            perm = [axis] + perm[:axis] + perm[axis + 1:]
            attr_trans = {'perm': perm}
            name_trans = val_x.layer_name + '_trans'
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
            node.fluid_code.add_layer('transpose',
                                      inputs=val_x,
                                      output=name_trans,
                                      param_attr=attr_trans)
            node.fluid_code.add_layer('gather',
                                      inputs={
                                          'input': name_trans,
                                          'index': indices
                                      },
                                      output=node,
                                      param_attr=None)
            node.fluid_code.add_layer('transpose',
                                      inputs=node,
                                      output=node,
                                      param_attr=attr_trans)
R
root 已提交
652
        elif len(indices_shape) > 1:
C
Channingss 已提交
653
            from functools import reduce
R
root 已提交
654
            reshape_shape = reduce(lambda x, y: x * y, indices_shape)
655 656 657 658 659 660
            node.fluid_code.add_layer('reshape',
                                      inputs=indices,
                                      output=indices,
                                      param_attr={'shape': [
                                          reshape_shape,
                                      ]})
R
root 已提交
661

C
Channingss 已提交
662 663 664 665
            perm = list(range(len(val_x.out_shapes[0])))
            perm = [axis] + perm[:axis] + perm[axis + 1:]
            attr_trans = {'perm': perm}
            name_trans = val_x.layer_name + '_trans'
666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
            node.fluid_code.add_layer('transpose',
                                      inputs=val_x,
                                      output=name_trans,
                                      param_attr=attr_trans)
            node.fluid_code.add_layer('gather',
                                      inputs={
                                          'input': name_trans,
                                          'index': indices
                                      },
                                      output=node,
                                      param_attr=None)
            node.fluid_code.add_layer('transpose',
                                      inputs=node,
                                      output=node,
                                      param_attr=attr_trans)
C
Channingss 已提交
681 682 683 684 685 686
            val_x_shape = val_x.out_shapes[0]
            reshaped_shape = []
            for i in perm:
                reshaped_shape.append(indices_shape[i])
            for i in val_x_shape[:axis] + val_x_shape[axis + 1:]:
                reshaped_shape.append(i)
687 688 689 690
            node.fluid_code.add_layer('reshape',
                                      inputs=node,
                                      output=node,
                                      param_attr={'shape': reshaped_shape})
C
channingss 已提交
691

C
channingss 已提交
692
    def Slice(self, node):
C
channingss 已提交
693
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
channings 已提交
694
        starts, ends, axes, steps = None, None, None, None
C
channingss 已提交
695 696 697
        if len(node.inputs) > 1:
            starts = self.graph.get_input_node(node, idx=1, copy=True)
            ends = self.graph.get_input_node(node, idx=2, copy=True)
R
root 已提交
698
            if len(node.inputs) > 3:
C
channings 已提交
699 700 701
                axes = self.graph.get_input_node(node, idx=3, copy=True)
                self.omit_nodes.append(axes.layer_name)
                axes = _const_weight_or_none(axes)
R
root 已提交
702
            if len(node.inputs) > 4:
C
channings 已提交
703 704 705
                steps = self.graph.get_input_node(node, idx=4, copy=True)
                self.omit_nodes.append(steps.layer_name)
                steps = _const_weight_or_none(steps)
R
root 已提交
706

C
channingss 已提交
707 708
            self.omit_nodes.append(starts.layer_name)
            self.omit_nodes.append(ends.layer_name)
709 710
            starts = _const_weight_or_none(starts).copy()
            ends = _const_weight_or_none(ends).copy()
C
channingss 已提交
711 712 713 714
        else:
            starts = node.get_attr('starts')
            ends = node.get_attr('ends')
            axes = node.get_attr('axes')
C
channingss 已提交
715

C
channingss 已提交
716 717 718 719 720 721
        val_y = self.graph.get_node(node.layer.output[0], copy=True)

        shape = val_x.out_shapes[0]

        if shape is not None:
            for idx, value in enumerate(starts):
C
channingss 已提交
722 723
                if value > shape[axes[idx]]:
                    starts[idx] = shape[axes[idx]]
C
channingss 已提交
724
            for idx, value in enumerate(ends):
C
channingss 已提交
725 726
                if value > shape[axes[idx]]:
                    ends[idx] = shape[axes[idx]]
C
channingss 已提交
727
        attr = {"axes": axes, "starts": starts, "ends": ends}
728 729 730 731
        node.fluid_code.add_layer('slice',
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)
C
channingss 已提交
732

C
update  
channingss 已提交
733
    def ConstantOfShape(self, node):
C
channingss 已提交
734
        val_shape = self.graph.get_input_node(node, idx=0, copy=True)
C
channingss 已提交
735
        val_y = self.graph.get_node(node.layer.output[0], copy=True)
C
update  
channingss 已提交
736 737 738
        shape = _const_weight_or_none(val_shape)

        if shape is None:
C
channingss 已提交
739
            shape = node.out_shapes[0]
C
update  
channingss 已提交
740 741 742 743 744 745 746 747 748 749 750 751 752 753

        assert shape is not None, (
            'given shape is neither const value nor deductible from output, '
            'this is not supported')

        value = node.get_attr('value')
        dtype = value.dtype
        value = value.tolist()
        if len(value) == 1:
            shape = [1]
            value = value[0]
            if dtype.name == 'int64':
                dtype = 'int32'
            attr = {'shape': shape, 'dtype': string(dtype), 'value': value}
754 755 756 757
            node.fluid_code.add_layer('fill_constant',
                                      inputs=None,
                                      output=node,
                                      param_attr=attr)
C
update  
channingss 已提交
758 759

    def Split(self, node):
C
channingss 已提交
760 761
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_node(node.layer.output[0], copy=True)
C
update  
channingss 已提交
762 763

        fluid_op = 'split'
C
channingss 已提交
764
        split = node.get_attr('split')
C
update  
channingss 已提交
765
        axis = node.get_attr('axis', 0)
C
channingss 已提交
766 767 768 769 770
        attr = {
            'num_or_sections': split,
            'dim': axis,
            'name': string(node.layer_name)
        }
R
root 已提交
771

772 773 774 775
        node.fluid_code.add_layer('split',
                                  inputs=val_x,
                                  output=val_y,
                                  param_attr=attr)
C
update  
channingss 已提交
776 777

    def Reshape(self, node):
C
channingss 已提交
778 779
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_shape = self.graph.get_input_node(node, idx=1, copy=True)
C
update  
channingss 已提交
780 781
        val_reshaped = self.graph.get_node(node.layer.output[0], copy=True)
        shape = None
C
channingss 已提交
782

C
update  
channingss 已提交
783 784
        if isinstance(val_shape, ONNXGraphDataNode):
            self.omit_nodes.append(val_shape.layer_name)
R
root 已提交
785

786
        attr = {'name': string(node.layer_name)}
C
update  
channingss 已提交
787 788
        # catch dynamic graph shape
        if isinstance(val_shape, ONNXGraphNode):
C
channingss 已提交
789
            shape, _, _ = self.get_dynamic_shape(val_shape.layer_name)
790
            if val_shape.dtype == 'int64':
R
root 已提交
791
                val_shape_cast = val_shape.layer_name + '_cast'
792 793 794 795
                node.fluid_code.add_layer('cast',
                                          inputs=val_shape,
                                          output=val_shape_cast,
                                          param_attr={'dtype': string('int32')})
R
root 已提交
796

797 798 799
                attr['actual_shape'] = val_shape_cast
            else:
                attr['actual_shape'] = val_shape
C
channings 已提交
800

C
update  
channingss 已提交
801
        if shape is None:
C
channingss 已提交
802
            shape = val_reshaped.out_shapes[0]
C
update  
channingss 已提交
803 804

        if shape is None:
C
channingss 已提交
805
            shape = [1, -1]
C
update  
channingss 已提交
806 807 808
            _logger.warning(
                'in %s(%s -> Reshape -> %s): '
                'input "shape" not inferred, use [1, -1] as dummy value, '
C
channingss 已提交
809 810
                'the behavior of Paddle fluid maybe undefined', node.layer_name,
                val_x.layer_name, val_reshaped.layer_name)
R
root 已提交
811

812
        attr['shape'] = shape
813 814 815 816
        node.fluid_code.add_layer('reshape',
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)
C
update  
channingss 已提交
817 818

    def Cast(self, node):
C
channingss 已提交
819
        val_input = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
820 821 822 823 824 825 826 827 828 829
        val_output = self.graph.get_node(node.layer.output[0], copy=True)

        dtype = node.get_attr('to')
        if not isinstance(dtype, np.dtype):
            dtype = TENSOR_TYPE_TO_NP_TYPE[dtype]

        output_dtype = val_output.dtype
        if output_dtype:
            assert dtype == output_dtype, 'dtype of to unmatches output'
        attr = {'dtype': string(dtype)}
830 831 832 833
        node.fluid_code.add_layer('cast',
                                  inputs=val_input,
                                  output=node,
                                  param_attr=attr)
C
update  
channingss 已提交
834 835

    def AveragePool(self, node):
C
channingss 已提交
836
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
channingss 已提交
837 838

        auto_pad = node.get_attr('auto_pad', 'NOTSET')
C
update  
channingss 已提交
839 840 841 842 843 844 845 846
        kernel_shape = node.get_attr("kernel_shape")
        poolnd = len(kernel_shape)
        strides = node.get_attr("strides")
        pad_mode = node.get_attr("pads")
        ceil_mode = bool(node.get_attr('ceil_mode', 0))
        pads = node.get_attr('pads', [0] * (poolnd * 2))
        fluid_op = 'pool{}d'.format(poolnd)
        assert 2 <= poolnd <= 3, 'only pool2d and pool3d is supported'
C
channingss 已提交
847

C
channingss 已提交
848 849
        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

C
channingss 已提交
850
        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
C
channingss 已提交
851
            input_shape = val_x.out_shapes[0]
C
channingss 已提交
852 853 854 855 856 857
            pad_h = get_same_padding(input_shape[2], kernel_shape[0],
                                     strides[0])
            pad_w = get_same_padding(input_shape[3], kernel_shape[1],
                                     strides[1])
            attr = {"paddings": pad_h + pad_w, "pad_value": 0.0}

C
update  
channingss 已提交
858 859 860 861 862 863 864 865 866 867
        attr = {
            "pool_size": kernel_shape,
            "pool_type": string('avg'),
            "pool_stride": strides,
            "pool_padding": paddings,
            "ceil_mode": ceil_mode,
            "exclusive": 'True',
            "name": string(node.layer_name)
        }

868 869 870 871
        node.fluid_code.add_layer(fluid_op,
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)
C
update  
channingss 已提交
872 873 874 875

    def Concat(self, node):
        inputs = []
        for i in range(len(node.layer.input)):
C
channingss 已提交
876
            ipt = self.graph.get_input_node(node, idx=i, copy=True)
C
update  
channingss 已提交
877 878 879 880 881 882
            if isinstance(ipt, str):
                inputs.append(ipt)
            else:
                inputs.append(ipt.layer_name)
        axis = node.get_attr('axis')
        attr = {'axis': axis}
883 884 885 886
        node.fluid_code.add_layer('concat',
                                  inputs=inputs,
                                  output=node,
                                  param_attr=attr)
C
update  
channingss 已提交
887 888

    def Flatten(self, node):
C
channingss 已提交
889
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
890 891
        axis = node.get_attr('axis', 1)
        attr = {"axis": str(axis), "name": string(node.layer_name)}
892 893 894 895
        node.fluid_code.add_layer('flatten',
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)
C
update  
channingss 已提交
896 897

    def Gemm(self, node):
C
channingss 已提交
898 899 900
        val_a = self.graph.get_input_node(node, idx=0, copy=True)
        val_b = self.graph.get_input_node(node, idx=1, copy=True)
        val_c = self.graph.get_input_node(node, idx=2, copy=True)
C
update  
channingss 已提交
901 902 903 904 905 906 907 908 909 910 911 912 913

        alpha = node.get_attr('alpha', 1.)  # optional
        beta = node.get_attr('beta', 1.)  # optional
        trans_a = bool(node.get_attr('transA', 0))  # optional
        trans_b = bool(node.get_attr('transB', 0))  # optional
        val_mm = node.layer_name + '_mm'
        matmul_inputs = {"x": val_a, "y": val_b}
        attr_matmul = {
            "transpose_x": trans_a,
            "transpose_y": trans_b,
            "alpha": alpha,
            "name": string(val_mm)
        }
914 915 916 917
        node.fluid_code.add_layer('matmul',
                                  inputs=matmul_inputs,
                                  output=val_mm,
                                  param_attr=attr_matmul)
C
channingss 已提交
918

C
update  
channingss 已提交
919 920 921 922
        if beta != 0:
            if beta == 1.:
                add_inputs = {"x": val_mm, "y": val_c}
                attr = {"name": string(node.layer_name)}
923 924 925 926
                node.fluid_code.add_layer("elementwise_add",
                                          inputs=add_inputs,
                                          output=node,
                                          param_attr=attr)
C
update  
channingss 已提交
927
            else:
C
channingss 已提交
928 929
                var_beta = node.layer_name + '_beta'
                matmul_beta_inputs = {"x": val_c, "y": var_beta}
930 931 932 933
                node.fluid_code.add_layer("Constant",
                                          inputs=matmul_beta_inputs,
                                          output=var_beta,
                                          param_attr={'value': beta})
C
channingss 已提交
934 935 936

                add_inputs = {"x": val_mm, "y": var_beta}
                attr = {"name": string(node.layer_name)}
937 938 939 940
                node.fluid_code.add_layer("elementwise_add",
                                          inputs=add_inputs,
                                          output=node,
                                          param_attr=attr)
C
update  
channingss 已提交
941 942

    def Sum(self, node):
943
        val_inps = node.layer.input
944
        inputs = {
C
channingss 已提交
945 946
            "x": self.graph.get_input_node(node, idx=0, copy=True),
            "y": self.graph.get_input_node(node, idx=1, copy=True),
947 948
        }
        node.fluid_code.add_layer("elementwise_add", inputs=inputs, output=node)
949

C
channingss 已提交
950 951
        for idx, ipt in enumerate(val_inps[2:]):
            y = self.graph.get_input_node(node, idx=idx, copy=True)
952 953
            inputs = {
                "x": node.layer_name,
C
channingss 已提交
954
                "y": y,
955
            }
956 957 958
            node.fluid_code.add_layer("elementwise_add",
                                      inputs=inputs,
                                      output=node)
C
update  
channingss 已提交
959 960

    def MatMul(self, node):
C
channingss 已提交
961 962
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
C
update  
channingss 已提交
963 964
        inputs = {"x": val_x, "y": val_y}
        attr = {"name": string(node.layer_name)}
965 966 967 968
        node.fluid_code.add_layer("matmul",
                                  inputs=inputs,
                                  output=node,
                                  param_attr=attr)
C
update  
channingss 已提交
969 970

    def BatchNormalization(self, node):
C
channingss 已提交
971 972 973 974 975
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_scale = self.graph.get_input_node(node, idx=1, copy=True)
        val_b = self.graph.get_input_node(node, idx=2, copy=True)
        val_mean = self.graph.get_input_node(node, idx=3, copy=True)
        val_var = self.graph.get_input_node(node, idx=4, copy=True)
C
update  
channingss 已提交
976 977 978 979 980 981 982 983 984

        self.omit_nodes.append(val_scale.layer_name)
        self.omit_nodes.append(val_b.layer_name)
        self.omit_nodes.append(val_mean.layer_name)
        self.omit_nodes.append(val_var.layer_name)

        momentum = node.get_attr('momentum', .9)
        epsilon = node.get_attr('epsilon', 1e-5)

C
channingss 已提交
985 986
        # Attribute: spatial is used in BatchNormalization-1,6,7
        spatial = bool(node.get_attr('spatial'))
C
update  
channingss 已提交
987 988 989 990
        attr = {
            "momentum": momentum,
            "epsilon": epsilon,
            "data_layout": string('NCHW'),
C
channingss 已提交
991
            "is_test": True,
C
update  
channingss 已提交
992 993 994 995
            "param_attr": string(val_scale.layer_name),
            "bias_attr": string(val_b.layer_name),
            "moving_mean_name": string(val_mean.layer_name),
            "moving_variance_name": string(val_var.layer_name),
C
channingss 已提交
996
            "use_global_stats": spatial,
C
update  
channingss 已提交
997 998
            "name": string(node.layer_name)
        }
999 1000 1001 1002
        node.fluid_code.add_layer("batch_norm",
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)
C
update  
channingss 已提交
1003 1004

    def Transpose(self, node):
C
channingss 已提交
1005
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
1006 1007
        perm = node.get_attr('perm')
        attr = {'perm': perm, "name": string(node.layer_name)}
1008 1009 1010 1011
        node.fluid_code.add_layer("transpose",
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)
C
update  
channingss 已提交
1012 1013

    def Relu(self, node):
C
channingss 已提交
1014
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
1015
        attr = {"name": string(node.layer_name)}
1016 1017 1018 1019
        node.fluid_code.add_layer("relu",
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)
C
update  
channingss 已提交
1020 1021

    def PRelu(self, node):
C
channingss 已提交
1022 1023
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_slope = self.graph.get_input_node(node, idx=1, copy=True)
C
update  
channingss 已提交
1024

C
channingss 已提交
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
        mode = 'channel'
        shape_slope = val_slope.out_shapes[0]
        if len(shape_slope) == 1:
            mode = 'all'
        elif len(shape_slope) > 2:
            mode = 'element'
        attr = {
            "param_attr": string(val_slope.layer_name),
            'mode': string(mode)
        }
1035 1036 1037 1038
        node.fluid_code.add_layer("prelu",
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)
C
update  
channingss 已提交
1039 1040

    def Squeeze(self, node):
C
channingss 已提交
1041 1042 1043
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        axes = node.get_attr('axes')
        attr = {'axes': axes, "name": string(node.layer_name)}
1044 1045 1046 1047
        node.fluid_code.add_layer("squeeze",
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)
R
root 已提交
1048

C
channings 已提交
1049 1050 1051
    def Equal(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
1052 1053 1054 1055 1056 1057 1058
        node.fluid_code.add_layer("equal",
                                  inputs={
                                      'x': val_x,
                                      'y': val_y
                                  },
                                  output=node,
                                  param_attr=None)
R
root 已提交
1059

C
channings 已提交
1060 1061 1062 1063
    def Where(self, node):
        condition = self.graph.get_input_node(node, idx=0, copy=True)
        val_x = self.graph.get_input_node(node, idx=1, copy=True)
        val_y = self.graph.get_input_node(node, idx=2, copy=True)
R
root 已提交
1064

C
channings 已提交
1065
        not_condition = condition.layer_name + '_not'
1066 1067 1068 1069
        node.fluid_code.add_layer("logical_not",
                                  inputs=condition,
                                  output=not_condition,
                                  param_attr=None)
R
root 已提交
1070
        cast_not_condition = not_condition + '_cast'
1071 1072 1073 1074
        node.fluid_code.add_layer("cast",
                                  inputs=not_condition,
                                  output=cast_not_condition,
                                  param_attr={'dtype': string(val_x.dtype)})
C
channings 已提交
1075
        cast_condition = condition.layer_name + '_cast'
1076 1077 1078 1079
        node.fluid_code.add_layer("cast",
                                  inputs=condition,
                                  output=cast_condition,
                                  param_attr={'dtype': string(val_x.dtype)})
R
root 已提交
1080
        mul_val_x = val_x.layer_name + '_mul'
1081 1082 1083 1084 1085 1086 1087
        node.fluid_code.add_layer("elementwise_mul",
                                  inputs={
                                      'x': val_x,
                                      'y': cast_condition
                                  },
                                  output=mul_val_x,
                                  param_attr=None)
R
root 已提交
1088

C
channings 已提交
1089
        mul_val_y = val_y.layer_name + '_mul'
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
        node.fluid_code.add_layer("elementwise_mul",
                                  inputs={
                                      'x': val_y,
                                      'y': cast_not_condition
                                  },
                                  output=mul_val_y,
                                  param_attr=None)

        node.fluid_code.add_layer("elementwise_add",
                                  inputs={
                                      'x': mul_val_x,
                                      'y': mul_val_y
                                  },
                                  output=node,
                                  param_attr=None)
R
root 已提交
1105 1106 1107 1108

    def NonZero(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        where_name = node.layer_name + '_where'
1109 1110 1111
        node.fluid_code.add_layer("where",
                                  inputs=val_x.layer_name + '!=0',
                                  output=where_name)
R
root 已提交
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
        dims = len(val_x.out_shapes[0])
        elements_count_val_x = reduce(lambda x, y: x * y, val_x.out_shapes[0])
        flatten_names = []
        for dim in range(dims):
            slice_name = node.layer_name + '_slice' + str(dim)
            flatten_name = node.layer_name + '_flatten' + str(dim)
            flatten_names.append(flatten_name)
            attr = {
                'axes': list(range(dims)),
                'starts': [0, dim],
                'ends': [elements_count_val_x, dim + 1]
            }
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
            node.fluid_code.add_layer("slice",
                                      inputs=where_name,
                                      output=slice_name,
                                      param_attr=attr)
            node.fluid_code.add_layer("flatten",
                                      inputs=slice_name,
                                      output=flatten_name,
                                      param_attr={'axis': 0})
        node.fluid_code.add_layer("concat",
                                  inputs=flatten_names,
                                  output=node,
                                  param_attr={'axis': 0})
R
root 已提交
1136

C
update  
channingss 已提交
1137
    def Identity(self, node):
C
channingss 已提交
1138
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
1139
        node.fluid_code.add_layer("assign", inputs=val_x, output=node)
R
root 已提交
1140

C
channings 已提交
1141 1142 1143 1144 1145
    def Tile(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_repeats = self.graph.get_input_node(node, idx=1, copy=True)
        repeats = _const_weight_or_none(val_repeats)
        assert repeats is not None, 'for OP:Tile, only const repeats supported'
R
root 已提交
1146

C
channings 已提交
1147 1148
        if isinstance(repeats, int):
            repeats = [repeats]
R
root 已提交
1149

C
channings 已提交
1150
        attr = {
R
root 已提交
1151
            'expand_times': repeats,
C
channings 已提交
1152 1153
            "name": string(node.layer_name),
        }
1154 1155 1156 1157
        node.fluid_code.add_layer("expand",
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)
R
root 已提交
1158

C
update  
channingss 已提交
1159
    def MaxPool(self, node):
C
channingss 已提交
1160
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
1161

C
channingss 已提交
1162
        auto_pad = node.get_attr('auto_pad', 'NOTSET')
C
update  
channingss 已提交
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
        assert node.get_attr(
            "dilations") is None, 'only dilations = 0 is supported'  # optional

        kernel_shape = node.get_attr("kernel_shape")
        poolnd = len(kernel_shape)
        strides = node.get_attr("strides")
        pad_mode = node.get_attr("pads")
        ceil_mode = bool(node.get_attr('ceil_mode', 0))  # optional
        pads = node.get_attr('pads', [0] * (poolnd * 2))  # optional
        fluid_op = 'pool{}d'.format(poolnd)
        assert 2 <= poolnd <= 3, 'only pool2d and pool3d is supported'
C
channingss 已提交
1174

C
channingss 已提交
1175 1176
        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

C
channingss 已提交
1177
        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
C
channingss 已提交
1178
            input_shape = val_x.out_shapes[0]
C
channingss 已提交
1179 1180 1181 1182 1183 1184
            pad_h = get_same_padding(input_shape[2], kernel_shape[0],
                                     strides[0])
            pad_w = get_same_padding(input_shape[3], kernel_shape[1],
                                     strides[1])
            attr = {"paddings": pad_h + pad_w, "pad_value": 0.0}

C
update  
channingss 已提交
1185 1186 1187 1188 1189 1190 1191 1192 1193
        attr = {
            "pool_size": kernel_shape,
            "pool_type": string("max"),
            "pool_stride": strides,
            "pool_padding": paddings,
            "ceil_mode": ceil_mode,
            "name": string(node.layer_name),
            "exclusive": False
        }
1194 1195 1196 1197
        node.fluid_code.add_layer(fluid_op,
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)
C
update  
channingss 已提交
1198

C
channings 已提交
1199
    def _global_pool(self, node):
C
channingss 已提交
1200
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
1201
        val_y = self.graph.get_node(node.layer.output[0], copy=True)
C
channingss 已提交
1202 1203
        input_shape = val_x.out_shapes[0]
        output_shape = val_y.out_shapes[0]
C
update  
channingss 已提交
1204 1205 1206 1207 1208 1209 1210
        assert input_shape is not None or output_shape is not None, 'poolnd not inferred'  # N
        if input_shape:
            poolnd = len(input_shape) - 2  # NC...
        elif output_shape:
            poolnd = len(output_shape) - 2  # NC...
        assert 2 <= poolnd <= 3, 'only pool2d and pool3d is supported'
        fluid_op = 'pool{}d'.format(poolnd)
R
root 已提交
1211

C
channings 已提交
1212 1213 1214 1215 1216 1217
        pool_type = None
        if node.layer.op_type == 'GlobalMaxPool':
            pool_type = 'max'
        elif node.layer.op_type == 'GlobalAveragePool':
            pool_type = 'avg'

C
update  
channingss 已提交
1218
        attr = {
C
channings 已提交
1219
            "pool_type": string(pool_type),
C
update  
channingss 已提交
1220 1221 1222
            "global_pooling": True,
            "name": string(node.layer_name)
        }
1223 1224 1225 1226
        node.fluid_code.add_layer(fluid_op,
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)
R
root 已提交
1227

C
channings 已提交
1228 1229
    def GlobalMaxPool(self, node):
        self._global_pool(node)
R
root 已提交
1230

C
channings 已提交
1231 1232
    def GlobalAveragePool(self, node):
        self._global_pool(node)
R
root 已提交
1233

C
update  
channingss 已提交
1234
    def Conv(self, node):
C
channingss 已提交
1235 1236
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_w = self.graph.get_input_node(node, idx=1, copy=True)
C
update  
channingss 已提交
1237 1238 1239 1240 1241 1242
        val_y = self.graph.get_node(node.layer.output[0], copy=True)

        self.omit_nodes.append(val_w.layer_name)

        has_bias = len(node.layer.input) == 3
        if has_bias:
C
channingss 已提交
1243
            val_b = self.graph.get_input_node(node, idx=2, copy=True)
C
update  
channingss 已提交
1244 1245 1246
            self.omit_nodes.append(val_b.layer_name)
        auto_pad = node.get_attr('auto_pad', 'NOTSET')

C
channingss 已提交
1247
        kernel_shape = node.get_attr('kernel_shape')
C
update  
channingss 已提交
1248 1249
        convnd = len(kernel_shape)
        assert 2 <= convnd <= 3, 'only conv2d and conv3d is supported'
C
channingss 已提交
1250
        num_out_channels = val_w.out_shapes[0][0]  # OI...
C
update  
channingss 已提交
1251 1252 1253 1254 1255 1256 1257
        fluid_op = 'conv{}d'.format(convnd)

        num_groups = node.get_attr('group', 1)
        strides = node.get_attr('strides', [1] * convnd)  # optional
        dilations = node.get_attr('dilations', [1] * convnd)  # optional
        pads = node.get_attr('pads', [0] * (convnd * 2))  # optional

C
channingss 已提交
1258
        input_shape = val_x.out_shapes[0]
C
update  
channingss 已提交
1259 1260
        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

C
channingss 已提交
1261
        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
C
update  
channingss 已提交
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
            pad_h = get_same_padding(input_shape[2], kernel_shape[0],
                                     strides[0])
            pad_w = get_same_padding(input_shape[3], kernel_shape[1],
                                     strides[1])
            attr = {"paddings": pad_h + pad_w, "pad_value": 0.0}

        attr = {
            "num_filters": num_out_channels,
            "filter_size": kernel_shape,
            "stride": strides,
            "padding": paddings,
            "dilation": dilations,
            "groups": num_groups,
            'param_attr': string(val_w.layer_name),
            "name": string(node.layer_name)
        }
        if has_bias:
            attr["bias_attr"] = string(val_b.layer_name)
        else:
            attr["bias_attr"] = False
1282 1283 1284 1285
        node.fluid_code.add_layer(fluid_op,
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)
C
channingss 已提交
1286 1287

    def ConvTranspose(self, node):
C
channingss 已提交
1288 1289
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_w = self.graph.get_input_node(node, idx=1, copy=True)
C
channingss 已提交
1290
        val_b = None
R
root 已提交
1291
        if len(node.layer.input) > 2:
C
channingss 已提交
1292 1293
            val_b = self.graph.get_input_node(node, idx=2, copy=True)
            self.omit_nodes.append(val_b.layer_name)
C
channingss 已提交
1294 1295 1296 1297 1298 1299
        self.omit_nodes.append(val_w.layer_name)

        val_y = self.graph.get_node(node.layer.output[0], copy=True)

        auto_pad = node.get_attr('auto_pad', 'NOTSET')
        out_padding = node.get_attr('output_padding', [0, 0])
C
channingss 已提交
1300
        kernel_shape = node.get_attr('kernel_shape')
C
channingss 已提交
1301 1302 1303
        assert kernel_shape, 'kernel_shape not inferred'
        convnd = len(kernel_shape)
        assert 2 <= convnd <= 3, 'only conv2d_transpose and conv3d_transpose supported'
C
channingss 已提交
1304
        num_out_channels = val_w.out_shapes[0][1]
C
channingss 已提交
1305 1306
        fluid_op = 'conv{}d_transpose'.format(convnd)

C
channingss 已提交
1307 1308 1309 1310 1311
        num_groups = node.get_attr('group', 1)
        strides = node.get_attr('strides', [1] * convnd)
        dilations = node.get_attr('dilations', [1] * convnd)
        output_size = node.get_attr('output_shape', [])
        pads = node.get_attr('pads', [0] * (convnd * 2))
C
channingss 已提交
1312 1313 1314 1315

        paddings, var_x = self._pad_if_asymmetric(node, pads, val_x)

        output_size = [0, 0]
C
channingss 已提交
1316

C
channingss 已提交
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
        output_size[0] = (val_x.out_shapes[0][2] -
                          1) * strides[0] - 2 * paddings[0] + dilations[0] * (
                              kernel_shape[0] - 1) + 1 + out_padding[0]
        output_size[1] = (val_x.out_shapes[0][3] -
                          1) * strides[1] - 2 * paddings[1] + dilations[1] * (
                              kernel_shape[1] - 1) + 1 + out_padding[1]
        attr = {
            'num_filters': num_out_channels,
            'output_size': output_size or None,
            'filter_size': kernel_shape,
            'padding': paddings,
            'stride': strides,
            'dilation': dilations,
            'groups': num_groups,
            'param_attr': string(val_w.layer_name),
C
channingss 已提交
1332
            'bias_attr': None if val_b is None else string(val_b.layer_name),
C
channingss 已提交
1333 1334
            'name': string(node.layer_name),
        }
1335 1336 1337 1338
        node.fluid_code.add_layer(fluid_op,
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)
C
channings 已提交
1339 1340 1341 1342 1343

    def GRU(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_w = self.graph.get_input_node(node, idx=1, copy=True)
        val_r = self.graph.get_input_node(node, idx=2, copy=True)
R
root 已提交
1344

C
channings 已提交
1345 1346 1347 1348 1349
        val_b = None
        val_len = None
        val_xh = None
        miss_arg_num = 0
        num_ipt = len(node.layer.input)
R
root 已提交
1350
        if num_ipt > 3 and node.layer.input[3] != '':
C
channings 已提交
1351 1352 1353
            val_b = self.graph.get_input_node(node, idx=3, copy=True)
        else:
            miss_arg_num += 1
R
root 已提交
1354
        if num_ipt > 4 and node.layer.input[4] != '':
1355 1356 1357
            val_len = self.graph.get_input_node(node,
                                                idx=4 - miss_arg_num,
                                                copy=True)
C
channings 已提交
1358 1359
        else:
            miss_arg_num += 1
R
root 已提交
1360
        if num_ipt > 5 and node.layer.input[5] != '':
1361 1362 1363
            val_xh = self.graph.get_input_node(node,
                                               idx=5 - miss_arg_num,
                                               copy=True)
R
root 已提交
1364

C
channings 已提交
1365
        data, dtype, shape = self.get_dynamic_shape(val_x.layer_name)
R
root 已提交
1366

C
channings 已提交
1367
        x_shape = val_x.out_shapes[0]
R
root 已提交
1368

C
channings 已提交
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
        assert x_shape[1] == 1, 'only X with batch_size = 1 supported'
        assert node.get_attr('clip', None) is None, 'clipping not supported'

        hidden_size = node.get_attr('hidden_size', None)
        if hidden_size is None:
            r_shape = val_r.out_shapes[0]
            if r_shape:
                hidden_size = r_shape[-1]
        if hidden_size is None:
            w_shape = var_w.out_shapes[0]
            if w_shape:
                hidden_size = w_shape[-2] // 3
        if hidden_size is None and val_b:
            b_shape = val_b.out_shapes[0]
            if b_shape:
                hidden_size = b_shape[-1] // 6
        if hidden_size is None and val_xh:
            xh_shape = val_xh.out_shapes[0]
            if xh_shape:
                hidden_size = xh_shape[-1]
R
root 已提交
1389 1390

        direction = node.get_attr('direction', 'forward')
C
channings 已提交
1391
        assert direction != 'bidirectional', 'direction = bidirectional not supported'
R
root 已提交
1392

C
channings 已提交
1393 1394
        activations = node.get_attr('activations', ['Sigmoid', 'Tanh'])
        assert len(activations) == 2, 'bidirectional operation not supported'
R
root 已提交
1395 1396 1397 1398

        assert node.get_attr('linear_before_reset',
                             0) == 0, 'only linear_before_reset = 0 supported'

C
channings 已提交
1399 1400 1401
        activations = [s.lower() for s in activations]
        gate_activation, candidate_activation = activations
        is_reverse = direction == 'reverse'
R
root 已提交
1402

C
channings 已提交
1403
        var_x0 = node.layer_name + '_x0'
1404 1405 1406 1407 1408 1409 1410
        node.fluid_code.add_layer('squeeze',
                                  inputs=val_x,
                                  output=var_x0,
                                  param_attr={
                                      'axes': [1],
                                      'name': string(var_x0)
                                  })
R
root 已提交
1411

C
channings 已提交
1412
        var_w0 = node.layer_name + '_w0'
1413 1414 1415 1416 1417 1418 1419
        node.fluid_code.add_layer('squeeze',
                                  inputs=val_w,
                                  output=var_w0,
                                  param_attr={
                                      'axes': [0],
                                      'name': string(var_w0)
                                  })
R
root 已提交
1420

C
channings 已提交
1421 1422
        var_fc = node.layer_name + '_fc'
        var_mm = (node.layer_name + '_mm') if val_b else var_fc
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
        node.fluid_code.add_layer('matmul',
                                  inputs={
                                      'x': var_x0,
                                      'y': var_w0
                                  },
                                  output=var_mm,
                                  param_attr={
                                      'transpose_x': 0,
                                      'transpose_y': 1,
                                      'name': string(var_mm)
                                  })
R
root 已提交
1434

C
channings 已提交
1435
        var_r0 = node.layer_name + '_r0'
1436 1437 1438 1439 1440 1441 1442
        node.fluid_code.add_layer('squeeze',
                                  inputs=val_r,
                                  output=var_r0,
                                  param_attr={
                                      'axes': [0],
                                      'name': string(var_r0)
                                  })
R
root 已提交
1443 1444 1445

        var_r0t = node.layer_name + '_r0t'

1446 1447 1448 1449 1450 1451 1452
        node.fluid_code.add_layer('transpose',
                                  inputs=var_r0,
                                  output=var_r0t,
                                  param_attr={
                                      'perm': [1, 0],
                                      'name': string(var_r0t)
                                  })
C
channings 已提交
1453 1454 1455
        if val_b:
            var_bi = node.layer_name + '_bi'
            var_bh = node.layer_name + '_bh'
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
            node.fluid_code.add_layer('split',
                                      inputs=val_b,
                                      output=var_bi + ',' + var_bh,
                                      param_attr={
                                          'axis':
                                          1,
                                          'split':
                                          [hidden_size * 3, hidden_size * 3],
                                          'name':
                                          string(node.layer_name + '.b/split')
                                      })
C
channings 已提交
1467
            var_bi0 = node.layer_name + '_bi0'
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
            node.fluid_code.add_layer('squeeze',
                                      inputs=var_bi,
                                      output=var_bi0,
                                      param_attr={
                                          'axes': [0],
                                          'name': string(var_bi0)
                                      })

            node.fluid_code.add_layer('elmentwise_add',
                                      inputs=[var_mm, var_bi0],
                                      output=var_fc,
                                      param_attr={
                                          'axes':
                                          1,
                                          'name':
                                          string(node.layer_name + '.i/bias')
                                      })
C
channings 已提交
1485 1486 1487

        if val_xh:
            var_xh0 = node.layer_name + '_xh0'
1488 1489 1490 1491 1492 1493 1494
            node.fluid_code.add_layer('squeeze',
                                      inputs=val_xh,
                                      output=var_xh0,
                                      param_attr={
                                          'axes': [1],
                                          'name': string(var_xh0)
                                      })
C
channings 已提交
1495
        var_y00 = node.layer_name + '_y00'
R
root 已提交
1496 1497 1498

        attr = {
            'origin_mode': True,
C
channings 已提交
1499
            'h_0': var_xh0 if val_xh else None,
R
root 已提交
1500 1501 1502 1503 1504
            'is_reverse': is_reverse,
            'gate_activation': string(gate_activation),
            'candidate_activation': string(candidate_activation),
            'param_attr': string(var_r0t),
            'bias_attr': string(var_bh) if val_b else False,
C
channings 已提交
1505
        }
1506 1507 1508 1509
        node.fluid_code.add_layer('dynamic_gru',
                                  inputs=var_fc + ',' + str(hidden_size),
                                  output=var_y00,
                                  param_attr=attr)
R
root 已提交
1510

C
channings 已提交
1511
        num_opt = len(node.layer.output)
R
root 已提交
1512 1513

        if num_opt > 0 and node.layer.output[0] != '':
1514 1515 1516 1517 1518 1519 1520
            node.fluid_code.add_layer('unsqueeze',
                                      inputs=var_y00,
                                      output=node.layer.output[0],
                                      param_attr={
                                          'axes': [1, 1],
                                          'name': string(node.layer.output[0])
                                      })
R
root 已提交
1521
        if num_opt > 1 and node.layer.output[1] != '':
1522 1523 1524 1525 1526 1527 1528
            node.fluid_code.add_layer('unsqueeze',
                                      inputs=var_y00,
                                      output=node.layer.output[1],
                                      param_attr={
                                          'axes': [1, 1],
                                          'name': string(node.layer.output[1])
                                      })