__init__.py 10.6 KB
Newer Older
G
guru4elephant 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
# pylint: disable=doc-string-missing
G
guru4elephant 已提交
15

M
MRXLT 已提交
16 17
import paddle_serving_client
import os
18 19 20
from .proto import sdk_configure_pb2 as sdk
from .proto import general_model_config_pb2 as m_config
import google.protobuf.text_format
G
guru4elephant 已提交
21
import time
22
import sys
G
guru4elephant 已提交
23

G
guru4elephant 已提交
24 25 26
int_type = 0
float_type = 1

M
MRXLT 已提交
27

G
guru4elephant 已提交
28 29 30
class SDKConfig(object):
    def __init__(self):
        self.sdk_desc = sdk.SDKConf()
31 32 33
        self.tag_list = []
        self.cluster_list = []
        self.variant_weight_list = []
G
guru4elephant 已提交
34

35 36 37 38
    def add_server_variant(self, tag, cluster, variant_weight):
        self.tag_list.append(tag)
        self.cluster_list.append(cluster)
        self.variant_weight_list.append(variant_weight)
G
guru4elephant 已提交
39 40 41 42 43 44 45

    def gen_desc(self):
        predictor_desc = sdk.Predictor()
        predictor_desc.name = "general_model"
        predictor_desc.service_name = \
            "baidu.paddle_serving.predictor.general_model.GeneralModelService"
        predictor_desc.endpoint_router = "WeightedRandomRender"
46 47
        predictor_desc.weighted_random_render_conf.variant_weight_list = "|".join(
            self.variant_weight_list)
G
guru4elephant 已提交
48

49 50 51 52 53 54
        for idx, tag in enumerate(self.tag_list):
            variant_desc = sdk.VariantConf()
            variant_desc.tag = tag
            variant_desc.naming_conf.cluster = "list://{}".format(",".join(
                self.cluster_list[idx]))
            predictor_desc.variants.extend([variant_desc])
G
guru4elephant 已提交
55 56 57 58 59 60 61 62 63 64

        self.sdk_desc.predictors.extend([predictor_desc])
        self.sdk_desc.default_variant_conf.tag = "default"
        self.sdk_desc.default_variant_conf.connection_conf.connect_timeout_ms = 2000
        self.sdk_desc.default_variant_conf.connection_conf.rpc_timeout_ms = 20000
        self.sdk_desc.default_variant_conf.connection_conf.connect_retry_count = 2
        self.sdk_desc.default_variant_conf.connection_conf.max_connection_per_host = 100
        self.sdk_desc.default_variant_conf.connection_conf.hedge_request_timeout_ms = -1
        self.sdk_desc.default_variant_conf.connection_conf.hedge_fetch_retry_count = 2
        self.sdk_desc.default_variant_conf.connection_conf.connection_type = "pooled"
M
MRXLT 已提交
65

G
guru4elephant 已提交
66 67 68 69 70 71 72 73
        self.sdk_desc.default_variant_conf.naming_conf.cluster_filter_strategy = "Default"
        self.sdk_desc.default_variant_conf.naming_conf.load_balance_strategy = "la"

        self.sdk_desc.default_variant_conf.rpc_parameter.compress_type = 0
        self.sdk_desc.default_variant_conf.rpc_parameter.package_size = 20
        self.sdk_desc.default_variant_conf.rpc_parameter.protocol = "baidu_std"
        self.sdk_desc.default_variant_conf.rpc_parameter.max_channel_per_request = 3

G
guru4elephant 已提交
74
        return self.sdk_desc
G
guru4elephant 已提交
75

G
guru4elephant 已提交
76 77 78 79 80 81

class Client(object):
    def __init__(self):
        self.feed_names_ = []
        self.fetch_names_ = []
        self.client_handle_ = None
82
        self.result_handle_ = None
M
MRXLT 已提交
83
        self.feed_shapes_ = {}
G
guru4elephant 已提交
84
        self.feed_types_ = {}
G
guru4elephant 已提交
85
        self.feed_names_to_idx_ = {}
M
MRXLT 已提交
86
        self.rpath()
M
MRXLT 已提交
87
        self.pid = os.getpid()
B
barrierye 已提交
88
        self.predictor_sdk_ = None
M
MRXLT 已提交
89 90 91 92 93 94 95

    def rpath(self):
        lib_path = os.path.dirname(paddle_serving_client.__file__)
        client_path = os.path.join(lib_path, 'serving_client.so')
        lib_path = os.path.join(lib_path, 'lib')
        os.popen('patchelf --set-rpath {} {}'.format(lib_path, client_path))

G
guru4elephant 已提交
96
    def load_client_config(self, path):
M
MRXLT 已提交
97
        from .serving_client import PredictorClient
98
        from .serving_client import PredictorRes
99 100 101 102 103
        model_conf = m_config.GeneralModelConfig()
        f = open(path, 'r')
        model_conf = google.protobuf.text_format.Merge(
            str(f.read()), model_conf)

G
guru4elephant 已提交
104 105 106 107
        # load configuraion here
        # get feed vars, fetch vars
        # get feed shapes, feed types
        # map feed names to index
108
        self.result_handle_ = PredictorRes()
G
guru4elephant 已提交
109 110
        self.client_handle_ = PredictorClient()
        self.client_handle_.init(path)
111
        read_env_flags = ["profile_client", "profile_server"]
M
MRXLT 已提交
112 113
        self.client_handle_.init_gflags([sys.argv[
            0]] + ["--tryfromenv=" + ",".join(read_env_flags)])
114 115
        self.feed_names_ = [var.alias_name for var in model_conf.feed_var]
        self.fetch_names_ = [var.alias_name for var in model_conf.fetch_var]
G
guru4elephant 已提交
116
        self.feed_names_to_idx_ = {}
G
guru4elephant 已提交
117 118
        self.fetch_names_to_type_ = {}
        self.fetch_names_to_idx_ = {}
M
MRXLT 已提交
119
        self.lod_tensor_set = set()
M
MRXLT 已提交
120
        self.feed_tensor_len = {}
121 122 123
        for i, var in enumerate(model_conf.feed_var):
            self.feed_names_to_idx_[var.alias_name] = i
            self.feed_types_[var.alias_name] = var.feed_type
M
MRXLT 已提交
124
            self.feed_shapes_[var.alias_name] = var.shape
M
MRXLT 已提交
125

M
MRXLT 已提交
126 127
            if var.is_lod_tensor:
                self.lod_tensor_set.add(var.alias_name)
M
MRXLT 已提交
128 129 130 131 132
            else:
                counter = 1
                for dim in self.feed_shapes_[var.alias_name]:
                    counter *= dim
                self.feed_tensor_len[var.alias_name] = counter
G
guru4elephant 已提交
133

G
guru4elephant 已提交
134 135 136 137
        for i, var in enumerate(model_conf.fetch_var):
            self.fetch_names_to_idx_[var.alias_name] = i
            self.fetch_names_to_type_[var.alias_name] = var.fetch_type

G
guru4elephant 已提交
138 139
        return

140
    def add_variant(self, tag, cluster, variant_weight):
B
barrierye 已提交
141 142
        if self.predictor_sdk_ is None:
            self.predictor_sdk_ = SDKConfig()
143 144 145
        self.predictor_sdk_.add_server_variant(tag, cluster,
                                               str(variant_weight))

B
barrierye 已提交
146
    def connect(self, endpoints=None):
G
guru4elephant 已提交
147 148 149
        # check whether current endpoint is available
        # init from client config
        # create predictor here
B
barrierye 已提交
150 151 152 153 154 155 156 157 158 159
        if endpoints is None:
            if self.predictor_sdk_ is None:
                raise SystemExit(
                    "You must set the endpoints parameter or use add_variant function to create a variant."
                )
        else:
            if self.predictor_sdk_ is None:
                self.add_variant('var1', endpoints, 100)
            else:
                print(
160
                    "parameter endpoints({}) will not take effect, because you use the add_variant function.".
B
barrierye 已提交
161
                    format(endpoints))
162
        sdk_desc = self.predictor_sdk_.gen_desc()
G
guru4elephant 已提交
163
        print(sdk_desc)
M
MRXLT 已提交
164 165
        self.client_handle_.create_predictor_by_desc(sdk_desc.SerializeToString(
        ))
G
guru4elephant 已提交
166 167 168 169 170 171 172

    def get_feed_names(self):
        return self.feed_names_

    def get_fetch_names(self):
        return self.fetch_names_

M
MRXLT 已提交
173 174 175 176
    def shape_check(self, feed, key):
        seq_shape = 1
        if key in self.lod_tensor_set:
            return
M
MRXLT 已提交
177
        if len(feed[key]) != self.feed_tensor_len[key]:
M
MRXLT 已提交
178 179 180
            raise SystemExit("The shape of feed tensor {} not match.".format(
                key))

181
    def predict(self, feed={}, fetch=[], need_variant_tag=False):
G
guru4elephant 已提交
182 183 184 185 186
        int_slot = []
        float_slot = []
        int_feed_names = []
        float_feed_names = []
        fetch_names = []
M
MRXLT 已提交
187

G
guru4elephant 已提交
188
        for key in feed:
M
MRXLT 已提交
189
            self.shape_check(feed, key)
G
guru4elephant 已提交
190 191 192 193
            if key not in self.feed_names_:
                continue
            if self.feed_types_[key] == int_type:
                int_feed_names.append(key)
G
guru4elephant 已提交
194
                int_slot.append(feed[key])
G
guru4elephant 已提交
195 196
            elif self.feed_types_[key] == float_type:
                float_feed_names.append(key)
G
guru4elephant 已提交
197
                float_slot.append(feed[key])
G
guru4elephant 已提交
198 199 200 201 202

        for key in fetch:
            if key in self.fetch_names_:
                fetch_names.append(key)

M
MRXLT 已提交
203 204
        ret = self.client_handle_.predict(float_slot, float_feed_names,
                                          int_slot, int_feed_names, fetch_names,
M
MRXLT 已提交
205
                                          self.result_handle_, self.pid)
M
MRXLT 已提交
206

G
guru4elephant 已提交
207
        result_map = {}
G
guru4elephant 已提交
208
        for i, name in enumerate(fetch_names):
G
guru4elephant 已提交
209
            if self.fetch_names_to_type_[name] == int_type:
M
MRXLT 已提交
210 211
                result_map[name] = self.result_handle_.get_int64_by_name(name)[
                    0]
G
guru4elephant 已提交
212
            elif self.fetch_names_to_type_[name] == float_type:
M
MRXLT 已提交
213 214
                result_map[name] = self.result_handle_.get_float_by_name(name)[
                    0]
M
MRXLT 已提交
215

216 217 218 219
        return [
            result_map,
            self.result_handle_.variant_tag(),
        ] if need_variant_tag else result_map
G
guru4elephant 已提交
220

221
    def batch_predict(self, feed_batch=[], fetch=[], need_variant_tag=False):
M
MRXLT 已提交
222 223 224 225 226
        int_slot_batch = []
        float_slot_batch = []
        int_feed_names = []
        float_feed_names = []
        fetch_names = []
M
MRXLT 已提交
227
        counter = 0
M
MRXLT 已提交
228
        batch_size = len(feed_batch)
M
MRXLT 已提交
229 230 231 232 233 234 235
        for feed in feed_batch:
            int_slot = []
            float_slot = []
            for key in feed:
                if key not in self.feed_names_:
                    continue
                if self.feed_types_[key] == int_type:
M
MRXLT 已提交
236 237
                    if counter == 0:
                        int_feed_names.append(key)
M
MRXLT 已提交
238 239
                    int_slot.append(feed[key])
                elif self.feed_types_[key] == float_type:
M
MRXLT 已提交
240 241
                    if counter == 0:
                        float_feed_names.append(key)
M
MRXLT 已提交
242
                    float_slot.append(feed[key])
M
MRXLT 已提交
243
            counter += 1
M
MRXLT 已提交
244 245 246 247 248 249 250
            int_slot_batch.append(int_slot)
            float_slot_batch.append(float_slot)

        for key in fetch:
            if key in self.fetch_names_:
                fetch_names.append(key)

M
MRXLT 已提交
251
        result_batch = self.result_handle_
M
MRXLT 已提交
252
        res = self.client_handle_.batch_predict(
M
MRXLT 已提交
253
            float_slot_batch, float_feed_names, int_slot_batch, int_feed_names,
M
MRXLT 已提交
254
            fetch_names, result_batch, self.pid)
M
MRXLT 已提交
255 256

        result_map_batch = []
M
MRXLT 已提交
257 258 259 260 261 262 263 264 265 266 267
        result_map = {}
        for i, name in enumerate(fetch_names):
            if self.fetch_names_to_type_[name] == int_type:
                result_map[name] = result_batch.get_int64_by_name(name)
            elif self.fetch_names_to_type_[name] == float_type:
                result_map[name] = result_batch.get_float_by_name(name)
        for i in range(batch_size):
            single_result = {}
            for key in result_map:
                single_result[key] = result_map[key][i]
            result_map_batch.append(single_result)
M
MRXLT 已提交
268

269 270 271 272
        return [
            result_map,
            self.result_handle_.variant_tag(),
        ] if need_variant_tag else result_map
273 274 275

    def release(self):
        self.client_handle_.destroy_predictor()
G
guru4elephant 已提交
276
        self.client_handle_ = None