general_model.cpp 23.0 KB
Newer Older
G
guru4elephant 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

G
guru4elephant 已提交
15
#include "core/general-client/include/general_model.h"
M
MRXLT 已提交
16
#include <fstream>
G
guru4elephant 已提交
17 18 19
#include "core/sdk-cpp/builtin_format.pb.h"
#include "core/sdk-cpp/include/common.h"
#include "core/sdk-cpp/include/predictor_sdk.h"
G
guru4elephant 已提交
20
#include "core/util/include/timer.h"
G
guru4elephant 已提交
21

22 23 24
DEFINE_bool(profile_client, false, "");
DEFINE_bool(profile_server, false, "");

G
guru4elephant 已提交
25
using baidu::paddle_serving::Timer;
G
guru4elephant 已提交
26 27 28 29 30 31
using baidu::paddle_serving::predictor::general_model::Request;
using baidu::paddle_serving::predictor::general_model::Response;
using baidu::paddle_serving::predictor::general_model::Tensor;
using baidu::paddle_serving::predictor::general_model::FeedInst;
using baidu::paddle_serving::predictor::general_model::FetchInst;

32
std::once_flag gflags_init_flag;
M
MRXLT 已提交
33
namespace py = pybind11;
34

G
guru4elephant 已提交
35 36 37
namespace baidu {
namespace paddle_serving {
namespace general_model {
38
using configure::GeneralModelConfig;
G
guru4elephant 已提交
39

40 41
void PredictorClient::init_gflags(std::vector<std::string> argv) {
  std::call_once(gflags_init_flag, [&]() {
M
MRXLT 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54
    FLAGS_logtostderr = true;
    argv.insert(argv.begin(), "dummy");
    int argc = argv.size();
    char **arr = new char *[argv.size()];
    std::string line;
    for (size_t i = 0; i < argv.size(); i++) {
      arr[i] = &argv[i][0];
      line += argv[i];
      line += ' ';
    }
    google::ParseCommandLineFlags(&argc, &arr, true);
    VLOG(2) << "Init commandline: " << line;
  });
55 56
}

57 58 59
int PredictorClient::init(const std::string &conf_file) {
  try {
    GeneralModelConfig model_config;
M
MRXLT 已提交
60
    if (configure::read_proto_conf(conf_file.c_str(), &model_config) != 0) {
61 62 63 64
      LOG(ERROR) << "Failed to load general model config"
                 << ", file path: " << conf_file;
      return -1;
    }
65

66 67 68 69 70
    _feed_name_to_idx.clear();
    _fetch_name_to_idx.clear();
    _shape.clear();
    int feed_var_num = model_config.feed_var_size();
    int fetch_var_num = model_config.fetch_var_size();
71 72
    VLOG(2) << "feed var num: " << feed_var_num
            << "fetch_var_num: " << fetch_var_num;
73 74
    for (int i = 0; i < feed_var_num; ++i) {
      _feed_name_to_idx[model_config.feed_var(i).alias_name()] = i;
75 76
      VLOG(2) << "feed alias name: " << model_config.feed_var(i).alias_name()
              << " index: " << i;
77
      std::vector<int> tmp_feed_shape;
M
MRXLT 已提交
78 79
      VLOG(2) << "feed"
              << "[" << i << "] shape:";
80 81
      for (int j = 0; j < model_config.feed_var(i).shape_size(); ++j) {
        tmp_feed_shape.push_back(model_config.feed_var(i).shape(j));
M
MRXLT 已提交
82
        VLOG(2) << "shape[" << j << "]: " << model_config.feed_var(i).shape(j);
83 84
      }
      _type.push_back(model_config.feed_var(i).feed_type());
M
MRXLT 已提交
85 86 87
      VLOG(2) << "feed"
              << "[" << i
              << "] feed type: " << model_config.feed_var(i).feed_type();
88
      _shape.push_back(tmp_feed_shape);
G
guru4elephant 已提交
89 90
    }

91 92
    for (int i = 0; i < fetch_var_num; ++i) {
      _fetch_name_to_idx[model_config.fetch_var(i).alias_name()] = i;
M
MRXLT 已提交
93 94
      VLOG(2) << "fetch [" << i << "]"
              << " alias name: " << model_config.fetch_var(i).alias_name();
95 96
      _fetch_name_to_var_name[model_config.fetch_var(i).alias_name()] =
          model_config.fetch_var(i).name();
97 98
      _fetch_name_to_type[model_config.fetch_var(i).alias_name()] =
          model_config.fetch_var(i).fetch_type();
99
    }
M
MRXLT 已提交
100
  } catch (std::exception &e) {
101 102
    LOG(ERROR) << "Failed load general model config" << e.what();
    return -1;
G
guru4elephant 已提交
103
  }
104
  return 0;
G
guru4elephant 已提交
105 106
}

M
MRXLT 已提交
107 108
void PredictorClient::set_predictor_conf(const std::string &conf_path,
                                         const std::string &conf_file) {
G
guru4elephant 已提交
109 110 111
  _predictor_path = conf_path;
  _predictor_conf = conf_file;
}
112 113 114
int PredictorClient::destroy_predictor() {
  _api.thrd_finalize();
  _api.destroy();
B
barrierye 已提交
115
  return 0;
116 117
}

M
MRXLT 已提交
118
int PredictorClient::create_predictor_by_desc(const std::string &sdk_desc) {
G
guru4elephant 已提交
119 120 121 122
  if (_api.create(sdk_desc) != 0) {
    LOG(ERROR) << "Predictor Creation Failed";
    return -1;
  }
D
dongdaxiang 已提交
123
  // _api.thrd_initialize();
B
barrierye 已提交
124
  return 0;
G
guru4elephant 已提交
125 126
}

G
guru4elephant 已提交
127
int PredictorClient::create_predictor() {
G
guru4elephant 已提交
128 129
  VLOG(2) << "Predictor path: " << _predictor_path
          << " predictor file: " << _predictor_conf;
G
guru4elephant 已提交
130 131 132 133
  if (_api.create(_predictor_path.c_str(), _predictor_conf.c_str()) != 0) {
    LOG(ERROR) << "Predictor Creation Failed";
    return -1;
  }
D
dongdaxiang 已提交
134
  // _api.thrd_initialize();
B
barrierye 已提交
135
  return 0;
G
guru4elephant 已提交
136 137
}

M
MRXLT 已提交
138
int PredictorClient::batch_predict(
M
MRXLT 已提交
139 140
    const std::vector<std::vector<std::vector<float>>> &float_feed_batch,
    const std::vector<std::string> &float_feed_name,
D
dongdaxiang 已提交
141
    const std::vector<std::vector<int>> &float_shape,
M
MRXLT 已提交
142 143
    const std::vector<std::vector<std::vector<int64_t>>> &int_feed_batch,
    const std::vector<std::string> &int_feed_name,
D
dongdaxiang 已提交
144
    const std::vector<std::vector<int>> &int_shape,
M
MRXLT 已提交
145
    const std::vector<std::string> &fetch_name,
M
MRXLT 已提交
146
    PredictorRes &predict_res_batch,
M
MRXLT 已提交
147
    const int &pid) {
M
MRXLT 已提交
148
  int batch_size = std::max(float_feed_batch.size(), int_feed_batch.size());
M
MRXLT 已提交
149

B
barrierye 已提交
150
  predict_res_batch.clear();
M
MRXLT 已提交
151 152 153
  Timer timeline;
  int64_t preprocess_start = timeline.TimeStampUS();

M
MRXLT 已提交
154 155
  int fetch_name_num = fetch_name.size();

D
dongdaxiang 已提交
156
  _api.thrd_initialize();
157 158 159
  std::string variant_tag;
  _predictor = _api.fetch_predictor("general_model", &variant_tag);
  predict_res_batch.set_variant_tag(variant_tag);
160 161 162
  VLOG(2) << "fetch general model predictor done.";
  VLOG(2) << "float feed name size: " << float_feed_name.size();
  VLOG(2) << "int feed name size: " << int_feed_name.size();
M
bug fix  
MRXLT 已提交
163
  VLOG(2) << "max body size : " << brpc::fLU64::FLAGS_max_body_size;
M
MRXLT 已提交
164
  Request req;
M
MRXLT 已提交
165
  for (auto &name : fetch_name) {
166 167
    req.add_fetch_var_names(name);
  }
B
barrierye 已提交
168

M
MRXLT 已提交
169
  for (int bi = 0; bi < batch_size; bi++) {
170
    VLOG(2) << "prepare batch " << bi;
M
MRXLT 已提交
171 172 173 174 175 176 177 178 179 180 181
    std::vector<Tensor *> tensor_vec;
    FeedInst *inst = req.add_insts();
    std::vector<std::vector<float>> float_feed = float_feed_batch[bi];
    std::vector<std::vector<int64_t>> int_feed = int_feed_batch[bi];
    for (auto &name : float_feed_name) {
      tensor_vec.push_back(inst->add_tensor_array());
    }

    for (auto &name : int_feed_name) {
      tensor_vec.push_back(inst->add_tensor_array());
    }
182

M
bug fix  
MRXLT 已提交
183
    VLOG(2) << "batch [" << bi << "] int_feed_name and float_feed_name "
184
            << "prepared";
M
MRXLT 已提交
185
    int vec_idx = 0;
M
bug fix  
MRXLT 已提交
186 187
    VLOG(2) << "tensor_vec size " << tensor_vec.size() << " float shape "
            << float_shape.size();
M
MRXLT 已提交
188 189 190
    for (auto &name : float_feed_name) {
      int idx = _feed_name_to_idx[name];
      Tensor *tensor = tensor_vec[idx];
M
bug fix  
MRXLT 已提交
191 192
      VLOG(2) << "prepare float feed " << name << " shape size "
              << float_shape[vec_idx].size();
B
barrierye 已提交
193
      for (uint32_t j = 0; j < float_shape[vec_idx].size(); ++j) {
194
        tensor->add_shape(float_shape[vec_idx][j]);
M
MRXLT 已提交
195 196
      }
      tensor->set_elem_type(1);
B
barrierye 已提交
197
      for (uint32_t j = 0; j < float_feed[vec_idx].size(); ++j) {
198
        tensor->add_float_data(float_feed[vec_idx][j]);
M
MRXLT 已提交
199 200 201 202
      }
      vec_idx++;
    }

M
MRXLT 已提交
203 204
    VLOG(2) << "batch [" << bi << "] "
            << "float feed value prepared";
205

M
MRXLT 已提交
206 207 208 209
    vec_idx = 0;
    for (auto &name : int_feed_name) {
      int idx = _feed_name_to_idx[name];
      Tensor *tensor = tensor_vec[idx];
M
MRXLT 已提交
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
      if (_type[idx] == 0) {
        VLOG(2) << "prepare int64 feed " << name << " shape size "
                << int_shape[vec_idx].size();
        VLOG(3) << "feed var name " << name << " index " << vec_idx
                << "first data " << int_feed[vec_idx][0];
        for (uint32_t j = 0; j < int_feed[vec_idx].size(); ++j) {
          tensor->add_int64_data(int_feed[vec_idx][j]);
        }
      } else if (_type[idx] == 2) {
        VLOG(2) << "prepare int32 feed " << name << " shape size "
                << int_shape[vec_idx].size();
        VLOG(3) << "feed var name " << name << " index " << vec_idx
                << "first data " << int32_t(int_feed[vec_idx][0]);
        for (uint32_t j = 0; j < int_feed[vec_idx].size(); ++j) {
          tensor->add_int_data(int32_t(int_feed[vec_idx][j]));
        }
      }

B
barrierye 已提交
228
      for (uint32_t j = 0; j < int_shape[vec_idx].size(); ++j) {
229
        tensor->add_shape(int_shape[vec_idx][j]);
M
MRXLT 已提交
230
      }
M
MRXLT 已提交
231
      tensor->set_elem_type(_type[idx]);
M
MRXLT 已提交
232 233
      vec_idx++;
    }
234

M
MRXLT 已提交
235
    VLOG(2) << "batch [" << bi << "] "
M
MRXLT 已提交
236
            << "int feed value prepared";
M
MRXLT 已提交
237 238
  }

M
MRXLT 已提交
239 240 241 242
  int64_t preprocess_end = timeline.TimeStampUS();

  int64_t client_infer_start = timeline.TimeStampUS();

M
MRXLT 已提交
243 244
  Response res;

M
MRXLT 已提交
245 246 247 248 249 250 251 252 253 254
  int64_t client_infer_end = 0;
  int64_t postprocess_start = 0;
  int64_t postprocess_end = 0;

  if (FLAGS_profile_client) {
    if (FLAGS_profile_server) {
      req.set_profile_server(true);
    }
  }

M
MRXLT 已提交
255 256 257
  res.Clear();
  if (_predictor->inference(&req, &res) != 0) {
    LOG(ERROR) << "failed call predictor with req: " << req.ShortDebugString();
B
barrierye 已提交
258
    _api.thrd_clear();
D
dongdaxiang 已提交
259
    return -1;
M
MRXLT 已提交
260
  } else {
M
MRXLT 已提交
261 262
    client_infer_end = timeline.TimeStampUS();
    postprocess_start = client_infer_end;
D
dongdaxiang 已提交
263
    VLOG(2) << "get model output num";
B
barrierye 已提交
264
    uint32_t model_num = res.outputs_size();
D
dongdaxiang 已提交
265
    VLOG(2) << "model num: " << model_num;
M
MRXLT 已提交
266 267 268 269 270 271
    for (uint32_t m_idx = 0; m_idx < model_num; ++m_idx) {
      VLOG(2) << "process model output index: " << m_idx;
      auto output = res.outputs(m_idx);
      ModelRes model;
      model.set_engine_name(output.engine_name());

M
MRXLT 已提交
272 273
      int idx = 0;

M
MRXLT 已提交
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
      for (auto &name : fetch_name) {
        // int idx = _fetch_name_to_idx[name];
        int shape_size = output.insts(0).tensor_array(idx).shape_size();
        VLOG(2) << "fetch var " << name << " index " << idx << " shape size "
                << shape_size;
        model._shape_map[name].resize(shape_size);
        for (int i = 0; i < shape_size; ++i) {
          model._shape_map[name][i] =
              output.insts(0).tensor_array(idx).shape(i);
        }
        int lod_size = output.insts(0).tensor_array(idx).lod_size();
        if (lod_size > 0) {
          model._lod_map[name].resize(lod_size);
          for (int i = 0; i < lod_size; ++i) {
            model._lod_map[name][i] = output.insts(0).tensor_array(idx).lod(i);
          }
        }
        idx += 1;
      }

M
MRXLT 已提交
294
      idx = 0;
M
MRXLT 已提交
295 296 297
      for (auto &name : fetch_name) {
        // int idx = _fetch_name_to_idx[name];
        if (_fetch_name_to_type[name] == 0) {
M
MRXLT 已提交
298
          VLOG(2) << "ferch var " << name << "type int64";
M
MRXLT 已提交
299
          int size = output.insts(0).tensor_array(idx).int64_data_size();
W
WangXi 已提交
300 301 302
          model._int64_value_map[name] = std::vector<int64_t>(
              output.insts(0).tensor_array(idx).int64_data().begin(),
              output.insts(0).tensor_array(idx).int64_data().begin() + size);
M
MRXLT 已提交
303
        } else if (_fetch_name_to_type[name] == 1) {
M
MRXLT 已提交
304 305
          VLOG(2) << "fetch var " << name << "type float";
          int size = output.insts(0).tensor_array(idx).float_data_size();
W
WangXi 已提交
306 307 308
          model._float_value_map[name] = std::vector<float>(
              output.insts(0).tensor_array(idx).float_data().begin(),
              output.insts(0).tensor_array(idx).float_data().begin() + size);
M
MRXLT 已提交
309
        } else if (_fetch_name_to_type[name] == 2) {
M
MRXLT 已提交
310 311 312 313 314
          VLOG(2) << "fetch var " << name << "type int32";
          int size = output.insts(0).tensor_array(idx).int_data_size();
          model._int32_value_map[name] = std::vector<int32_t>(
              output.insts(0).tensor_array(idx).int_data().begin(),
              output.insts(0).tensor_array(idx).int_data().begin() + size);
M
MRXLT 已提交
315
        }
M
MRXLT 已提交
316

M
MRXLT 已提交
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
        idx += 1;
      }
      predict_res_batch.add_model_res(std::move(model));
    }
    postprocess_end = timeline.TimeStampUS();
  }

  if (FLAGS_profile_client) {
    std::ostringstream oss;
    oss << "PROFILE\t"
        << "pid:" << pid << "\t"
        << "prepro_0:" << preprocess_start << " "
        << "prepro_1:" << preprocess_end << " "
        << "client_infer_0:" << client_infer_start << " "
        << "client_infer_1:" << client_infer_end << " ";
    if (FLAGS_profile_server) {
      int op_num = res.profile_time_size() / 2;
      for (int i = 0; i < op_num; ++i) {
        oss << "op" << i << "_0:" << res.profile_time(i * 2) << " ";
        oss << "op" << i << "_1:" << res.profile_time(i * 2 + 1) << " ";
      }
    }

    oss << "postpro_0:" << postprocess_start << " ";
    oss << "postpro_1:" << postprocess_end;

    fprintf(stderr, "%s\n", oss.str().c_str());
  }

  _api.thrd_clear();
  return 0;
}

int PredictorClient::numpy_predict(
    const std::vector<std::vector<py::array_t<float>>> &float_feed_batch,
    const std::vector<std::string> &float_feed_name,
    const std::vector<std::vector<int>> &float_shape,
    const std::vector<std::vector<py::array_t<int64_t>>> &int_feed_batch,
    const std::vector<std::string> &int_feed_name,
    const std::vector<std::vector<int>> &int_shape,
    const std::vector<std::string> &fetch_name,
    PredictorRes &predict_res_batch,
    const int &pid) {
  int batch_size = std::max(float_feed_batch.size(), int_feed_batch.size());
D
dongdaxiang 已提交
361
  VLOG(2) << "batch size: " << batch_size;
M
MRXLT 已提交
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
  predict_res_batch.clear();
  Timer timeline;
  int64_t preprocess_start = timeline.TimeStampUS();

  int fetch_name_num = fetch_name.size();

  _api.thrd_initialize();
  std::string variant_tag;
  _predictor = _api.fetch_predictor("general_model", &variant_tag);
  predict_res_batch.set_variant_tag(variant_tag);
  VLOG(2) << "fetch general model predictor done.";
  VLOG(2) << "float feed name size: " << float_feed_name.size();
  VLOG(2) << "int feed name size: " << int_feed_name.size();
  VLOG(2) << "max body size : " << brpc::fLU64::FLAGS_max_body_size;
  Request req;
  for (auto &name : fetch_name) {
    req.add_fetch_var_names(name);
  }

  for (int bi = 0; bi < batch_size; bi++) {
    VLOG(2) << "prepare batch " << bi;
    std::vector<Tensor *> tensor_vec;
    FeedInst *inst = req.add_insts();
    std::vector<py::array_t<float>> float_feed = float_feed_batch[bi];
    std::vector<py::array_t<int64_t>> int_feed = int_feed_batch[bi];
    for (auto &name : float_feed_name) {
      tensor_vec.push_back(inst->add_tensor_array());
    }

    for (auto &name : int_feed_name) {
      tensor_vec.push_back(inst->add_tensor_array());
    }

    VLOG(2) << "batch [" << bi << "] int_feed_name and float_feed_name "
            << "prepared";

    int vec_idx = 0;
    VLOG(2) << "tensor_vec size " << tensor_vec.size() << " float shape "
            << float_shape.size();
    for (auto &name : float_feed_name) {
      int idx = _feed_name_to_idx[name];
      Tensor *tensor = tensor_vec[idx];
      VLOG(2) << "prepare float feed " << name << " shape size "
              << float_shape[vec_idx].size();
      for (uint32_t j = 0; j < float_shape[vec_idx].size(); ++j) {
        tensor->add_shape(float_shape[vec_idx][j]);
      }
      tensor->set_elem_type(1);
      const int float_shape_size = float_shape[vec_idx].size();
      switch (float_shape_size) {
M
bug fix  
MRXLT 已提交
412 413 414 415 416 417 418 419 420 421 422 423 424
        case 4: {
          auto float_array = float_feed[vec_idx].unchecked<4>();
          for (ssize_t i = 0; i < float_array.shape(0); i++) {
            for (ssize_t j = 0; j < float_array.shape(1); j++) {
              for (ssize_t k = 0; k < float_array.shape(2); k++) {
                for (ssize_t l = 0; l < float_array.shape(3); l++) {
                  tensor->add_float_data(float_array(i, j, k, l));
                }
              }
            }
          }
          break;
        }
M
MRXLT 已提交
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
        case 3: {
          auto float_array = float_feed[vec_idx].unchecked<3>();
          for (ssize_t i = 0; i < float_array.shape(0); i++) {
            for (ssize_t j = 0; j < float_array.shape(1); j++) {
              for (ssize_t k = 0; k < float_array.shape(2); k++) {
                tensor->add_float_data(float_array(i, j, k));
              }
            }
          }
          break;
        }
        case 2: {
          auto float_array = float_feed[vec_idx].unchecked<2>();
          for (ssize_t i = 0; i < float_array.shape(0); i++) {
            for (ssize_t j = 0; j < float_array.shape(1); j++) {
              tensor->add_float_data(float_array(i, j));
            }
          }
          break;
        }
M
bug fix  
MRXLT 已提交
445 446 447 448 449 450 451
        case 1: {
          auto float_array = float_feed[vec_idx].unchecked<1>();
          for (ssize_t i = 0; i < float_array.shape(0); i++) {
            tensor->add_float_data(float_array(i));
          }
          break;
        }
M
MRXLT 已提交
452 453 454 455 456 457 458 459 460 461 462
      }
      vec_idx++;
    }

    VLOG(2) << "batch [" << bi << "] "
            << "float feed value prepared";

    vec_idx = 0;
    for (auto &name : int_feed_name) {
      int idx = _feed_name_to_idx[name];
      Tensor *tensor = tensor_vec[idx];
M
MRXLT 已提交
463

M
MRXLT 已提交
464 465 466
      for (uint32_t j = 0; j < int_shape[vec_idx].size(); ++j) {
        tensor->add_shape(int_shape[vec_idx][j]);
      }
M
MRXLT 已提交
467 468 469 470 471 472 473 474 475
      tensor->set_elem_type(_type[idx]);

      if (_type[idx] == 0) {
        VLOG(2) << "prepare int feed " << name << " shape size "
                << int_shape[vec_idx].size();
      } else {
        VLOG(2) << "prepare int32 feed " << name << " shape size "
                << int_shape[vec_idx].size();
      }
M
MRXLT 已提交
476 477 478 479

      const int int_shape_size = int_shape[vec_idx].size();
      switch (int_shape_size) {
        case 4: {
M
bug fix  
MRXLT 已提交
480
          auto int_array = int_feed[vec_idx].unchecked<4>();
M
MRXLT 已提交
481 482 483 484
          for (ssize_t i = 0; i < int_array.shape(0); i++) {
            for (ssize_t j = 0; j < int_array.shape(1); j++) {
              for (ssize_t k = 0; k < int_array.shape(2); k++) {
                for (ssize_t l = 0; k < int_array.shape(3); l++) {
M
MRXLT 已提交
485 486 487 488 489
                  if (_type[idx] == 0) {
                    tensor->add_int64_data(int_array(i, j, k, l));
                  } else {
                    tensor->add_int_data(int_array(i, j, k, l));
                  }
M
MRXLT 已提交
490 491 492 493 494 495 496 497 498 499 500
                }
              }
            }
          }
          break;
        }
        case 3: {
          auto int_array = int_feed[vec_idx].unchecked<3>();
          for (ssize_t i = 0; i < int_array.shape(0); i++) {
            for (ssize_t j = 0; j < int_array.shape(1); j++) {
              for (ssize_t k = 0; k < int_array.shape(2); k++) {
M
MRXLT 已提交
501 502 503 504 505
                if (_type[idx] == 0) {
                  tensor->add_int64_data(int_array(i, j, k));
                } else {
                  tensor->add_int_data(int_array(i, j, k));
                }
M
MRXLT 已提交
506 507 508 509 510 511 512 513 514
              }
            }
          }
          break;
        }
        case 2: {
          auto int_array = int_feed[vec_idx].unchecked<2>();
          for (ssize_t i = 0; i < int_array.shape(0); i++) {
            for (ssize_t j = 0; j < int_array.shape(1); j++) {
M
MRXLT 已提交
515 516 517 518 519
              if (_type[idx] == 0) {
                tensor->add_int64_data(int_array(i, j));
              } else {
                tensor->add_int_data(int_array(i, j));
              }
M
MRXLT 已提交
520 521 522 523 524
            }
          }
          break;
        }
        case 1: {
M
bug fix  
MRXLT 已提交
525
          auto int_array = int_feed[vec_idx].unchecked<1>();
M
MRXLT 已提交
526
          for (ssize_t i = 0; i < int_array.shape(0); i++) {
M
MRXLT 已提交
527 528 529 530 531
            if (_type[idx] == 0) {
              tensor->add_int64_data(int_array(i));
            } else {
              tensor->add_int_data(int_array(i));
            }
M
MRXLT 已提交
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
          }
          break;
        }
      }
      vec_idx++;
    }

    VLOG(2) << "batch [" << bi << "] "
            << "int feed value prepared";
  }

  int64_t preprocess_end = timeline.TimeStampUS();

  int64_t client_infer_start = timeline.TimeStampUS();

  Response res;

  int64_t client_infer_end = 0;
  int64_t postprocess_start = 0;
  int64_t postprocess_end = 0;

  if (FLAGS_profile_client) {
    if (FLAGS_profile_server) {
      req.set_profile_server(true);
    }
  }

  res.Clear();
  if (_predictor->inference(&req, &res) != 0) {
    LOG(ERROR) << "failed call predictor with req: " << req.ShortDebugString();
    return -1;
  } else {
    client_infer_end = timeline.TimeStampUS();
    postprocess_start = client_infer_end;
    VLOG(2) << "get model output num";
    uint32_t model_num = res.outputs_size();
    VLOG(2) << "model num: " << model_num;
B
barrierye 已提交
569 570 571
    for (uint32_t m_idx = 0; m_idx < model_num; ++m_idx) {
      VLOG(2) << "process model output index: " << m_idx;
      auto output = res.outputs(m_idx);
B
barrierye 已提交
572 573
      ModelRes model;
      model.set_engine_name(output.engine_name());
B
barrierye 已提交
574

M
MRXLT 已提交
575
      int idx = 0;
M
MRXLT 已提交
576
      for (auto &name : fetch_name) {
B
barrierye 已提交
577
        // int idx = _fetch_name_to_idx[name];
B
barrierye 已提交
578
        int shape_size = output.insts(0).tensor_array(idx).shape_size();
B
barrierye 已提交
579 580
        VLOG(2) << "fetch var " << name << " index " << idx << " shape size "
                << shape_size;
B
barrierye 已提交
581 582 583 584 585 586 587 588 589 590 591
        model._shape_map[name].resize(shape_size);
        for (int i = 0; i < shape_size; ++i) {
          model._shape_map[name][i] =
              output.insts(0).tensor_array(idx).shape(i);
        }
        int lod_size = output.insts(0).tensor_array(idx).lod_size();
        if (lod_size > 0) {
          model._lod_map[name].resize(lod_size);
          for (int i = 0; i < lod_size; ++i) {
            model._lod_map[name][i] = output.insts(0).tensor_array(idx).lod(i);
          }
592
        }
B
barrierye 已提交
593
        idx += 1;
B
barrierye 已提交
594
      }
595

M
MRXLT 已提交
596 597
      idx = 0;

B
barrierye 已提交
598
      for (auto &name : fetch_name) {
B
barrierye 已提交
599
        // int idx = _fetch_name_to_idx[name];
B
barrierye 已提交
600
        if (_fetch_name_to_type[name] == 0) {
M
MRXLT 已提交
601
          VLOG(2) << "ferch var " << name << "type int64";
B
barrierye 已提交
602
          int size = output.insts(0).tensor_array(idx).int64_data_size();
W
WangXi 已提交
603 604 605
          model._int64_value_map[name] = std::vector<int64_t>(
              output.insts(0).tensor_array(idx).int64_data().begin(),
              output.insts(0).tensor_array(idx).int64_data().begin() + size);
M
MRXLT 已提交
606
        } else if (_fetch_name_to_type[name] == 1) {
B
barrierye 已提交
607
          VLOG(2) << "fetch var " << name << "type float";
B
barrierye 已提交
608
          int size = output.insts(0).tensor_array(idx).float_data_size();
W
WangXi 已提交
609 610 611
          model._float_value_map[name] = std::vector<float>(
              output.insts(0).tensor_array(idx).float_data().begin(),
              output.insts(0).tensor_array(idx).float_data().begin() + size);
M
MRXLT 已提交
612 613 614
        } else if (_fetch_name_to_type[name] == 2) {
          VLOG(2) << "fetch var " << name << "type int32";
          int size = output.insts(0).tensor_array(idx).int_data_size();
M
MRXLT 已提交
615 616 617
          model._int32_value_map[name] = std::vector<int32_t>(
              output.insts(0).tensor_array(idx).int_data().begin(),
              output.insts(0).tensor_array(idx).int_data().begin() + size);
M
MRXLT 已提交
618
        }
B
barrierye 已提交
619
        idx += 1;
M
MRXLT 已提交
620
      }
B
barrierye 已提交
621
      predict_res_batch.add_model_res(std::move(model));
M
MRXLT 已提交
622
    }
623
    postprocess_end = timeline.TimeStampUS();
M
MRXLT 已提交
624 625
  }

M
MRXLT 已提交
626 627 628
  if (FLAGS_profile_client) {
    std::ostringstream oss;
    oss << "PROFILE\t"
M
MRXLT 已提交
629
        << "pid:" << pid << "\t"
M
MRXLT 已提交
630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
        << "prepro_0:" << preprocess_start << " "
        << "prepro_1:" << preprocess_end << " "
        << "client_infer_0:" << client_infer_start << " "
        << "client_infer_1:" << client_infer_end << " ";
    if (FLAGS_profile_server) {
      int op_num = res.profile_time_size() / 2;
      for (int i = 0; i < op_num; ++i) {
        oss << "op" << i << "_0:" << res.profile_time(i * 2) << " ";
        oss << "op" << i << "_1:" << res.profile_time(i * 2 + 1) << " ";
      }
    }

    oss << "postpro_0:" << postprocess_start << " ";
    oss << "postpro_1:" << postprocess_end;

    fprintf(stderr, "%s\n", oss.str().c_str());
  }
D
dongdaxiang 已提交
647 648

  _api.thrd_clear();
M
MRXLT 已提交
649
  return 0;
M
MRXLT 已提交
650
}
G
guru4elephant 已提交
651 652 653
}  // namespace general_model
}  // namespace paddle_serving
}  // namespace baidu