general_model.cpp 11.6 KB
Newer Older
G
guru4elephant 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

G
guru4elephant 已提交
15
#include "core/general-client/include/general_model.h"
M
MRXLT 已提交
16
#include <fstream>
G
guru4elephant 已提交
17 18 19
#include "core/sdk-cpp/builtin_format.pb.h"
#include "core/sdk-cpp/include/common.h"
#include "core/sdk-cpp/include/predictor_sdk.h"
G
guru4elephant 已提交
20
#include "core/util/include/timer.h"
G
guru4elephant 已提交
21

22 23 24
DEFINE_bool(profile_client, false, "");
DEFINE_bool(profile_server, false, "");

G
guru4elephant 已提交
25
using baidu::paddle_serving::Timer;
G
guru4elephant 已提交
26 27 28 29 30 31
using baidu::paddle_serving::predictor::general_model::Request;
using baidu::paddle_serving::predictor::general_model::Response;
using baidu::paddle_serving::predictor::general_model::Tensor;
using baidu::paddle_serving::predictor::general_model::FeedInst;
using baidu::paddle_serving::predictor::general_model::FetchInst;

32 33
std::once_flag gflags_init_flag;

G
guru4elephant 已提交
34 35 36
namespace baidu {
namespace paddle_serving {
namespace general_model {
37
using configure::GeneralModelConfig;
G
guru4elephant 已提交
38

39 40
void PredictorClient::init_gflags(std::vector<std::string> argv) {
  std::call_once(gflags_init_flag, [&]() {
M
MRXLT 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53
    FLAGS_logtostderr = true;
    argv.insert(argv.begin(), "dummy");
    int argc = argv.size();
    char **arr = new char *[argv.size()];
    std::string line;
    for (size_t i = 0; i < argv.size(); i++) {
      arr[i] = &argv[i][0];
      line += argv[i];
      line += ' ';
    }
    google::ParseCommandLineFlags(&argc, &arr, true);
    VLOG(2) << "Init commandline: " << line;
  });
54 55
}

56 57 58
int PredictorClient::init(const std::string &conf_file) {
  try {
    GeneralModelConfig model_config;
M
MRXLT 已提交
59
    if (configure::read_proto_conf(conf_file.c_str(), &model_config) != 0) {
60 61 62 63
      LOG(ERROR) << "Failed to load general model config"
                 << ", file path: " << conf_file;
      return -1;
    }
64

65 66 67 68 69
    _feed_name_to_idx.clear();
    _fetch_name_to_idx.clear();
    _shape.clear();
    int feed_var_num = model_config.feed_var_size();
    int fetch_var_num = model_config.fetch_var_size();
70 71
    VLOG(2) << "feed var num: " << feed_var_num
            << "fetch_var_num: " << fetch_var_num;
72 73
    for (int i = 0; i < feed_var_num; ++i) {
      _feed_name_to_idx[model_config.feed_var(i).alias_name()] = i;
74 75
      VLOG(2) << "feed alias name: " << model_config.feed_var(i).alias_name()
              << " index: " << i;
76
      std::vector<int> tmp_feed_shape;
M
MRXLT 已提交
77 78
      VLOG(2) << "feed"
              << "[" << i << "] shape:";
79 80
      for (int j = 0; j < model_config.feed_var(i).shape_size(); ++j) {
        tmp_feed_shape.push_back(model_config.feed_var(i).shape(j));
M
MRXLT 已提交
81
        VLOG(2) << "shape[" << j << "]: " << model_config.feed_var(i).shape(j);
82 83
      }
      _type.push_back(model_config.feed_var(i).feed_type());
M
MRXLT 已提交
84 85 86
      VLOG(2) << "feed"
              << "[" << i
              << "] feed type: " << model_config.feed_var(i).feed_type();
87
      _shape.push_back(tmp_feed_shape);
G
guru4elephant 已提交
88 89
    }

90 91
    for (int i = 0; i < fetch_var_num; ++i) {
      _fetch_name_to_idx[model_config.fetch_var(i).alias_name()] = i;
M
MRXLT 已提交
92 93
      VLOG(2) << "fetch [" << i << "]"
              << " alias name: " << model_config.fetch_var(i).alias_name();
94 95
      _fetch_name_to_var_name[model_config.fetch_var(i).alias_name()] =
          model_config.fetch_var(i).name();
96 97
      _fetch_name_to_type[model_config.fetch_var(i).alias_name()] =
          model_config.fetch_var(i).fetch_type();
98
    }
M
MRXLT 已提交
99
  } catch (std::exception &e) {
100 101
    LOG(ERROR) << "Failed load general model config" << e.what();
    return -1;
G
guru4elephant 已提交
102
  }
103
  return 0;
G
guru4elephant 已提交
104 105
}

M
MRXLT 已提交
106 107
void PredictorClient::set_predictor_conf(const std::string &conf_path,
                                         const std::string &conf_file) {
G
guru4elephant 已提交
108 109 110
  _predictor_path = conf_path;
  _predictor_conf = conf_file;
}
111 112 113
int PredictorClient::destroy_predictor() {
  _api.thrd_finalize();
  _api.destroy();
B
barrierye 已提交
114
  return 0;
115 116
}

M
MRXLT 已提交
117
int PredictorClient::create_predictor_by_desc(const std::string &sdk_desc) {
G
guru4elephant 已提交
118 119 120 121 122
  if (_api.create(sdk_desc) != 0) {
    LOG(ERROR) << "Predictor Creation Failed";
    return -1;
  }
  _api.thrd_initialize();
B
barrierye 已提交
123
  return 0;
G
guru4elephant 已提交
124 125
}

G
guru4elephant 已提交
126
int PredictorClient::create_predictor() {
G
guru4elephant 已提交
127 128
  VLOG(2) << "Predictor path: " << _predictor_path
          << " predictor file: " << _predictor_conf;
G
guru4elephant 已提交
129 130 131 132 133
  if (_api.create(_predictor_path.c_str(), _predictor_conf.c_str()) != 0) {
    LOG(ERROR) << "Predictor Creation Failed";
    return -1;
  }
  _api.thrd_initialize();
B
barrierye 已提交
134
  return 0;
G
guru4elephant 已提交
135 136
}

M
MRXLT 已提交
137
int PredictorClient::batch_predict(
M
MRXLT 已提交
138 139
    const std::vector<std::vector<std::vector<float>>> &float_feed_batch,
    const std::vector<std::string> &float_feed_name,
D
dongdaxiang 已提交
140
    const std::vector<std::vector<int>> &float_shape,
M
MRXLT 已提交
141 142
    const std::vector<std::vector<std::vector<int64_t>>> &int_feed_batch,
    const std::vector<std::string> &int_feed_name,
D
dongdaxiang 已提交
143
    const std::vector<std::vector<int>> &int_shape,
M
MRXLT 已提交
144
    const std::vector<std::string> &fetch_name,
M
MRXLT 已提交
145
    PredictorRes &predict_res_batch,
M
MRXLT 已提交
146
    const int &pid) {
M
MRXLT 已提交
147
  int batch_size = std::max(float_feed_batch.size(), int_feed_batch.size());
M
MRXLT 已提交
148

B
barrierye 已提交
149
  predict_res_batch.clear();
M
MRXLT 已提交
150 151 152
  Timer timeline;
  int64_t preprocess_start = timeline.TimeStampUS();

M
MRXLT 已提交
153 154 155
  int fetch_name_num = fetch_name.size();

  _api.thrd_clear();
156 157 158
  std::string variant_tag;
  _predictor = _api.fetch_predictor("general_model", &variant_tag);
  predict_res_batch.set_variant_tag(variant_tag);
159 160 161
  VLOG(2) << "fetch general model predictor done.";
  VLOG(2) << "float feed name size: " << float_feed_name.size();
  VLOG(2) << "int feed name size: " << int_feed_name.size();
M
bug fix  
MRXLT 已提交
162
  VLOG(2) << "max body size : " << brpc::fLU64::FLAGS_max_body_size;
M
MRXLT 已提交
163
  Request req;
M
MRXLT 已提交
164
  for (auto &name : fetch_name) {
165 166
    req.add_fetch_var_names(name);
  }
B
barrierye 已提交
167

M
MRXLT 已提交
168
  for (int bi = 0; bi < batch_size; bi++) {
169
    VLOG(2) << "prepare batch " << bi;
M
MRXLT 已提交
170 171 172 173 174 175 176 177 178 179 180
    std::vector<Tensor *> tensor_vec;
    FeedInst *inst = req.add_insts();
    std::vector<std::vector<float>> float_feed = float_feed_batch[bi];
    std::vector<std::vector<int64_t>> int_feed = int_feed_batch[bi];
    for (auto &name : float_feed_name) {
      tensor_vec.push_back(inst->add_tensor_array());
    }

    for (auto &name : int_feed_name) {
      tensor_vec.push_back(inst->add_tensor_array());
    }
181

M
bug fix  
MRXLT 已提交
182
    VLOG(2) << "batch [" << bi << "] int_feed_name and float_feed_name "
183
            << "prepared";
M
MRXLT 已提交
184
    int vec_idx = 0;
M
bug fix  
MRXLT 已提交
185 186
    VLOG(2) << "tensor_vec size " << tensor_vec.size() << " float shape "
            << float_shape.size();
M
MRXLT 已提交
187 188 189
    for (auto &name : float_feed_name) {
      int idx = _feed_name_to_idx[name];
      Tensor *tensor = tensor_vec[idx];
M
bug fix  
MRXLT 已提交
190 191
      VLOG(2) << "prepare float feed " << name << " shape size "
              << float_shape[vec_idx].size();
B
barrierye 已提交
192
      for (uint32_t j = 0; j < float_shape[vec_idx].size(); ++j) {
193
        tensor->add_shape(float_shape[vec_idx][j]);
M
MRXLT 已提交
194 195
      }
      tensor->set_elem_type(1);
B
barrierye 已提交
196
      for (uint32_t j = 0; j < float_feed[vec_idx].size(); ++j) {
197
        tensor->add_float_data(float_feed[vec_idx][j]);
M
MRXLT 已提交
198 199 200 201
      }
      vec_idx++;
    }

M
MRXLT 已提交
202 203
    VLOG(2) << "batch [" << bi << "] "
            << "float feed value prepared";
204

M
MRXLT 已提交
205 206 207 208
    vec_idx = 0;
    for (auto &name : int_feed_name) {
      int idx = _feed_name_to_idx[name];
      Tensor *tensor = tensor_vec[idx];
M
bug fix  
MRXLT 已提交
209 210
      VLOG(2) << "prepare int feed " << name << " shape size "
              << int_shape[vec_idx].size();
B
barrierye 已提交
211
      for (uint32_t j = 0; j < int_shape[vec_idx].size(); ++j) {
212
        tensor->add_shape(int_shape[vec_idx][j]);
M
MRXLT 已提交
213 214
      }
      tensor->set_elem_type(0);
M
MRXLT 已提交
215 216
      VLOG(3) << "feed var name " << name << " index " << vec_idx
              << "first data " << int_feed[vec_idx][0];
B
barrierye 已提交
217
      for (uint32_t j = 0; j < int_feed[vec_idx].size(); ++j) {
218
        tensor->add_int64_data(int_feed[vec_idx][j]);
M
MRXLT 已提交
219 220 221
      }
      vec_idx++;
    }
222

M
MRXLT 已提交
223
    VLOG(2) << "batch [" << bi << "] "
M
MRXLT 已提交
224
            << "int feed value prepared";
M
MRXLT 已提交
225 226
  }

M
MRXLT 已提交
227 228 229 230
  int64_t preprocess_end = timeline.TimeStampUS();

  int64_t client_infer_start = timeline.TimeStampUS();

M
MRXLT 已提交
231 232
  Response res;

M
MRXLT 已提交
233 234 235 236 237 238 239 240 241 242
  int64_t client_infer_end = 0;
  int64_t postprocess_start = 0;
  int64_t postprocess_end = 0;

  if (FLAGS_profile_client) {
    if (FLAGS_profile_server) {
      req.set_profile_server(true);
    }
  }

M
MRXLT 已提交
243 244 245
  res.Clear();
  if (_predictor->inference(&req, &res) != 0) {
    LOG(ERROR) << "failed call predictor with req: " << req.ShortDebugString();
D
dongdaxiang 已提交
246
    return -1;
M
MRXLT 已提交
247
  } else {
M
MRXLT 已提交
248 249
    client_infer_end = timeline.TimeStampUS();
    postprocess_start = client_infer_end;
250

B
barrierye 已提交
251 252 253 254
    uint32_t model_num = res.outputs_size();
    for (uint32_t m_idx = 0; m_idx < model_num; ++m_idx) {
      VLOG(2) << "process model output index: " << m_idx;
      auto output = res.outputs(m_idx);
B
barrierye 已提交
255 256
      ModelRes model;
      model.set_engine_name(output.engine_name());
B
barrierye 已提交
257

M
MRXLT 已提交
258
      for (auto &name : fetch_name) {
B
barrierye 已提交
259 260
        // int idx = _fetch_name_to_idx[name];
        int idx = 0;
B
barrierye 已提交
261
        int shape_size = output.insts(0).tensor_array(idx).shape_size();
B
barrierye 已提交
262 263
        VLOG(2) << "fetch var " << name << " index " << idx << " shape size "
                << shape_size;
B
barrierye 已提交
264 265 266 267 268 269 270 271 272 273 274
        model._shape_map[name].resize(shape_size);
        for (int i = 0; i < shape_size; ++i) {
          model._shape_map[name][i] =
              output.insts(0).tensor_array(idx).shape(i);
        }
        int lod_size = output.insts(0).tensor_array(idx).lod_size();
        if (lod_size > 0) {
          model._lod_map[name].resize(lod_size);
          for (int i = 0; i < lod_size; ++i) {
            model._lod_map[name][i] = output.insts(0).tensor_array(idx).lod(i);
          }
275
        }
B
barrierye 已提交
276
        idx += 1;
B
barrierye 已提交
277
      }
278

B
barrierye 已提交
279
      for (auto &name : fetch_name) {
B
barrierye 已提交
280 281
        // int idx = _fetch_name_to_idx[name];
        int idx = 0;
B
barrierye 已提交
282
        if (_fetch_name_to_type[name] == 0) {
B
barrierye 已提交
283
          VLOG(2) << "ferch var " << name << "type int";
B
barrierye 已提交
284 285 286 287 288 289 290 291
          model._int64_value_map[name].resize(
              output.insts(0).tensor_array(idx).int64_data_size());
          int size = output.insts(0).tensor_array(idx).int64_data_size();
          for (int i = 0; i < size; ++i) {
            model._int64_value_map[name][i] =
                output.insts(0).tensor_array(idx).int64_data(i);
          }
        } else {
B
barrierye 已提交
292
          VLOG(2) << "fetch var " << name << "type float";
B
barrierye 已提交
293 294 295 296 297 298
          model._float_value_map[name].resize(
              output.insts(0).tensor_array(idx).float_data_size());
          int size = output.insts(0).tensor_array(idx).float_data_size();
          for (int i = 0; i < size; ++i) {
            model._float_value_map[name][i] =
                output.insts(0).tensor_array(idx).float_data(i);
M
MRXLT 已提交
299 300
          }
        }
B
barrierye 已提交
301
        idx += 1;
M
MRXLT 已提交
302
      }
B
barrierye 已提交
303
      predict_res_batch.add_model_res(std::move(model));
M
MRXLT 已提交
304
    }
305
    postprocess_end = timeline.TimeStampUS();
M
MRXLT 已提交
306 307
  }

M
MRXLT 已提交
308 309 310
  if (FLAGS_profile_client) {
    std::ostringstream oss;
    oss << "PROFILE\t"
M
MRXLT 已提交
311
        << "pid:" << pid << "\t"
M
MRXLT 已提交
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
        << "prepro_0:" << preprocess_start << " "
        << "prepro_1:" << preprocess_end << " "
        << "client_infer_0:" << client_infer_start << " "
        << "client_infer_1:" << client_infer_end << " ";
    if (FLAGS_profile_server) {
      int op_num = res.profile_time_size() / 2;
      for (int i = 0; i < op_num; ++i) {
        oss << "op" << i << "_0:" << res.profile_time(i * 2) << " ";
        oss << "op" << i << "_1:" << res.profile_time(i * 2 + 1) << " ";
      }
    }

    oss << "postpro_0:" << postprocess_start << " ";
    oss << "postpro_1:" << postprocess_end;

    fprintf(stderr, "%s\n", oss.str().c_str());
  }
M
MRXLT 已提交
329
  return 0;
M
MRXLT 已提交
330 331
}

G
guru4elephant 已提交
332 333 334
}  // namespace general_model
}  // namespace paddle_serving
}  // namespace baidu