general_model.cpp 9.6 KB
Newer Older
G
guru4elephant 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

G
guru4elephant 已提交
15
#include "core/general-client/include/general_model.h"
M
MRXLT 已提交
16
#include <fstream>
G
guru4elephant 已提交
17 18 19
#include "core/sdk-cpp/builtin_format.pb.h"
#include "core/sdk-cpp/include/common.h"
#include "core/sdk-cpp/include/predictor_sdk.h"
G
guru4elephant 已提交
20 21 22 23 24 25 26 27 28 29

using baidu::paddle_serving::predictor::general_model::Request;
using baidu::paddle_serving::predictor::general_model::Response;
using baidu::paddle_serving::predictor::general_model::Tensor;
using baidu::paddle_serving::predictor::general_model::FeedInst;
using baidu::paddle_serving::predictor::general_model::FetchInst;

namespace baidu {
namespace paddle_serving {
namespace general_model {
30
using configure::GeneralModelConfig;
G
guru4elephant 已提交
31

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
int PredictorClient::init(const std::string &conf_file) {
  try {
    GeneralModelConfig model_config;
    if (configure::read_proto_conf(conf_file.c_str(),
                                   &model_config) != 0) {
      LOG(ERROR) << "Failed to load general model config"
                 << ", file path: " << conf_file;
      return -1;
    }
    _feed_name_to_idx.clear();
    _fetch_name_to_idx.clear();
    _shape.clear();
    int feed_var_num = model_config.feed_var_size();
    int fetch_var_num = model_config.fetch_var_size();
    for (int i = 0; i < feed_var_num; ++i) {
      _feed_name_to_idx[model_config.feed_var(i).alias_name()] = i;
      std::vector<int> tmp_feed_shape;
      for (int j = 0; j < model_config.feed_var(i).shape_size(); ++j) {
        tmp_feed_shape.push_back(model_config.feed_var(i).shape(j));
      }
      _type.push_back(model_config.feed_var(i).feed_type());
      _shape.push_back(tmp_feed_shape);
G
guru4elephant 已提交
54 55
    }

56 57 58 59 60 61 62 63
    for (int i = 0; i < fetch_var_num; ++i) {
      _fetch_name_to_idx[model_config.fetch_var(i).alias_name()] = i;
      _fetch_name_to_var_name[model_config.fetch_var(i).alias_name()] =
          model_config.fetch_var(i).name();
    }
  } catch (std::exception& e) {
    LOG(ERROR) << "Failed load general model config" << e.what();
    return -1;
G
guru4elephant 已提交
64
  }
65
  return 0;
G
guru4elephant 已提交
66 67
}

M
MRXLT 已提交
68 69
void PredictorClient::set_predictor_conf(const std::string &conf_path,
                                         const std::string &conf_file) {
G
guru4elephant 已提交
70 71 72 73 74 75 76 77 78 79 80 81
  _predictor_path = conf_path;
  _predictor_conf = conf_file;
}

int PredictorClient::create_predictor() {
  if (_api.create(_predictor_path.c_str(), _predictor_conf.c_str()) != 0) {
    LOG(ERROR) << "Predictor Creation Failed";
    return -1;
  }
  _api.thrd_initialize();
}

M
MRXLT 已提交
82 83 84 85 86 87 88
std::vector<std::vector<float>> PredictorClient::predict(
    const std::vector<std::vector<float>> &float_feed,
    const std::vector<std::string> &float_feed_name,
    const std::vector<std::vector<int64_t>> &int_feed,
    const std::vector<std::string> &int_feed_name,
    const std::vector<std::string> &fetch_name) {
  std::vector<std::vector<float>> fetch_result;
G
guru4elephant 已提交
89 90 91 92 93 94 95 96 97
  if (fetch_name.size() == 0) {
    return fetch_result;
  }
  fetch_result.resize(fetch_name.size());

  _api.thrd_clear();
  _predictor = _api.fetch_predictor("general_model");
  Request req;
  std::vector<Tensor *> tensor_vec;
M
MRXLT 已提交
98 99
  FeedInst *inst = req.add_insts();
  for (auto &name : float_feed_name) {
G
guru4elephant 已提交
100 101 102
    tensor_vec.push_back(inst->add_tensor_array());
  }

M
MRXLT 已提交
103
  for (auto &name : int_feed_name) {
G
guru4elephant 已提交
104 105 106 107
    tensor_vec.push_back(inst->add_tensor_array());
  }

  int vec_idx = 0;
M
MRXLT 已提交
108
  for (auto &name : float_feed_name) {
G
guru4elephant 已提交
109
    int idx = _feed_name_to_idx[name];
M
MRXLT 已提交
110
    Tensor *tensor = tensor_vec[idx];
G
guru4elephant 已提交
111 112 113 114 115
    for (int j = 0; j < _shape[idx].size(); ++j) {
      tensor->add_shape(_shape[idx][j]);
    }
    tensor->set_elem_type(1);
    for (int j = 0; j < float_feed[vec_idx].size(); ++j) {
M
MRXLT 已提交
116 117 118
      tensor->add_data(const_cast<char *>(reinterpret_cast<const char *>(
                           &(float_feed[vec_idx][j]))),
                       sizeof(float));
G
guru4elephant 已提交
119 120 121 122 123
    }
    vec_idx++;
  }

  vec_idx = 0;
M
MRXLT 已提交
124
  for (auto &name : int_feed_name) {
G
guru4elephant 已提交
125
    int idx = _feed_name_to_idx[name];
M
MRXLT 已提交
126
    Tensor *tensor = tensor_vec[idx];
G
guru4elephant 已提交
127 128 129 130 131
    for (int j = 0; j < _shape[idx].size(); ++j) {
      tensor->add_shape(_shape[idx][j]);
    }
    tensor->set_elem_type(0);
    for (int j = 0; j < int_feed[vec_idx].size(); ++j) {
M
MRXLT 已提交
132 133 134
      tensor->add_data(const_cast<char *>(reinterpret_cast<const char *>(
                           &(int_feed[vec_idx][j]))),
                       sizeof(int64_t));
G
guru4elephant 已提交
135 136 137 138 139 140 141 142 143 144 145 146
    }
    vec_idx++;
  }

  // std::map<std::string, std::vector<float> > result;
  Response res;

  res.Clear();
  if (_predictor->inference(&req, &res) != 0) {
    LOG(ERROR) << "failed call predictor with req: " << req.ShortDebugString();
    exit(-1);
  } else {
M
MRXLT 已提交
147
    for (auto &name : fetch_name) {
G
guru4elephant 已提交
148 149 150 151 152 153 154 155 156 157 158 159 160 161
      int idx = _fetch_name_to_idx[name];
      int len = res.insts(0).tensor_array(idx).data_size();
      VLOG(3) << "fetch name: " << name;
      VLOG(3) << "tensor data size: " << len;
      fetch_result[idx].resize(len);
      for (int i = 0; i < len; ++i) {
        /*
        (*fetch_result)[name][i] = *(const float *)
                    res.insts(0).tensor_array(idx).data(i).c_str();
        VLOG(3) << *(const float *)
            res.insts(0).tensor_array(idx).data(i).c_str();
        fetch_result[name][i] = *(const float *)
                    res.insts(0).tensor_array(idx).data(i).c_str();
        */
M
MRXLT 已提交
162 163
        fetch_result[idx][i] =
            *(const float *)res.insts(0).tensor_array(idx).data(i).c_str();
G
guru4elephant 已提交
164 165 166 167 168 169 170
      }
    }
  }

  return fetch_result;
}

M
MRXLT 已提交
171
std::vector<std::vector<std::vector<float>>> PredictorClient::batch_predict(
M
MRXLT 已提交
172 173 174 175
    const std::vector<std::vector<std::vector<float>>> &float_feed_batch,
    const std::vector<std::string> &float_feed_name,
    const std::vector<std::vector<std::vector<int64_t>>> &int_feed_batch,
    const std::vector<std::string> &int_feed_name,
M
MRXLT 已提交
176 177
    const std::vector<std::string> &fetch_name) {
  int batch_size = std::max(float_feed_batch.size(), int_feed_batch.size());
M
MRXLT 已提交
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
  std::vector<std::vector<std::vector<float>>> fetch_result_batch;
  if (fetch_name.size() == 0) {
    return fetch_result_batch;
  }
  fetch_result_batch.resize(batch_size);
  int fetch_name_num = fetch_name.size();
  for (int bi = 0; bi < batch_size; bi++) {
    fetch_result_batch[bi].resize(fetch_name_num);
  }

  _api.thrd_clear();
  _predictor = _api.fetch_predictor("general_model");
  Request req;
  //
  for (int bi = 0; bi < batch_size; bi++) {
    std::vector<Tensor *> tensor_vec;
    FeedInst *inst = req.add_insts();
    std::vector<std::vector<float>> float_feed = float_feed_batch[bi];
    std::vector<std::vector<int64_t>> int_feed = int_feed_batch[bi];
    for (auto &name : float_feed_name) {
      tensor_vec.push_back(inst->add_tensor_array());
    }

    for (auto &name : int_feed_name) {
      tensor_vec.push_back(inst->add_tensor_array());
    }

    int vec_idx = 0;
    for (auto &name : float_feed_name) {
      int idx = _feed_name_to_idx[name];
      Tensor *tensor = tensor_vec[idx];
      for (int j = 0; j < _shape[idx].size(); ++j) {
        tensor->add_shape(_shape[idx][j]);
      }
      tensor->set_elem_type(1);
      for (int j = 0; j < float_feed[vec_idx].size(); ++j) {
        tensor->add_data(const_cast<char *>(reinterpret_cast<const char *>(
                             &(float_feed[vec_idx][j]))),
                         sizeof(float));
      }
      vec_idx++;
    }

    vec_idx = 0;
    for (auto &name : int_feed_name) {
      int idx = _feed_name_to_idx[name];
      Tensor *tensor = tensor_vec[idx];
      for (int j = 0; j < _shape[idx].size(); ++j) {
        tensor->add_shape(_shape[idx][j]);
      }
      tensor->set_elem_type(0);
M
MRXLT 已提交
229 230
      VLOG(3) << "feed var name " << name << " index " << vec_idx
              << "first data " << int_feed[vec_idx][0];
M
MRXLT 已提交
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
      for (int j = 0; j < int_feed[vec_idx].size(); ++j) {
        tensor->add_data(const_cast<char *>(reinterpret_cast<const char *>(
                             &(int_feed[vec_idx][j]))),
                         sizeof(int64_t));
      }
      vec_idx++;
    }
  }

  Response res;

  res.Clear();
  if (_predictor->inference(&req, &res) != 0) {
    LOG(ERROR) << "failed call predictor with req: " << req.ShortDebugString();
    exit(-1);
  } else {
    for (int bi = 0; bi < batch_size; bi++) {
      for (auto &name : fetch_name) {
        int idx = _fetch_name_to_idx[name];
M
MRXLT 已提交
250
        int len = res.insts(bi).tensor_array(idx).data_size();
M
MRXLT 已提交
251 252 253
        VLOG(3) << "fetch name: " << name;
        VLOG(3) << "tensor data size: " << len;
        fetch_result_batch[bi][idx].resize(len);
M
MRXLT 已提交
254 255 256
        VLOG(3)
            << "fetch name " << name << " index " << idx << " first data "
            << *(const float *)res.insts(bi).tensor_array(idx).data(0).c_str();
M
MRXLT 已提交
257 258
        for (int i = 0; i < len; ++i) {
          fetch_result_batch[bi][idx][i] =
M
MRXLT 已提交
259
              *(const float *)res.insts(bi).tensor_array(idx).data(i).c_str();
M
MRXLT 已提交
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
        }
      }
    }
  }

  return fetch_result_batch;
}

std::vector<std::vector<float>> PredictorClient::predict_with_profile(
    const std::vector<std::vector<float>> &float_feed,
    const std::vector<std::string> &float_feed_name,
    const std::vector<std::vector<int64_t>> &int_feed,
    const std::vector<std::string> &int_feed_name,
    const std::vector<std::string> &fetch_name) {
  std::vector<std::vector<float>> res;
G
guru4elephant 已提交
275 276 277 278 279 280
  return res;
}

}  // namespace general_model
}  // namespace paddle_serving
}  // namespace baidu