general_model.cpp 12.5 KB
Newer Older
G
guru4elephant 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

G
guru4elephant 已提交
15
#include "core/general-client/include/general_model.h"
M
MRXLT 已提交
16
#include <fstream>
G
guru4elephant 已提交
17 18 19
#include "core/sdk-cpp/builtin_format.pb.h"
#include "core/sdk-cpp/include/common.h"
#include "core/sdk-cpp/include/predictor_sdk.h"
G
guru4elephant 已提交
20
#include "core/util/include/timer.h"
G
guru4elephant 已提交
21

G
guru4elephant 已提交
22
using baidu::paddle_serving::Timer;
G
guru4elephant 已提交
23 24 25 26 27 28 29 30 31
using baidu::paddle_serving::predictor::general_model::Request;
using baidu::paddle_serving::predictor::general_model::Response;
using baidu::paddle_serving::predictor::general_model::Tensor;
using baidu::paddle_serving::predictor::general_model::FeedInst;
using baidu::paddle_serving::predictor::general_model::FetchInst;

namespace baidu {
namespace paddle_serving {
namespace general_model {
32
using configure::GeneralModelConfig;
G
guru4elephant 已提交
33

34 35 36 37 38 39 40 41 42
int PredictorClient::init(const std::string &conf_file) {
  try {
    GeneralModelConfig model_config;
    if (configure::read_proto_conf(conf_file.c_str(),
                                   &model_config) != 0) {
      LOG(ERROR) << "Failed to load general model config"
                 << ", file path: " << conf_file;
      return -1;
    }
43

44 45 46 47 48
    _feed_name_to_idx.clear();
    _fetch_name_to_idx.clear();
    _shape.clear();
    int feed_var_num = model_config.feed_var_size();
    int fetch_var_num = model_config.fetch_var_size();
49 50
    VLOG(2) << "feed var num: " << feed_var_num
            << "fetch_var_num: " << fetch_var_num;
51 52
    for (int i = 0; i < feed_var_num; ++i) {
      _feed_name_to_idx[model_config.feed_var(i).alias_name()] = i;
53 54
      VLOG(2) << "feed alias name: " << model_config.feed_var(i).alias_name()
              << " index: " << i;
55
      std::vector<int> tmp_feed_shape;
56
      VLOG(2) << "feed" << "[" << i << "] shape:";
57 58
      for (int j = 0; j < model_config.feed_var(i).shape_size(); ++j) {
        tmp_feed_shape.push_back(model_config.feed_var(i).shape(j));
59 60
        VLOG(2) << "shape[" << j << "]: "
                << model_config.feed_var(i).shape(j);
61 62
      }
      _type.push_back(model_config.feed_var(i).feed_type());
63 64
      VLOG(2) << "feed" << "[" << i << "] feed type: "
              << model_config.feed_var(i).feed_type();
65
      _shape.push_back(tmp_feed_shape);
G
guru4elephant 已提交
66 67
    }

68 69
    for (int i = 0; i < fetch_var_num; ++i) {
      _fetch_name_to_idx[model_config.fetch_var(i).alias_name()] = i;
70 71
      VLOG(2) << "fetch [" << i << "]" << " alias name: "
              << model_config.fetch_var(i).alias_name();
72 73 74 75 76 77
      _fetch_name_to_var_name[model_config.fetch_var(i).alias_name()] =
          model_config.fetch_var(i).name();
    }
  } catch (std::exception& e) {
    LOG(ERROR) << "Failed load general model config" << e.what();
    return -1;
G
guru4elephant 已提交
78
  }
79
  return 0;
G
guru4elephant 已提交
80 81
}

M
MRXLT 已提交
82 83
void PredictorClient::set_predictor_conf(const std::string &conf_path,
                                         const std::string &conf_file) {
G
guru4elephant 已提交
84 85 86 87
  _predictor_path = conf_path;
  _predictor_conf = conf_file;
}

88 89 90 91 92
int PredictorClient::destroy_predictor() {
  _api.thrd_finalize();
  _api.destroy();
}

G
guru4elephant 已提交
93 94 95 96 97 98 99 100
int PredictorClient::create_predictor_by_desc(const std::string & sdk_desc) {
  if (_api.create(sdk_desc) != 0) {
    LOG(ERROR) << "Predictor Creation Failed";
    return -1;
  }
  _api.thrd_initialize();
}

G
guru4elephant 已提交
101
int PredictorClient::create_predictor() {
G
guru4elephant 已提交
102 103
  VLOG(2) << "Predictor path: " << _predictor_path
          << " predictor file: " << _predictor_conf;
G
guru4elephant 已提交
104 105 106 107 108 109 110
  if (_api.create(_predictor_path.c_str(), _predictor_conf.c_str()) != 0) {
    LOG(ERROR) << "Predictor Creation Failed";
    return -1;
  }
  _api.thrd_initialize();
}

M
MRXLT 已提交
111 112 113 114 115 116 117
std::vector<std::vector<float>> PredictorClient::predict(
    const std::vector<std::vector<float>> &float_feed,
    const std::vector<std::string> &float_feed_name,
    const std::vector<std::vector<int64_t>> &int_feed,
    const std::vector<std::string> &int_feed_name,
    const std::vector<std::string> &fetch_name) {
  std::vector<std::vector<float>> fetch_result;
G
guru4elephant 已提交
118 119 120
  if (fetch_name.size() == 0) {
    return fetch_result;
  }
121

G
guru4elephant 已提交
122 123 124
  Timer timeline;
  int64_t preprocess_start = timeline.TimeStampUS();

125 126
  // we save infer_us at fetch_result[fetch_name.size()]
  fetch_result.resize(fetch_name.size() + 1);
G
guru4elephant 已提交
127 128 129

  _api.thrd_clear();
  _predictor = _api.fetch_predictor("general_model");
G
guru4elephant 已提交
130

131 132 133
  VLOG(2) << "fetch general model predictor done.";
  VLOG(2) << "float feed name size: " << float_feed_name.size();
  VLOG(2) << "int feed name size: " << int_feed_name.size();
134
  VLOG(2) << "fetch name size: " << fetch_name.size();
G
guru4elephant 已提交
135

G
guru4elephant 已提交
136
  Request req;
137 138 139
  for (auto & name : fetch_name) {
    req.add_fetch_var_names(name);
  }
G
guru4elephant 已提交
140
  std::vector<Tensor *> tensor_vec;
M
MRXLT 已提交
141 142
  FeedInst *inst = req.add_insts();
  for (auto &name : float_feed_name) {
G
guru4elephant 已提交
143 144 145
    tensor_vec.push_back(inst->add_tensor_array());
  }

M
MRXLT 已提交
146
  for (auto &name : int_feed_name) {
G
guru4elephant 已提交
147 148
    tensor_vec.push_back(inst->add_tensor_array());
  }
149
  VLOG(2) << "prepare tensor vec done.";
G
guru4elephant 已提交
150 151

  int vec_idx = 0;
M
MRXLT 已提交
152
  for (auto &name : float_feed_name) {
G
guru4elephant 已提交
153
    int idx = _feed_name_to_idx[name];
M
MRXLT 已提交
154
    Tensor *tensor = tensor_vec[idx];
G
guru4elephant 已提交
155 156 157 158 159
    for (int j = 0; j < _shape[idx].size(); ++j) {
      tensor->add_shape(_shape[idx][j]);
    }
    tensor->set_elem_type(1);
    for (int j = 0; j < float_feed[vec_idx].size(); ++j) {
M
MRXLT 已提交
160 161 162
      tensor->add_data(const_cast<char *>(reinterpret_cast<const char *>(
                           &(float_feed[vec_idx][j]))),
                       sizeof(float));
G
guru4elephant 已提交
163 164 165 166
    }
    vec_idx++;
  }

167 168
  VLOG(2) << "feed float feed var done.";

G
guru4elephant 已提交
169
  vec_idx = 0;
M
MRXLT 已提交
170
  for (auto &name : int_feed_name) {
G
guru4elephant 已提交
171
    int idx = _feed_name_to_idx[name];
M
MRXLT 已提交
172
    Tensor *tensor = tensor_vec[idx];
G
guru4elephant 已提交
173 174 175 176 177
    for (int j = 0; j < _shape[idx].size(); ++j) {
      tensor->add_shape(_shape[idx][j]);
    }
    tensor->set_elem_type(0);
    for (int j = 0; j < int_feed[vec_idx].size(); ++j) {
M
MRXLT 已提交
178 179 180
      tensor->add_data(const_cast<char *>(reinterpret_cast<const char *>(
                           &(int_feed[vec_idx][j]))),
                       sizeof(int64_t));
G
guru4elephant 已提交
181 182 183 184
    }
    vec_idx++;
  }

G
guru4elephant 已提交
185
  int64_t preprocess_end = timeline.TimeStampUS();
186

G
guru4elephant 已提交
187
  int64_t client_infer_start = timeline.TimeStampUS();
G
guru4elephant 已提交
188 189
  Response res;

G
guru4elephant 已提交
190 191 192
  int64_t client_infer_end = 0;
  int64_t postprocess_start = 0;
  int64_t postprocess_end = 0;
G
guru4elephant 已提交
193 194 195 196 197
  res.Clear();
  if (_predictor->inference(&req, &res) != 0) {
    LOG(ERROR) << "failed call predictor with req: " << req.ShortDebugString();
    exit(-1);
  } else {
G
guru4elephant 已提交
198 199
    client_infer_end = timeline.TimeStampUS();
    postprocess_start = client_infer_end;
M
MRXLT 已提交
200
    for (auto &name : fetch_name) {
G
guru4elephant 已提交
201 202
      int idx = _fetch_name_to_idx[name];
      int len = res.insts(0).tensor_array(idx).data_size();
203 204
      VLOG(2) << "fetch name: " << name;
      VLOG(2) << "tensor data size: " << len;
G
guru4elephant 已提交
205 206
      fetch_result[idx].resize(len);
      for (int i = 0; i < len; ++i) {
M
MRXLT 已提交
207 208
        fetch_result[idx][i] =
            *(const float *)res.insts(0).tensor_array(idx).data(i).c_str();
G
guru4elephant 已提交
209 210
      }
    }
G
guru4elephant 已提交
211
    postprocess_end = timeline.TimeStampUS();
G
guru4elephant 已提交
212 213
  }

G
guru4elephant 已提交
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
  int op_num = res.profile_time_size() / 2;
 
  VLOG(2) << "preprocess start: " << preprocess_start;
  VLOG(2) << "preprocess end: " << preprocess_end;
  VLOG(2) << "client infer start: " << client_infer_start;
  VLOG(2) << "op1 start: " << res.profile_time(0);
  VLOG(2) << "op1 end: " << res.profile_time(1);
  VLOG(2) << "op2 start: " << res.profile_time(2);
  VLOG(2) << "op2 end: " << res.profile_time(3);
  VLOG(2) << "op3 start: " << res.profile_time(4);
  VLOG(2) << "op3 end: " << res.profile_time(5);
  VLOG(2) << "client infer end: " << client_infer_end;
  VLOG(2) << "client postprocess start: " << postprocess_start;
  VLOG(2) << "client postprocess end: " << postprocess_end;

G
guru4elephant 已提交
229 230 231
  return fetch_result;
}

M
MRXLT 已提交
232
std::vector<std::vector<std::vector<float>>> PredictorClient::batch_predict(
M
MRXLT 已提交
233 234 235 236
    const std::vector<std::vector<std::vector<float>>> &float_feed_batch,
    const std::vector<std::string> &float_feed_name,
    const std::vector<std::vector<std::vector<int64_t>>> &int_feed_batch,
    const std::vector<std::string> &int_feed_name,
M
MRXLT 已提交
237 238
    const std::vector<std::string> &fetch_name) {
  int batch_size = std::max(float_feed_batch.size(), int_feed_batch.size());
M
MRXLT 已提交
239 240 241 242
  std::vector<std::vector<std::vector<float>>> fetch_result_batch;
  if (fetch_name.size() == 0) {
    return fetch_result_batch;
  }
243
  fetch_result_batch.resize(batch_size + 1);
M
MRXLT 已提交
244 245 246 247 248 249 250
  int fetch_name_num = fetch_name.size();
  for (int bi = 0; bi < batch_size; bi++) {
    fetch_result_batch[bi].resize(fetch_name_num);
  }

  _api.thrd_clear();
  _predictor = _api.fetch_predictor("general_model");
251 252 253
  VLOG(2) << "fetch general model predictor done.";
  VLOG(2) << "float feed name size: " << float_feed_name.size();
  VLOG(2) << "int feed name size: " << int_feed_name.size();
M
MRXLT 已提交
254
  Request req;
255 256 257
  for (auto & name : fetch_name) {
    req.add_fetch_var_names(name);
  }
M
MRXLT 已提交
258 259
  //
  for (int bi = 0; bi < batch_size; bi++) {
260
    VLOG(2) << "prepare batch " << bi;
M
MRXLT 已提交
261 262 263 264 265 266 267 268 269 270 271
    std::vector<Tensor *> tensor_vec;
    FeedInst *inst = req.add_insts();
    std::vector<std::vector<float>> float_feed = float_feed_batch[bi];
    std::vector<std::vector<int64_t>> int_feed = int_feed_batch[bi];
    for (auto &name : float_feed_name) {
      tensor_vec.push_back(inst->add_tensor_array());
    }

    for (auto &name : int_feed_name) {
      tensor_vec.push_back(inst->add_tensor_array());
    }
272

273 274
    VLOG(2) << "batch [" << bi << "] int_feed_name and float_feed_name"
            << "prepared";
M
MRXLT 已提交
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
    int vec_idx = 0;
    for (auto &name : float_feed_name) {
      int idx = _feed_name_to_idx[name];
      Tensor *tensor = tensor_vec[idx];
      for (int j = 0; j < _shape[idx].size(); ++j) {
        tensor->add_shape(_shape[idx][j]);
      }
      tensor->set_elem_type(1);
      for (int j = 0; j < float_feed[vec_idx].size(); ++j) {
        tensor->add_data(const_cast<char *>(reinterpret_cast<const char *>(
                             &(float_feed[vec_idx][j]))),
                         sizeof(float));
      }
      vec_idx++;
    }

291 292
    VLOG(2) << "batch [" << bi << "] " << "float feed value prepared";

M
MRXLT 已提交
293 294 295 296 297 298 299 300
    vec_idx = 0;
    for (auto &name : int_feed_name) {
      int idx = _feed_name_to_idx[name];
      Tensor *tensor = tensor_vec[idx];
      for (int j = 0; j < _shape[idx].size(); ++j) {
        tensor->add_shape(_shape[idx][j]);
      }
      tensor->set_elem_type(0);
M
MRXLT 已提交
301 302
      VLOG(3) << "feed var name " << name << " index " << vec_idx
              << "first data " << int_feed[vec_idx][0];
M
MRXLT 已提交
303 304 305 306 307 308 309
      for (int j = 0; j < int_feed[vec_idx].size(); ++j) {
        tensor->add_data(const_cast<char *>(reinterpret_cast<const char *>(
                             &(int_feed[vec_idx][j]))),
                         sizeof(int64_t));
      }
      vec_idx++;
    }
310 311

    VLOG(2) << "batch [" << bi << "] " << "itn feed value prepared";
M
MRXLT 已提交
312 313 314 315 316 317 318 319 320 321 322 323
  }

  Response res;

  res.Clear();
  if (_predictor->inference(&req, &res) != 0) {
    LOG(ERROR) << "failed call predictor with req: " << req.ShortDebugString();
    exit(-1);
  } else {
    for (int bi = 0; bi < batch_size; bi++) {
      for (auto &name : fetch_name) {
        int idx = _fetch_name_to_idx[name];
M
MRXLT 已提交
324
        int len = res.insts(bi).tensor_array(idx).data_size();
325 326
        VLOG(2) << "fetch name: " << name;
        VLOG(2) << "tensor data size: " << len;
M
MRXLT 已提交
327
        fetch_result_batch[bi][idx].resize(len);
328
        VLOG(2)
M
MRXLT 已提交
329 330
            << "fetch name " << name << " index " << idx << " first data "
            << *(const float *)res.insts(bi).tensor_array(idx).data(0).c_str();
M
MRXLT 已提交
331 332
        for (int i = 0; i < len; ++i) {
          fetch_result_batch[bi][idx][i] =
M
MRXLT 已提交
333
              *(const float *)res.insts(bi).tensor_array(idx).data(i).c_str();
M
MRXLT 已提交
334 335 336
        }
      }
    }
G
guru4elephant 已提交
337 338 339 340
    // last index for infer time
    // fetch_result_batch[batch_size].resize(1);
    // fetch_result_batch[batch_size][0].resize(1);
    // fetch_result_batch[batch_size][0][0] = res.mean_infer_us();
M
MRXLT 已提交
341 342 343 344 345 346 347 348 349 350 351 352
  }

  return fetch_result_batch;
}

std::vector<std::vector<float>> PredictorClient::predict_with_profile(
    const std::vector<std::vector<float>> &float_feed,
    const std::vector<std::string> &float_feed_name,
    const std::vector<std::vector<int64_t>> &int_feed,
    const std::vector<std::string> &int_feed_name,
    const std::vector<std::string> &fetch_name) {
  std::vector<std::vector<float>> res;
G
guru4elephant 已提交
353 354 355 356 357 358
  return res;
}

}  // namespace general_model
}  // namespace paddle_serving
}  // namespace baidu