general_model.cpp 23.1 KB
Newer Older
G
guru4elephant 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

G
guru4elephant 已提交
15
#include "core/general-client/include/general_model.h"
M
MRXLT 已提交
16
#include <fstream>
G
guru4elephant 已提交
17 18 19
#include "core/sdk-cpp/builtin_format.pb.h"
#include "core/sdk-cpp/include/common.h"
#include "core/sdk-cpp/include/predictor_sdk.h"
G
guru4elephant 已提交
20
#include "core/util/include/timer.h"
G
guru4elephant 已提交
21

22 23 24
DEFINE_bool(profile_client, false, "");
DEFINE_bool(profile_server, false, "");

G
guru4elephant 已提交
25
using baidu::paddle_serving::Timer;
G
guru4elephant 已提交
26 27 28 29 30 31
using baidu::paddle_serving::predictor::general_model::Request;
using baidu::paddle_serving::predictor::general_model::Response;
using baidu::paddle_serving::predictor::general_model::Tensor;
using baidu::paddle_serving::predictor::general_model::FeedInst;
using baidu::paddle_serving::predictor::general_model::FetchInst;

32
std::once_flag gflags_init_flag;
M
MRXLT 已提交
33
namespace py = pybind11;
34

G
guru4elephant 已提交
35 36 37
namespace baidu {
namespace paddle_serving {
namespace general_model {
38
using configure::GeneralModelConfig;
G
guru4elephant 已提交
39

40 41
void PredictorClient::init_gflags(std::vector<std::string> argv) {
  std::call_once(gflags_init_flag, [&]() {
M
MRXLT 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54
    FLAGS_logtostderr = true;
    argv.insert(argv.begin(), "dummy");
    int argc = argv.size();
    char **arr = new char *[argv.size()];
    std::string line;
    for (size_t i = 0; i < argv.size(); i++) {
      arr[i] = &argv[i][0];
      line += argv[i];
      line += ' ';
    }
    google::ParseCommandLineFlags(&argc, &arr, true);
    VLOG(2) << "Init commandline: " << line;
  });
55 56
}

57 58 59
int PredictorClient::init(const std::string &conf_file) {
  try {
    GeneralModelConfig model_config;
M
MRXLT 已提交
60
    if (configure::read_proto_conf(conf_file.c_str(), &model_config) != 0) {
61 62 63 64
      LOG(ERROR) << "Failed to load general model config"
                 << ", file path: " << conf_file;
      return -1;
    }
65

66 67 68 69 70
    _feed_name_to_idx.clear();
    _fetch_name_to_idx.clear();
    _shape.clear();
    int feed_var_num = model_config.feed_var_size();
    int fetch_var_num = model_config.fetch_var_size();
71 72
    VLOG(2) << "feed var num: " << feed_var_num
            << "fetch_var_num: " << fetch_var_num;
73 74
    for (int i = 0; i < feed_var_num; ++i) {
      _feed_name_to_idx[model_config.feed_var(i).alias_name()] = i;
75 76
      VLOG(2) << "feed alias name: " << model_config.feed_var(i).alias_name()
              << " index: " << i;
77
      std::vector<int> tmp_feed_shape;
M
MRXLT 已提交
78 79
      VLOG(2) << "feed"
              << "[" << i << "] shape:";
80 81
      for (int j = 0; j < model_config.feed_var(i).shape_size(); ++j) {
        tmp_feed_shape.push_back(model_config.feed_var(i).shape(j));
M
MRXLT 已提交
82
        VLOG(2) << "shape[" << j << "]: " << model_config.feed_var(i).shape(j);
83 84
      }
      _type.push_back(model_config.feed_var(i).feed_type());
M
MRXLT 已提交
85 86 87
      VLOG(2) << "feed"
              << "[" << i
              << "] feed type: " << model_config.feed_var(i).feed_type();
88
      _shape.push_back(tmp_feed_shape);
G
guru4elephant 已提交
89 90
    }

91 92
    for (int i = 0; i < fetch_var_num; ++i) {
      _fetch_name_to_idx[model_config.fetch_var(i).alias_name()] = i;
M
MRXLT 已提交
93 94
      VLOG(2) << "fetch [" << i << "]"
              << " alias name: " << model_config.fetch_var(i).alias_name();
95 96
      _fetch_name_to_var_name[model_config.fetch_var(i).alias_name()] =
          model_config.fetch_var(i).name();
97 98
      _fetch_name_to_type[model_config.fetch_var(i).alias_name()] =
          model_config.fetch_var(i).fetch_type();
99
    }
M
MRXLT 已提交
100
  } catch (std::exception &e) {
101 102
    LOG(ERROR) << "Failed load general model config" << e.what();
    return -1;
G
guru4elephant 已提交
103
  }
104
  return 0;
G
guru4elephant 已提交
105 106
}

M
MRXLT 已提交
107 108
void PredictorClient::set_predictor_conf(const std::string &conf_path,
                                         const std::string &conf_file) {
G
guru4elephant 已提交
109 110 111
  _predictor_path = conf_path;
  _predictor_conf = conf_file;
}
112 113 114
int PredictorClient::destroy_predictor() {
  _api.thrd_finalize();
  _api.destroy();
B
barrierye 已提交
115
  return 0;
116 117
}

M
MRXLT 已提交
118
int PredictorClient::create_predictor_by_desc(const std::string &sdk_desc) {
G
guru4elephant 已提交
119 120 121 122
  if (_api.create(sdk_desc) != 0) {
    LOG(ERROR) << "Predictor Creation Failed";
    return -1;
  }
D
dongdaxiang 已提交
123
  // _api.thrd_initialize();
B
barrierye 已提交
124
  return 0;
G
guru4elephant 已提交
125 126
}

G
guru4elephant 已提交
127
int PredictorClient::create_predictor() {
G
guru4elephant 已提交
128 129
  VLOG(2) << "Predictor path: " << _predictor_path
          << " predictor file: " << _predictor_conf;
G
guru4elephant 已提交
130 131 132 133
  if (_api.create(_predictor_path.c_str(), _predictor_conf.c_str()) != 0) {
    LOG(ERROR) << "Predictor Creation Failed";
    return -1;
  }
D
dongdaxiang 已提交
134
  // _api.thrd_initialize();
B
barrierye 已提交
135
  return 0;
G
guru4elephant 已提交
136 137
}

M
MRXLT 已提交
138
int PredictorClient::batch_predict(
M
MRXLT 已提交
139 140
    const std::vector<std::vector<std::vector<float>>> &float_feed_batch,
    const std::vector<std::string> &float_feed_name,
D
dongdaxiang 已提交
141
    const std::vector<std::vector<int>> &float_shape,
M
MRXLT 已提交
142 143
    const std::vector<std::vector<std::vector<int64_t>>> &int_feed_batch,
    const std::vector<std::string> &int_feed_name,
D
dongdaxiang 已提交
144
    const std::vector<std::vector<int>> &int_shape,
M
MRXLT 已提交
145
    const std::vector<std::string> &fetch_name,
M
MRXLT 已提交
146
    PredictorRes &predict_res_batch,
147 148
    const int &pid,
    const uint64_t log_id) {
M
MRXLT 已提交
149
  int batch_size = std::max(float_feed_batch.size(), int_feed_batch.size());
M
MRXLT 已提交
150

B
barrierye 已提交
151
  predict_res_batch.clear();
M
MRXLT 已提交
152 153 154
  Timer timeline;
  int64_t preprocess_start = timeline.TimeStampUS();

M
MRXLT 已提交
155 156
  int fetch_name_num = fetch_name.size();

D
dongdaxiang 已提交
157
  _api.thrd_initialize();
158 159 160
  std::string variant_tag;
  _predictor = _api.fetch_predictor("general_model", &variant_tag);
  predict_res_batch.set_variant_tag(variant_tag);
161 162 163
  VLOG(2) << "fetch general model predictor done.";
  VLOG(2) << "float feed name size: " << float_feed_name.size();
  VLOG(2) << "int feed name size: " << int_feed_name.size();
M
bug fix  
MRXLT 已提交
164
  VLOG(2) << "max body size : " << brpc::fLU64::FLAGS_max_body_size;
M
MRXLT 已提交
165
  Request req;
166
  req.set_log_id(log_id);
M
MRXLT 已提交
167
  for (auto &name : fetch_name) {
168 169
    req.add_fetch_var_names(name);
  }
B
barrierye 已提交
170

M
MRXLT 已提交
171
  for (int bi = 0; bi < batch_size; bi++) {
172
    VLOG(2) << "prepare batch " << bi;
M
MRXLT 已提交
173 174 175 176 177 178 179 180 181 182 183
    std::vector<Tensor *> tensor_vec;
    FeedInst *inst = req.add_insts();
    std::vector<std::vector<float>> float_feed = float_feed_batch[bi];
    std::vector<std::vector<int64_t>> int_feed = int_feed_batch[bi];
    for (auto &name : float_feed_name) {
      tensor_vec.push_back(inst->add_tensor_array());
    }

    for (auto &name : int_feed_name) {
      tensor_vec.push_back(inst->add_tensor_array());
    }
184

M
bug fix  
MRXLT 已提交
185
    VLOG(2) << "batch [" << bi << "] int_feed_name and float_feed_name "
186
            << "prepared";
M
MRXLT 已提交
187
    int vec_idx = 0;
M
bug fix  
MRXLT 已提交
188 189
    VLOG(2) << "tensor_vec size " << tensor_vec.size() << " float shape "
            << float_shape.size();
M
MRXLT 已提交
190 191 192
    for (auto &name : float_feed_name) {
      int idx = _feed_name_to_idx[name];
      Tensor *tensor = tensor_vec[idx];
M
bug fix  
MRXLT 已提交
193 194
      VLOG(2) << "prepare float feed " << name << " shape size "
              << float_shape[vec_idx].size();
B
barrierye 已提交
195
      for (uint32_t j = 0; j < float_shape[vec_idx].size(); ++j) {
196
        tensor->add_shape(float_shape[vec_idx][j]);
M
MRXLT 已提交
197 198
      }
      tensor->set_elem_type(1);
B
barrierye 已提交
199
      for (uint32_t j = 0; j < float_feed[vec_idx].size(); ++j) {
200
        tensor->add_float_data(float_feed[vec_idx][j]);
M
MRXLT 已提交
201 202 203 204
      }
      vec_idx++;
    }

M
MRXLT 已提交
205 206
    VLOG(2) << "batch [" << bi << "] "
            << "float feed value prepared";
207

M
MRXLT 已提交
208 209 210 211
    vec_idx = 0;
    for (auto &name : int_feed_name) {
      int idx = _feed_name_to_idx[name];
      Tensor *tensor = tensor_vec[idx];
M
MRXLT 已提交
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
      if (_type[idx] == 0) {
        VLOG(2) << "prepare int64 feed " << name << " shape size "
                << int_shape[vec_idx].size();
        VLOG(3) << "feed var name " << name << " index " << vec_idx
                << "first data " << int_feed[vec_idx][0];
        for (uint32_t j = 0; j < int_feed[vec_idx].size(); ++j) {
          tensor->add_int64_data(int_feed[vec_idx][j]);
        }
      } else if (_type[idx] == 2) {
        VLOG(2) << "prepare int32 feed " << name << " shape size "
                << int_shape[vec_idx].size();
        VLOG(3) << "feed var name " << name << " index " << vec_idx
                << "first data " << int32_t(int_feed[vec_idx][0]);
        for (uint32_t j = 0; j < int_feed[vec_idx].size(); ++j) {
          tensor->add_int_data(int32_t(int_feed[vec_idx][j]));
        }
      }

B
barrierye 已提交
230
      for (uint32_t j = 0; j < int_shape[vec_idx].size(); ++j) {
231
        tensor->add_shape(int_shape[vec_idx][j]);
M
MRXLT 已提交
232
      }
M
MRXLT 已提交
233
      tensor->set_elem_type(_type[idx]);
M
MRXLT 已提交
234 235
      vec_idx++;
    }
236

M
MRXLT 已提交
237
    VLOG(2) << "batch [" << bi << "] "
M
MRXLT 已提交
238
            << "int feed value prepared";
M
MRXLT 已提交
239 240
  }

M
MRXLT 已提交
241 242 243 244
  int64_t preprocess_end = timeline.TimeStampUS();

  int64_t client_infer_start = timeline.TimeStampUS();

M
MRXLT 已提交
245 246
  Response res;

M
MRXLT 已提交
247 248 249 250 251 252 253 254 255 256
  int64_t client_infer_end = 0;
  int64_t postprocess_start = 0;
  int64_t postprocess_end = 0;

  if (FLAGS_profile_client) {
    if (FLAGS_profile_server) {
      req.set_profile_server(true);
    }
  }

M
MRXLT 已提交
257 258 259
  res.Clear();
  if (_predictor->inference(&req, &res) != 0) {
    LOG(ERROR) << "failed call predictor with req: " << req.ShortDebugString();
B
barrierye 已提交
260
    _api.thrd_clear();
D
dongdaxiang 已提交
261
    return -1;
M
MRXLT 已提交
262
  } else {
M
MRXLT 已提交
263 264
    client_infer_end = timeline.TimeStampUS();
    postprocess_start = client_infer_end;
D
dongdaxiang 已提交
265
    VLOG(2) << "get model output num";
B
barrierye 已提交
266
    uint32_t model_num = res.outputs_size();
D
dongdaxiang 已提交
267
    VLOG(2) << "model num: " << model_num;
M
MRXLT 已提交
268 269 270 271 272 273
    for (uint32_t m_idx = 0; m_idx < model_num; ++m_idx) {
      VLOG(2) << "process model output index: " << m_idx;
      auto output = res.outputs(m_idx);
      ModelRes model;
      model.set_engine_name(output.engine_name());

M
MRXLT 已提交
274 275
      int idx = 0;

M
MRXLT 已提交
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
      for (auto &name : fetch_name) {
        // int idx = _fetch_name_to_idx[name];
        int shape_size = output.insts(0).tensor_array(idx).shape_size();
        VLOG(2) << "fetch var " << name << " index " << idx << " shape size "
                << shape_size;
        model._shape_map[name].resize(shape_size);
        for (int i = 0; i < shape_size; ++i) {
          model._shape_map[name][i] =
              output.insts(0).tensor_array(idx).shape(i);
        }
        int lod_size = output.insts(0).tensor_array(idx).lod_size();
        if (lod_size > 0) {
          model._lod_map[name].resize(lod_size);
          for (int i = 0; i < lod_size; ++i) {
            model._lod_map[name][i] = output.insts(0).tensor_array(idx).lod(i);
          }
        }
        idx += 1;
      }

M
MRXLT 已提交
296
      idx = 0;
M
MRXLT 已提交
297 298 299
      for (auto &name : fetch_name) {
        // int idx = _fetch_name_to_idx[name];
        if (_fetch_name_to_type[name] == 0) {
M
MRXLT 已提交
300
          VLOG(2) << "ferch var " << name << "type int64";
M
MRXLT 已提交
301
          int size = output.insts(0).tensor_array(idx).int64_data_size();
W
WangXi 已提交
302 303 304
          model._int64_value_map[name] = std::vector<int64_t>(
              output.insts(0).tensor_array(idx).int64_data().begin(),
              output.insts(0).tensor_array(idx).int64_data().begin() + size);
M
MRXLT 已提交
305
        } else if (_fetch_name_to_type[name] == 1) {
M
MRXLT 已提交
306 307
          VLOG(2) << "fetch var " << name << "type float";
          int size = output.insts(0).tensor_array(idx).float_data_size();
W
WangXi 已提交
308 309 310
          model._float_value_map[name] = std::vector<float>(
              output.insts(0).tensor_array(idx).float_data().begin(),
              output.insts(0).tensor_array(idx).float_data().begin() + size);
M
MRXLT 已提交
311
        } else if (_fetch_name_to_type[name] == 2) {
M
MRXLT 已提交
312 313 314 315 316
          VLOG(2) << "fetch var " << name << "type int32";
          int size = output.insts(0).tensor_array(idx).int_data_size();
          model._int32_value_map[name] = std::vector<int32_t>(
              output.insts(0).tensor_array(idx).int_data().begin(),
              output.insts(0).tensor_array(idx).int_data().begin() + size);
M
MRXLT 已提交
317
        }
M
MRXLT 已提交
318

M
MRXLT 已提交
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
        idx += 1;
      }
      predict_res_batch.add_model_res(std::move(model));
    }
    postprocess_end = timeline.TimeStampUS();
  }

  if (FLAGS_profile_client) {
    std::ostringstream oss;
    oss << "PROFILE\t"
        << "pid:" << pid << "\t"
        << "prepro_0:" << preprocess_start << " "
        << "prepro_1:" << preprocess_end << " "
        << "client_infer_0:" << client_infer_start << " "
        << "client_infer_1:" << client_infer_end << " ";
    if (FLAGS_profile_server) {
      int op_num = res.profile_time_size() / 2;
      for (int i = 0; i < op_num; ++i) {
        oss << "op" << i << "_0:" << res.profile_time(i * 2) << " ";
        oss << "op" << i << "_1:" << res.profile_time(i * 2 + 1) << " ";
      }
    }

    oss << "postpro_0:" << postprocess_start << " ";
    oss << "postpro_1:" << postprocess_end;

    fprintf(stderr, "%s\n", oss.str().c_str());
  }

  _api.thrd_clear();
  return 0;
}

int PredictorClient::numpy_predict(
    const std::vector<std::vector<py::array_t<float>>> &float_feed_batch,
    const std::vector<std::string> &float_feed_name,
    const std::vector<std::vector<int>> &float_shape,
    const std::vector<std::vector<py::array_t<int64_t>>> &int_feed_batch,
    const std::vector<std::string> &int_feed_name,
    const std::vector<std::vector<int>> &int_shape,
    const std::vector<std::string> &fetch_name,
    PredictorRes &predict_res_batch,
361 362
    const int &pid,
    const uint64_t log_id) {
M
MRXLT 已提交
363
  int batch_size = std::max(float_feed_batch.size(), int_feed_batch.size());
D
dongdaxiang 已提交
364
  VLOG(2) << "batch size: " << batch_size;
M
MRXLT 已提交
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
  predict_res_batch.clear();
  Timer timeline;
  int64_t preprocess_start = timeline.TimeStampUS();

  int fetch_name_num = fetch_name.size();

  _api.thrd_initialize();
  std::string variant_tag;
  _predictor = _api.fetch_predictor("general_model", &variant_tag);
  predict_res_batch.set_variant_tag(variant_tag);
  VLOG(2) << "fetch general model predictor done.";
  VLOG(2) << "float feed name size: " << float_feed_name.size();
  VLOG(2) << "int feed name size: " << int_feed_name.size();
  VLOG(2) << "max body size : " << brpc::fLU64::FLAGS_max_body_size;
  Request req;
380
  req.set_log_id(log_id);
M
MRXLT 已提交
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
  for (auto &name : fetch_name) {
    req.add_fetch_var_names(name);
  }

  for (int bi = 0; bi < batch_size; bi++) {
    VLOG(2) << "prepare batch " << bi;
    std::vector<Tensor *> tensor_vec;
    FeedInst *inst = req.add_insts();
    std::vector<py::array_t<float>> float_feed = float_feed_batch[bi];
    std::vector<py::array_t<int64_t>> int_feed = int_feed_batch[bi];
    for (auto &name : float_feed_name) {
      tensor_vec.push_back(inst->add_tensor_array());
    }

    for (auto &name : int_feed_name) {
      tensor_vec.push_back(inst->add_tensor_array());
    }

    VLOG(2) << "batch [" << bi << "] int_feed_name and float_feed_name "
            << "prepared";

    int vec_idx = 0;
    VLOG(2) << "tensor_vec size " << tensor_vec.size() << " float shape "
            << float_shape.size();
    for (auto &name : float_feed_name) {
      int idx = _feed_name_to_idx[name];
      Tensor *tensor = tensor_vec[idx];
      VLOG(2) << "prepare float feed " << name << " shape size "
              << float_shape[vec_idx].size();
      for (uint32_t j = 0; j < float_shape[vec_idx].size(); ++j) {
        tensor->add_shape(float_shape[vec_idx][j]);
      }
      tensor->set_elem_type(1);
      const int float_shape_size = float_shape[vec_idx].size();
      switch (float_shape_size) {
M
bug fix  
MRXLT 已提交
416 417 418 419 420 421 422 423 424 425 426 427 428
        case 4: {
          auto float_array = float_feed[vec_idx].unchecked<4>();
          for (ssize_t i = 0; i < float_array.shape(0); i++) {
            for (ssize_t j = 0; j < float_array.shape(1); j++) {
              for (ssize_t k = 0; k < float_array.shape(2); k++) {
                for (ssize_t l = 0; l < float_array.shape(3); l++) {
                  tensor->add_float_data(float_array(i, j, k, l));
                }
              }
            }
          }
          break;
        }
M
MRXLT 已提交
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
        case 3: {
          auto float_array = float_feed[vec_idx].unchecked<3>();
          for (ssize_t i = 0; i < float_array.shape(0); i++) {
            for (ssize_t j = 0; j < float_array.shape(1); j++) {
              for (ssize_t k = 0; k < float_array.shape(2); k++) {
                tensor->add_float_data(float_array(i, j, k));
              }
            }
          }
          break;
        }
        case 2: {
          auto float_array = float_feed[vec_idx].unchecked<2>();
          for (ssize_t i = 0; i < float_array.shape(0); i++) {
            for (ssize_t j = 0; j < float_array.shape(1); j++) {
              tensor->add_float_data(float_array(i, j));
            }
          }
          break;
        }
M
bug fix  
MRXLT 已提交
449 450 451 452 453 454 455
        case 1: {
          auto float_array = float_feed[vec_idx].unchecked<1>();
          for (ssize_t i = 0; i < float_array.shape(0); i++) {
            tensor->add_float_data(float_array(i));
          }
          break;
        }
M
MRXLT 已提交
456 457 458 459 460 461 462 463 464 465 466
      }
      vec_idx++;
    }

    VLOG(2) << "batch [" << bi << "] "
            << "float feed value prepared";

    vec_idx = 0;
    for (auto &name : int_feed_name) {
      int idx = _feed_name_to_idx[name];
      Tensor *tensor = tensor_vec[idx];
M
MRXLT 已提交
467

M
MRXLT 已提交
468 469 470
      for (uint32_t j = 0; j < int_shape[vec_idx].size(); ++j) {
        tensor->add_shape(int_shape[vec_idx][j]);
      }
M
MRXLT 已提交
471 472 473 474 475 476 477 478 479
      tensor->set_elem_type(_type[idx]);

      if (_type[idx] == 0) {
        VLOG(2) << "prepare int feed " << name << " shape size "
                << int_shape[vec_idx].size();
      } else {
        VLOG(2) << "prepare int32 feed " << name << " shape size "
                << int_shape[vec_idx].size();
      }
M
MRXLT 已提交
480 481 482 483

      const int int_shape_size = int_shape[vec_idx].size();
      switch (int_shape_size) {
        case 4: {
M
bug fix  
MRXLT 已提交
484
          auto int_array = int_feed[vec_idx].unchecked<4>();
M
MRXLT 已提交
485 486 487 488
          for (ssize_t i = 0; i < int_array.shape(0); i++) {
            for (ssize_t j = 0; j < int_array.shape(1); j++) {
              for (ssize_t k = 0; k < int_array.shape(2); k++) {
                for (ssize_t l = 0; k < int_array.shape(3); l++) {
M
MRXLT 已提交
489 490 491 492 493
                  if (_type[idx] == 0) {
                    tensor->add_int64_data(int_array(i, j, k, l));
                  } else {
                    tensor->add_int_data(int_array(i, j, k, l));
                  }
M
MRXLT 已提交
494 495 496 497 498 499 500 501 502 503 504
                }
              }
            }
          }
          break;
        }
        case 3: {
          auto int_array = int_feed[vec_idx].unchecked<3>();
          for (ssize_t i = 0; i < int_array.shape(0); i++) {
            for (ssize_t j = 0; j < int_array.shape(1); j++) {
              for (ssize_t k = 0; k < int_array.shape(2); k++) {
M
MRXLT 已提交
505 506 507 508 509
                if (_type[idx] == 0) {
                  tensor->add_int64_data(int_array(i, j, k));
                } else {
                  tensor->add_int_data(int_array(i, j, k));
                }
M
MRXLT 已提交
510 511 512 513 514 515 516 517 518
              }
            }
          }
          break;
        }
        case 2: {
          auto int_array = int_feed[vec_idx].unchecked<2>();
          for (ssize_t i = 0; i < int_array.shape(0); i++) {
            for (ssize_t j = 0; j < int_array.shape(1); j++) {
M
MRXLT 已提交
519 520 521 522 523
              if (_type[idx] == 0) {
                tensor->add_int64_data(int_array(i, j));
              } else {
                tensor->add_int_data(int_array(i, j));
              }
M
MRXLT 已提交
524 525 526 527 528
            }
          }
          break;
        }
        case 1: {
M
bug fix  
MRXLT 已提交
529
          auto int_array = int_feed[vec_idx].unchecked<1>();
M
MRXLT 已提交
530
          for (ssize_t i = 0; i < int_array.shape(0); i++) {
M
MRXLT 已提交
531 532 533 534 535
            if (_type[idx] == 0) {
              tensor->add_int64_data(int_array(i));
            } else {
              tensor->add_int_data(int_array(i));
            }
M
MRXLT 已提交
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
          }
          break;
        }
      }
      vec_idx++;
    }

    VLOG(2) << "batch [" << bi << "] "
            << "int feed value prepared";
  }

  int64_t preprocess_end = timeline.TimeStampUS();

  int64_t client_infer_start = timeline.TimeStampUS();

  Response res;

  int64_t client_infer_end = 0;
  int64_t postprocess_start = 0;
  int64_t postprocess_end = 0;

  if (FLAGS_profile_client) {
    if (FLAGS_profile_server) {
      req.set_profile_server(true);
    }
  }

  res.Clear();
  if (_predictor->inference(&req, &res) != 0) {
    LOG(ERROR) << "failed call predictor with req: " << req.ShortDebugString();
    return -1;
  } else {
    client_infer_end = timeline.TimeStampUS();
    postprocess_start = client_infer_end;
    VLOG(2) << "get model output num";
    uint32_t model_num = res.outputs_size();
    VLOG(2) << "model num: " << model_num;
B
barrierye 已提交
573 574 575
    for (uint32_t m_idx = 0; m_idx < model_num; ++m_idx) {
      VLOG(2) << "process model output index: " << m_idx;
      auto output = res.outputs(m_idx);
B
barrierye 已提交
576 577
      ModelRes model;
      model.set_engine_name(output.engine_name());
B
barrierye 已提交
578

M
MRXLT 已提交
579
      int idx = 0;
M
MRXLT 已提交
580
      for (auto &name : fetch_name) {
B
barrierye 已提交
581
        // int idx = _fetch_name_to_idx[name];
B
barrierye 已提交
582
        int shape_size = output.insts(0).tensor_array(idx).shape_size();
B
barrierye 已提交
583 584
        VLOG(2) << "fetch var " << name << " index " << idx << " shape size "
                << shape_size;
B
barrierye 已提交
585 586 587 588 589 590 591 592 593 594 595
        model._shape_map[name].resize(shape_size);
        for (int i = 0; i < shape_size; ++i) {
          model._shape_map[name][i] =
              output.insts(0).tensor_array(idx).shape(i);
        }
        int lod_size = output.insts(0).tensor_array(idx).lod_size();
        if (lod_size > 0) {
          model._lod_map[name].resize(lod_size);
          for (int i = 0; i < lod_size; ++i) {
            model._lod_map[name][i] = output.insts(0).tensor_array(idx).lod(i);
          }
596
        }
B
barrierye 已提交
597
        idx += 1;
B
barrierye 已提交
598
      }
599

M
MRXLT 已提交
600 601
      idx = 0;

B
barrierye 已提交
602
      for (auto &name : fetch_name) {
B
barrierye 已提交
603
        // int idx = _fetch_name_to_idx[name];
B
barrierye 已提交
604
        if (_fetch_name_to_type[name] == 0) {
M
MRXLT 已提交
605
          VLOG(2) << "ferch var " << name << "type int64";
B
barrierye 已提交
606
          int size = output.insts(0).tensor_array(idx).int64_data_size();
W
WangXi 已提交
607 608 609
          model._int64_value_map[name] = std::vector<int64_t>(
              output.insts(0).tensor_array(idx).int64_data().begin(),
              output.insts(0).tensor_array(idx).int64_data().begin() + size);
M
MRXLT 已提交
610
        } else if (_fetch_name_to_type[name] == 1) {
B
barrierye 已提交
611
          VLOG(2) << "fetch var " << name << "type float";
B
barrierye 已提交
612
          int size = output.insts(0).tensor_array(idx).float_data_size();
W
WangXi 已提交
613 614 615
          model._float_value_map[name] = std::vector<float>(
              output.insts(0).tensor_array(idx).float_data().begin(),
              output.insts(0).tensor_array(idx).float_data().begin() + size);
M
MRXLT 已提交
616 617 618
        } else if (_fetch_name_to_type[name] == 2) {
          VLOG(2) << "fetch var " << name << "type int32";
          int size = output.insts(0).tensor_array(idx).int_data_size();
M
MRXLT 已提交
619 620 621
          model._int32_value_map[name] = std::vector<int32_t>(
              output.insts(0).tensor_array(idx).int_data().begin(),
              output.insts(0).tensor_array(idx).int_data().begin() + size);
M
MRXLT 已提交
622
        }
B
barrierye 已提交
623
        idx += 1;
M
MRXLT 已提交
624
      }
B
barrierye 已提交
625
      predict_res_batch.add_model_res(std::move(model));
M
MRXLT 已提交
626
    }
627
    postprocess_end = timeline.TimeStampUS();
M
MRXLT 已提交
628 629
  }

M
MRXLT 已提交
630 631 632
  if (FLAGS_profile_client) {
    std::ostringstream oss;
    oss << "PROFILE\t"
M
MRXLT 已提交
633
        << "pid:" << pid << "\t"
M
MRXLT 已提交
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
        << "prepro_0:" << preprocess_start << " "
        << "prepro_1:" << preprocess_end << " "
        << "client_infer_0:" << client_infer_start << " "
        << "client_infer_1:" << client_infer_end << " ";
    if (FLAGS_profile_server) {
      int op_num = res.profile_time_size() / 2;
      for (int i = 0; i < op_num; ++i) {
        oss << "op" << i << "_0:" << res.profile_time(i * 2) << " ";
        oss << "op" << i << "_1:" << res.profile_time(i * 2 + 1) << " ";
      }
    }

    oss << "postpro_0:" << postprocess_start << " ";
    oss << "postpro_1:" << postprocess_end;

    fprintf(stderr, "%s\n", oss.str().c_str());
  }
D
dongdaxiang 已提交
651 652

  _api.thrd_clear();
M
MRXLT 已提交
653
  return 0;
M
MRXLT 已提交
654
}
G
guru4elephant 已提交
655 656 657
}  // namespace general_model
}  // namespace paddle_serving
}  // namespace baidu