QClassifier_EN.ipynb 163.1 KB
Notebook
Newer Older
Q
Quleaf 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Quantum Classifier\n",
    "\n",
    "<em> Copyright (c) 2021 Institute for Quantum Computing, Baidu Inc. All Rights Reserved. </em>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Overview\n",
    "\n",
Q
Quleaf 已提交
18
    "In this tutorial, we will discuss the workflow of Variational Quantum Classifiers (VQC) and how to use quantum neural networks (QNN) to accomplish a **binary classification** task. The main representatives of this approach include the [Quantum Circuit Learning (QCL)](https://arxiv.org/abs/1803.00745) [1] by Mitarai et al. (2018), Farhi & Neven (2018) [2] and [Circuit-Centric Quantum Classifiers](https://arxiv.org/abs/1804.00633) [3] by Schuld et al. (2018). Here, we mainly talk about classification in the language of supervised learning. Unlike classical methods, quantum classifiers require pre-processing to encode classical data into quantum data, and then train the parameters in the quantum neural network. Using different encoding methods, we can benchmark the optimal classification performance through test data. Finally, we demonstrate how to use built-in quantum datasets to accomplish quantum classification.\n",
Q
Quleaf 已提交
19 20 21
    "\n",
    "### Background\n",
    "\n",
Q
Quleaf 已提交
22
    "In the language of supervised learning, we need to enter a data set composed of $N$ pairs of labeled data points $D = \\{(x^k,y^k)\\}_{k=1}^{N}$ , Where $x^k\\in \\mathbb{R}^{m}$ is the data point, and $y^k \\in\\{0,1\\}$ is the label associated with the data point $x^k$. **The classification process is essentially a decision-making process, which determines the label attribution of a given data point**. For the quantum classifier framework, the realization of the classifier $\\mathcal{F}$ is a combination of a quantum neural network (or parameterized quantum circuit) with parameters $\\theta$, measurement, and data processing. An excellent classifier $\\mathcal{F}_\\theta$ should correctly map the data points in each data set to the corresponding labels as accurate as possible $\\mathcal{F}_\\theta(x^k ) \\rightarrow y^k$. Therefore, we use the cumulative distance between the predicted label $\\tilde{y}^{k} = \\mathcal{F}_\\theta(x^k)$ and the actual label $y^k$ as the loss function $\\mathcal {L}(\\theta)$ to be optimized. For binary classification tasks, we can choose the following loss function,\n",
Q
Quleaf 已提交
23 24
    "\n",
    "$$\n",
Q
Quleaf 已提交
25
    "\\mathcal{L}(\\theta) = \\sum_{k=1}^N 1/N \\cdot |\\tilde{y}^{k}-y^k|^2. \\tag{1}\n",
Q
Quleaf 已提交
26 27 28 29 30 31
    "$$\n",
    "\n",
    "### Pipeline\n",
    "\n",
    "Here we give the whole pipeline to implement a quantum classifier under the framework of quantum circuit learning (QCL).\n",
    "\n",
Q
Quleaf 已提交
32 33 34 35 36 37
    "1. Encode the classical data $x^k$ to quantum data $\\lvert \\psi_{\\rm in}\\rangle^k$. In this tutorial, we use Angle Encoding, see [encoding methods](./DataEncoding_EN.ipynb) for details. Readers can also try other encoding methods, e.g., Amplitude Encoding, and see the performance.\n",
    "2. Construct the parameterized quantum circuit (PQC), corresponds to the unitary gate $U(\\theta)$.\n",
    "3. Apply the parameterized circuit $U(\\theta)$ with the parameter $\\theta$ on input states $\\lvert \\psi_{\\rm in} \\rangle^k$, thereby obtaining the output state $\\lvert \\psi_{\\rm out} \\rangle^k = U(\\theta)\\lvert \\psi_{\\rm in} \\rangle^k$.\n",
    "4. Measure the quantum state $\\lvert \\psi_{\\rm out}\\rangle^k$ processed by the quantum neural network to get the estimated label $\\tilde{y}^{k}$.\n",
    "5. Repeat steps 3-4 until all data points in the data set have been processed. Then calculate the loss function $\\mathcal{L}(\\theta)$.\n",
    "6. Continuously adjust the parameter $\\theta$ through optimization methods such as gradient descent to minimize the loss function. Record the optimal parameters after optimization $\\theta^* $, and then we obtain the optimal classifier $\\mathcal{F}_{\\theta^*}$.\n",
Q
Quleaf 已提交
38
    "\n",
Q
Quleaf 已提交
39 40
    "<img src=\"./figures/qclassifier-fig-pipeline.png\" width=\"700px\" /> \n",
    "<center> Figure 1: Flow chart of quantum classifier training </center>"
Q
Quleaf 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Paddle Quantum Implementation\n",
    "\n",
    "Here, we first import the required packages:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
Q
Quleaf 已提交
55
   "metadata": {},
Q
Quleaf 已提交
56 57 58 59 60 61 62 63 64 65
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "C:\\Users\\yeruilin\\Anaconda3\\envs\\paddle_quantum_env\\lib\\site-packages\\matplotlib_inline\\config.py:66: DeprecationWarning: InlineBackend._figure_formats_changed is deprecated in traitlets 4.1: use @observe and @unobserve instead.\n",
      "  def _figure_formats_changed(self, name, old, new):\n"
     ]
    }
   ],
Q
Quleaf 已提交
66
   "source": [
Q
Quleaf 已提交
67
    "# Import numpy and paddle\n",
Q
Quleaf 已提交
68
    "import numpy as np\n",
Q
Quleaf 已提交
69
    "import paddle\n",
Q
Quleaf 已提交
70
    "\n",
Q
Quleaf 已提交
71
    "# To construct quantum circuit\n",
Q
Quleaf 已提交
72
    "from paddle_quantum.circuit import UAnsatz\n",
Q
Quleaf 已提交
73 74
    "# Some functions\n",
    "from numpy import pi as PI\n",
Q
Quleaf 已提交
75 76
    "from paddle import matmul, transpose, reshape  # paddle matrix multiplication and transpose\n",
    "from paddle_quantum.utils import pauli_str_to_matrix, dagger  # N qubits Pauli matrix, complex conjugate\n",
Q
Quleaf 已提交
77 78 79 80 81 82 83 84 85 86 87
    "\n",
    "# Plot figures, calculate the run time\n",
    "from matplotlib import pyplot as plt\n",
    "import time"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Parameters used for classification"
Q
Quleaf 已提交
88 89 90 91 92
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
Q
Quleaf 已提交
93
   "metadata": {},
Q
Quleaf 已提交
94 95
   "outputs": [],
   "source": [
Q
Quleaf 已提交
96 97 98 99 100 101 102 103 104
    "# Parameters for generating the data set\n",
    "Ntrain = 200        # Specify the training set size\n",
    "Ntest = 100         # Specify the test set size\n",
    "boundary_gap = 0.5  # Set the width of the decision boundary\n",
    "seed_data = 2       # Fixed random seed required to generate the data set\n",
    "# Parameters for training\n",
    "N = 4               # Number of qubits required\n",
    "DEPTH = 1           # Circuit depth\n",
    "BATCH = 20          # Batch size during training\n",
Q
Quleaf 已提交
105
    "EPOCH = int(200 * BATCH / Ntrain)\n",
Q
Quleaf 已提交
106 107 108
    "                    # Number of training epochs, the total iteration number \"EPOCH * (Ntrain / BATCH)\" is chosen to be about 200\n",
    "LR = 0.01           # Set the learning rate\n",
    "seed_paras = 19     # Set random seed to initialize various parameters"
Q
Quleaf 已提交
109 110 111 112 113 114 115 116
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Data set generation\n",
    "\n",
Q
Quleaf 已提交
117
    "One of the key parts in supervised learning is what data set to use? In this tutorial, we follow the exact approach introduced in QCL paper to generate a simple binary data set $\\{(x^{k}, y^{k})\\}$ with circular decision boundary, where the data point $x^{k}\\in \\mathbb{R}^{2}$, and the label $y^{k} \\in \\{0,1\\}$. The figure below provides us a concrete example.\n",
Q
Quleaf 已提交
118
    "\n",
Q
Quleaf 已提交
119 120
    "<img src=\"./figures/qclassifier-fig-data.png\" width=\"400px\" /> \n",
    "<center> Figure 2: Generated data set and the corresponding decision boundary </center>\n",
Q
Quleaf 已提交
121 122 123 124
    "\n",
    "For the generation method and visualization, please see the following code:"
   ]
  },
Q
Quleaf 已提交
125 126 127 128 129 130 131
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Generate a binary classification data set"
   ]
  },
Q
Quleaf 已提交
132 133 134 135 136
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {
    "ExecuteTime": {
Q
Quleaf 已提交
137 138
     "end_time": "2021-03-09T04:03:35.707224Z",
     "start_time": "2021-03-09T04:03:35.691351Z"
Q
Quleaf 已提交
139 140 141 142 143 144 145 146 147 148 149 150 151 152
    }
   },
   "outputs": [],
   "source": [
    "# Generate a binary classification data set with circular decision boundary\n",
    "def circle_data_point_generator(Ntrain, Ntest, boundary_gap, seed_data):\n",
    "    \"\"\"\n",
    "    :param Ntrain: number of training samples\n",
    "    :param Ntest: number of test samples\n",
    "    :param boundary_gap: value in (0, 0.5), means the gap between two labels\n",
    "    :param seed_data: random seed\n",
    "    :return: 'Ntrain' samples for training and\n",
    "             'Ntest' samples for testing\n",
    "    \"\"\"\n",
Q
Quleaf 已提交
153 154
    "    # Generate \"Ntrain + Ntest\" pairs of data, x for 2-dim data points, y for labels.\n",
    "    # The first \"Ntrain\" pairs are used as training set, the last \"Ntest\" pairs are used as testing set\n",
Q
Quleaf 已提交
155 156
    "    train_x, train_y = [], []\n",
    "    num_samples, seed_para = 0, 0\n",
Q
Quleaf 已提交
157
    "    while num_samples < Ntrain + Ntest:\n",
Q
Quleaf 已提交
158
    "        np.random.seed((seed_data + 10) * 1000 + seed_para + num_samples)\n",
Q
Quleaf 已提交
159
    "        data_point = np.random.rand(2) * 2 - 1  # 2-dim vector in range [-1, 1]\n",
Q
Quleaf 已提交
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
    "\n",
    "        # If the modulus of the data point is less than (0.7 - gap), mark it as 0\n",
    "        if np.linalg.norm(data_point) < 0.7-boundary_gap / 2:\n",
    "            train_x.append(data_point)\n",
    "            train_y.append(0.)\n",
    "            num_samples += 1\n",
    "\n",
    "        # If the modulus of the data point is greater than (0.7 + gap), mark it as 1\n",
    "        elif np.linalg.norm(data_point) > 0.7 + boundary_gap / 2:\n",
    "            train_x.append(data_point)\n",
    "            train_y.append(1.)\n",
    "            num_samples += 1\n",
    "        else:\n",
    "            seed_para += 1\n",
    "\n",
    "    train_x = np.array(train_x).astype(\"float64\")\n",
    "    train_y = np.array([train_y]).astype(\"float64\").T\n",
    "\n",
    "    print(\"The dimensions of the training set x {} and y {}\".format(np.shape(train_x[0:Ntrain]), np.shape(train_y[0:Ntrain])))\n",
    "    print(\"The dimensions of the test set x {} and y {}\".format(np.shape(train_x[Ntrain:]), np.shape(train_y[Ntrain:])), \"\\n\")\n",
    "\n",
Q
Quleaf 已提交
181
    "    return train_x[0:Ntrain], train_y[0:Ntrain], train_x[Ntrain:], train_y[Ntrain:]"
Q
Quleaf 已提交
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Visualize the generated data set"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [],
   "source": [
Q
Quleaf 已提交
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
    "def data_point_plot(data, label):\n",
    "    \"\"\"\n",
    "    :param data: shape [M, 2], means M 2-D data points\n",
    "    :param label: value 0 or 1\n",
    "    :return: plot these data points\n",
    "    \"\"\"\n",
    "    dim_samples, dim_useless = np.shape(data)\n",
    "    plt.figure(1)\n",
    "    for i in range(dim_samples):\n",
    "        if label[i] == 0:\n",
    "            plt.plot(data[i][0], data[i][1], color=\"r\", marker=\"o\")\n",
    "        elif label[i] == 1:\n",
    "            plt.plot(data[i][0], data[i][1], color=\"b\", marker=\"o\")\n",
    "    plt.show()"
   ]
  },
Q
Quleaf 已提交
213 214 215 216 217 218 219
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "In this tutorial, we use a training set with 200 elements, a testing set with 100 elements. The boundary gap is 0.5."
   ]
  },
Q
Quleaf 已提交
220 221
  {
   "cell_type": "code",
Q
Quleaf 已提交
222
   "execution_count": 5,
Q
Quleaf 已提交
223 224
   "metadata": {
    "ExecuteTime": {
Q
Quleaf 已提交
225 226
     "end_time": "2021-03-09T04:03:37.244233Z",
     "start_time": "2021-03-09T04:03:35.719425Z"
Q
Quleaf 已提交
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The dimensions of the training set x (200, 2) and y (200, 1)\n",
      "The dimensions of the test set x (100, 2) and y (100, 1) \n",
      "\n",
      "Visualization of 200 data points in the training set: \n"
     ]
    },
    {
     "data": {
Q
Quleaf 已提交
242
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAD4CAYAAADhNOGaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAApn0lEQVR4nO2df6xexXnnP4+vYydu1Ma89mYdwNeQZZuQ3QrCVZSkUpqkJCHuClOVtiSG3qRUXm6b7kpRqxhZ6kZsrdL+Q6gSRCxKcLlXCQlVFLclYoGEXWk3kFx2AfNDxsYJYErCxQ6RIigJZvaPc974+PX5/XPOe74fafSeM+fX886ZM8/MPM/MmHMOIYQQw2VV1wIIIYToFikCIYQYOFIEQggxcKQIhBBi4EgRCCHEwFndtQBl2LBhg9uyZUvXYgghRK944IEHXnDObZyM76Ui2LJlC8vLy12LIYQQvcLMnoqLV9eQEEIMHCkCIYQYOFIEQggxcKQIhBBi4EgRCCHEwKlFEZjZzWb2vJk9knDczOxvzeyQmT1sZu+MHJs3s4NhmK9DHiHKsLQEW7bAqlXB79JS1xL5ic/p5JNsPsmSiXOucgDeB7wTeCTh+Fbgm4AB7wbuD+NPAw6Hv+vD7fVZz7vgggtcn1lcdG521jmz4HdxsWuJxOKic+vWOQcnwrp1ejeTNJVOdXwTPr1Dn2SJAiy7uDI6LrJMALakKIIvAh+L7B8ANgEfA76YdF5S6LMiiMsgZs4tLHQtWbP4rvxmZ09+J+MwO9u1ZH7RRDrVVWj69A59kiVKkiJoy0ZwOvBMZP9IGJcUfwpmtsPMls1seWVlpTFBm2bXLnjppZPjnIMbb6y/6ehL03RpCXbsgKeeCv7rU08F+z41lZ9+ulj8UHkqdjhStXSK+yZeeimIL4JP79AnWfLQG2Oxc26Pc27OOTe3ceMpI6R7Q9KH5FzxjJ+GT4VvXR96k2zeXCy+SXxR4JMsLYFZ/LEy6TT+n3UpF5/eoU+y5KEtRfAscGZk/4wwLil+akn6kKDe2oJPhW8fake7d8O6dSfHrVsXxLeJTwp8kl27ApkmMSueTtH/mUTRQrPKO6yifOOu9SU/5Sauv6hMIN1G8FucbCz+rjthLP4+gaF4fbh9Wtaz6rARdNVnHddvGNd/WFU+s/hnmNX4Z3Lia3/pJD7YMZpMq6byFBSXJel/VjWsLi46NxqduM9olH2fKjaKtGt9yE+T0KSxGPgy8Bzwc4J+/iuBq4CrwuMGfAF4EtgPzEWu/UPgUBg+med5VRVBlxb9tMw/fn4d8vlU+PrqQeEjTSlw3/JUmlKpUmiW+Z9V/pdP31keGlUEbYeqiiDp5c3MNK+9o7WVaPilX8qWr0jm6qrwTaoF+Vg78pGmChbf8pRP/zOP8k3Kv1Wu7QIpgghptZGmC83FRefWrDn5WWvWnPysumqFbWdA1fyr01Qa+panfPqfWcojTdYq13aBFEGErP7Jppt3WR9T35qbY/oqt280ocB9fDe+/M+swjrtnlWu7QIpgghxL6+O2lJd+FaLyItPBmpxMnXnKR+6O+JkKPs/0/5PVr6ucm3bSBFMsLgY2AS6aBHkla/rD60ovtV+xMn43q1Tlwx1fzvTZEyWIoghy1bQh8LXJ3woIETz+FC4tSlDU+6lXSBFEEOarWA0quURXtFGK6OPLRlRDB+6O9qWoUq+9umbkCKIIc6DB5x73eumrwDzrWYi+svQWgRJ+FTA5yVJEfRmrqEm2L4dbr4ZRqMTcaMRfOlLwbFpwqcpJ0S/8WH6hK5l8HkqkDJYoCT6xdzcnFteXu5ajF6xalWQYScxg9dea18e0W+WloJKxNNPB3MC7d7dfuWpSxmSJsubnYUf/KAdGcpgZg845+ZOiZciGAZ9zbhC+EhfK1ZJimDQXUNp+DoVcFm6bkoLMU1UmWbax7JFiiCGNvr/imSGOjLO9u2wZ0/QAjALfvfsmT5biBBtULZi5a1tIc6C7HtoeqnKpj0SinjwyNtHiPop4/Ezec3CQvF7dO3thNxH89O0j3KRzNB1xhFi2shTuYor9OuokHU9BiNJEchYHEPThtUihqa+GqWE8JWs73vcfRN1tzaL/w6LlgldO200aiw2s4vM7ICZHTKznTHHrzOzB8PwhJm9GDl2PHJsXx3yVKVpw2oRQ1NZo5SPBikhmqJIfs9aOjVuzE1SfbnocqveOm3ENROKBGCGYOWxs4E1wEPAuSnn/ylwc2T/p0Wf2XTXkHPNjhps2kYgu4IYEkXze1Z3a571Sqp00XY5IpmmbATAe4A7I/tXA1ennP9/gA9F9r1UBE1TJDMUzTiyK4ghUTS/l11DYFJB9LFy1aQiuBS4KbJ/BfD5hHNnCdY2nonEvQosA/cBl+R55jQogibp2iAlRJuUye9plaskRTH2EoITU9j3ZY6hMUmKoO1xBJcBtzvnjkfiZl1gvPg48Dkze2vchWa2w8yWzWx5ZWWlDVl7S5XBLkL0jTL5ffv2wDj72mvBb3Q8TdKYmxtuONHHfzwswbwZB1CROhTBs8CZkf0zwrg4LgO+HI1wzj0b/h4G7gXOj7vQObfHOTfnnJvbuHFjVZmngiQDmbcGKSEaoIn8nqQoyk7e2PYA0sLENROKBGA1cBg4ixPG4nfEnPc24AeE8xuFceuBteH2BuAgKYbmcVDXUHY/Zx+nyBWiLHXk9zz3KNsN5csAUpocUAZsBZ4g8B7aFcZdA1wcOeezwLUT170X2B8qj/3AlXmeJ0UQLJwjg7AQyRR1yMhTAJdxxPBpAGmjiqDtMHRFsLgYn1lkEBYioG6X0rL3dS5/K6KN7zpJEWjSuRR8HZSV1h8pg7AQxfvy0waZRcuBXbtgfr7Y5I15jNnj0cxF71EbcdrB99DWgDJfB2WlDXjxQT4huqZoX35Si2A0ql4OxJUla9YE9x53WyV19bZlI1CLIAGfl3ZMqh2MRppWWggo7lKa5HkE1cuBSXfU0Sgo4o8eDX6feirYTqKN6eKlCBLImo+kS5Iy7fXXdyOPEL5R1KU0aezAsWPx5xctB6LuqG98I/z85/mum51tp3InRZBAWo2ia9uBFpkRIp0y30jc2IEmBmfmVSKtjv2J6y/yPXRpI6hrXnIhhP80YStMs0fEubvWOSYI2QiKkVSjuOMOf20HQoh6aaL1nda1G22RAGzYAJdf3vzSllIEMYy7fq64Iti/9dYTTUWfbQdCiPpJm5eoTDdxknKBE/fasAE++cl4I3ITFU8pggmyFpfWhG5CCKi2EP2kcoGT73X0aLpBue6K5yAVQZoWz3IbrWuCq64NzkKIatTpYh53rzRqr3jGGQ58D1WMxVnGnzwDUaoab3werCaEyEed634UWRWtSlmBFq8PyFo8uo3FpbtewFoIUZ06v+Oke00yGgVG5bLG6kYXr+8TWcbeNubyl8FZiP5TZ1kRd681a4KCf2xQXlyEF15oZrzQ4BRBlrG3jcFaMjgL0X/qLCvi7nXzzUHBH+etVDtx/UW+hyZtBHWSZEuQjUCIYeDbAlFoPYITtPFytIKYEMPGxwpfo4oAuAg4ABwCdsYc/wSwAjwYhj+KHJsnWKLyIDCf53l9WJim6ZWGhBB+U6QMaKtimKQIVlftWjKzGeALwIeAI8D3zGyfc+6xiVNvc859auLa04D/BswBDnggvPbHVeXqGhmEhRg2ecuA8cC08TiC8cA0aG8iyTqMxe8CDjnnDjvnfgZ8BdiW89qPAHc5546Fhf9dBK2L3iODsBDDJm8ZkDUwrY3Bp3UogtOBZyL7R8K4SX7HzB42s9vN7MyC12JmO8xs2cyWV1ZWahC7WdpwQxVC+EveMiBrmcyy01gUoS330X8Etjjnfo2g1r+36A2cc3ucc3POubmNGzfWLmDdaM0AIYbN9u3B+sYzM8H+zEywP1kGpLUc2lopsQ5F8CxwZmT/jDDuFzjnjjrnXgl3bwIuyHttn0mbtVAIMd0sLcHevXD8eLB//HiwP1mbT2s5tGVrrEMRfA84x8zOMrM1wGXAvugJZrYpsnsx8Hi4fSfwYTNbb2brgQ+HcUII0Wvy1ubTeg/asjVW9hpyzr1qZp8iKMBngJudc4+a2TUErkr7gP9iZhcDrwLHCNxJcc4dM7P/TqBMAK5xziWsEiqEEP0hae6guPjt2+N7DHbvPtmjCJqxNQ5u0jkhhGiD1atPdAtFmZmBV1/Nf5+lpaAV8fTTQUtg9+76J52r3CIQQghxKnFKIC0+iaTWQp0MbtI5IYRog9nZYvFdIkUghBAN0KexRFIEYrqpa1im1hYVBenTWCIpghj0zU8JdQ3LbGt4p5g6+jKWSF5DE0xOAAVBc85XTS5SqGstQa0tKqYELVWZk7aGdIsWKDIsM60ZqKlkxZQjRTCBvnkPKdtXl3dYZlbXj6aSFVOOFMEE+uY9o0r/fF63jaxmYJ/cP4QogRTBBPrmPaNKX11et42sZmDd7h/yRhAZtJ5F4pYt8z00vVSl1hP2CLP49f7M6ntGm+uK+riQrfCKJrMICUtVqkUQQ19cvgZBHX11WdWrss3AMtU2eSOIDDrJInHawffQh8XrRU1UrR7lvT6pGZgWX0auNlo4otc0mUVIaBF0XqiXCVIEA6NKX12Vbp+0wr7sfdvshhK9pMkskqQI1DUk/CGpq6VKX10Vf+C0NnrZ+8obQWTQRRaRIhB+0NQ0DlVsDGmFfdn79mkCGtEJnWSRuGZC0QBcBBwADgE7Y45/GngMeBi4B5iNHDsOPBiGfXmep66hKaSp9nAVG0OaTPL+ET2EprqGzGwG+ALwUeBc4GNmdu7Eaf8PmHPO/RpwO/A3kWMvO+fOC8PFVeURPaWpId1VqldpbfS0+9bhBK6xBqJN4rRDkQC8B7gzsn81cHXK+ecD/zuy/9Oiz1SLYArxwYgaZ5Quaqiuo6Wg1oZoCBo0Fp8OPBPZPxLGJXEl8M3I/uvNbNnM7jOzS5IuMrMd4XnLKysrlQQWHtK1ETXJRgHFDNV1OIHX6UiuloXIQ5x2KBKAS4GbIvtXAJ9POPdy4D5gbSTu9PD3bOAHwFuznqkWwZTS9pDu6PNmZuppkdThBJ50DygmS56WhYbRDwqaGkdAzq4h4ELgceDfpNzrFuDSrGdKEQyQMgVWWlfPuHBOKnDLjuKpo4sr6R5m9Y6hUBfU4GhSEawGDgNnAWuAh4B3TJxzPvAkcM5E/Ppx6wDYABwEzs16phRBDylb81xcdG40OrUwyyqw4gq5NWuce93rsgv/pAI8z3+oy0aQpKSKKJSs1okPdhnRKo0pguDebAWeCAv7XWHcNcDF4fbdwI+YcBMF3gvsD5XHfuDKPM+TIugZZQvHuOvyFlhJhVyREJWxyH+oo7uljhZKVkGv6S4GR6OKoO0gRdAz6p6OIU+BlafbJy2sWnVyAd527TnP87IUzsJC/D0WFrr5T6JzkhSBRhaL5ik7RiBuneAoaaN4q64k9NprJ++3vXRdkhfV1q2B948ZXHFF+kjsO+6Iv/c4vmtPLeENUgSiecpOxzAzk3wsq8DavTsoLKsQdddse+m6uAFr8/Owd+8JBencyddMupi2veCO6C9xzQTfg7qGekZZG0Fa102efvesbqXZ2eTuk8muJx88bPLYPaIyq+tHTIC6hkRnlK15zs4mx+eptaZdPx4gdsMNMBrFnxet7ftQe87TDRWVWV0/Ii9x2sH3oBbBQGhzUZqua/t5yGoRFFlwRwwS5DUkeknVgizv9X0oMOMU1tg7qk2Z+5BWIhYpAjFdDLUw6vp/96X1JGJJUgQWHOsXc3Nzbnl5uWsxRFeMJ4iLTsy2bp08XppmaSnwXDp+/NRjs7OBzUV4jZk94Jybm4yXsVj0jzpn5xT5GCvfOCUAzY2nEK0gRSC6p+hUyW0P7ppm8qZ9nPKN4pymue4xUgSiW8qsVdz24C6fqbLeQJG0z6Nk61pnWrRPnOHA9yBj8RRRZtBTnwyWTRp3s9Ih69lF0r7IJH4asOYtyGtIeEnZGTC79p7JQ9MKK60gz/PsImmfNRNskXcnOiNJEchrSHTLli3xk8tNgxdK0/9t1apT5xuCYOTz5s3Zzy4q39JSYCt4+ung/j/9KRw9mv960TnyGhJ+Ms3TIDRt1E6zleR5dtG037795PWbr79+et/dwJAiEN3S5Rw+TS/s3rRRO60gz/PsImkfl1Y+zL8k6iGuv6hoAC4CDgCHgJ0xx9cCt4XH7we2RI5dHcYfAD6S53l12Aj60MUsGqSNhd3bMGonyVjns/tknBep0OCaxTMES1SezYk1i8+dOOePgRvD7cuA28Ltc8Pz1xKsefwkMJP1zKqKQPlatLawe5c1jjqevbjo3MxMelqJ3pCkCCobi83sPcBnnXMfCfevDlsafxU5587wnO+Y2Wrgh8BGYGf03Oh5ac+saiyeZvukyEmaofW115RJIH4qjyjjtBK9oUlj8enAM5H9I2Fc7DnOuVeBnwCjnNcCYGY7zGzZzJZXVlYqCayBqSKzD71KJmna9tAWWaOJhziAb0rpjbHYObfHOTfnnJvbuHFjpXtpYKrI9Jgpm0nKjJT2lTSlJ++gqaIORfAscGZk/4wwLvacsGvoV4CjOa+tnWn2WPQW32rJWR4vZTPJNE2Il6T0ZmaCtAK/3qkoT5zhoEgAVgOHCYy9Y2PxOybO+RNONhZ/Ndx+Bycbiw/TgrHYOXkNtUoZw6sPL2hh4YShdGYm2M+i7EhpH0l7b/K46CU0OcUEsBV4gsDrZ1cYdw1wcbj9euBrBG6i3wXOjly7K7zuAPDRPM/TFBOeklR4F51PyIdCpqwM07ZgfNF3OjOj2pXHNKoI2g5SBB6SVnAWrSX7UJiWlcEXJdZ0ayrpnaqF4DVJikBzDYl6SHO3hGKumFmunW1QRYbJOXl2725vtG1bq7clve9JhuRu2wM015BoljR3y6KGVx/curJkSDN+T87J0+aUC0nG6ssvr9egG/dO45BPdj+Iayb4HtQ15CF5Rurm7a7wpXuliKEUnBuNuu8KyeqyqTMdo+9Uo497AbIRiEapu/D2wWuoqKHUh37xPAvINFE4+6C8RSZSBKJ5fCi82yCr1t1lLTjvAjJNPXsI77/HJCkC2QhEfXTZN94mWbaKLvvFowPlkpiZSb9H0cF/4/OvuCLYv/XW6X7/U4gUgRBFyTKUdj1XyVghJ3H8ePKxolNkTNOUGh7R9kB8KQIhspj8KiGodY9Gp57b5lwlWaVFUqsgrbVQdIqMaZpSwxM60a1x/UW+B9kIRCPE9XFnGUG76hfPu7BOUQNu2uC/uP86TVNqeEKT4ynRgDIhUkgaiPWGN/i5QHve9RKKDm5Luu9oBC+/3J/06TFNjqfUgDIxDMp2riZ1ccQVctD9QKm86yUUNeAnDf6D+PSJHo+er6l8S9PFeEopAjE9VOlcLVqwd20Qbqq0SJqe+9ix+POPHdMC9jXTyTT5cf1FvgfZCEQsVTpXk64djaoNlCpjQ8hzTdsDuHyYCHDKib720SgIdZue0IAyMfVUMVxmTSlRxiBcprBeWDj1fyRd06ahWiOHG6Wt5JUiENNP1Vpr3QVrmXUYkpSZDzVvjRxujLYaXEmKQF5Dwn/yer60NQVzXoq6f6RN7dzmFNyiddqaeb0RryEzO83M7jKzg+Hv+phzzjOz75jZo2b2sJn9fuTYLWb2fTN7MAznVZFHTCFFDMBZ6xC3TVGDbprBumvjtGiUrmder+o1tBO4xzl3DnBPuD/JS8AfOOfeAVwEfM7M3hQ5/ufOufPC8GBFecS0UXTkqk/zHdW1DoOZ3DGnnE48hSJUVQTbgL3h9l7gkskTnHNPOOcOhtv/AjwPbKz4XNF38vr75/WX94Xo/9q1C+bn87dQ4koDM7jqqmA7Kb3anphG1E7njdk4w0HeALwY2bbofsL57wIeB1aF+7cQLFr/MHAdsDbl2h3AMrC8efPmei0ool2KuEj0yW2xDtePotNcyJtnKmjLDk9ZryHgbuCRmLBtsuAHfpxyn01hof/uiTgD1hK0KP4iSx4nr6H+U6Rw71NB15TSSrtvnxSliKXN6axKK4K0EBbsm1ykoE8475eB/wtcmnKv9wP/lOe5UgQ9p6i/f1/cFpuagC3tvpr0rfek6fK660FJiqCqjWAfMB9uzwPfmDzBzNYAXwf+3jl3+8SxTeGvEdgXHqkoj+gDRVwkik6a1iVNuX6k3bdrdxNRmTQzWFuzfFdVBNcCHzKzg8CF4T5mNmdmN4Xn/B7wPuATMW6iS2a2H9gPbAD+sqI8og/kdZGoY2L2Ng2pTbl+pN23SFrKoOwlabq8NV+JuGaC70FdQ1NAnu6eOkYKt21faKobK+2+Wc/sk51lgKS9nrpNQGhksegdScMtITk+St45+6cdpYP3JPWA1j1YXusRxKDWsuekDbCqMrW0r2MQmkLp4D1J4yDH4wuiq6K+4Q31P3+wikBrbveA3buDQn8S5/JZy2RIDVA69J6XXz6xffRo/WXVYBWB1tzuAdu3J3cB5anNdj1uvwnKNGOnMR0GRBtl1WAVgVrLPWF2Nj4+T22283H7NVO2GTtt6TAw2iirBmsslv2sJ/g2tXSXKNMOkjpfu4zFE6i13BNUmz2BmrGDpI2yarCKQOVLj/BpaukukdF3kLRRVg1WEUBy+SK3UuElasZOHXnLmqbrQqvrvV3/meySHtvjYLgVUeEJ4wzYl7mXRCo+lTWDNRYnIXucEKINuihrZCzOiexxQog28KmskSKYQPY4IUQb+FTWSBFMIHucEKINfCprpAgmkFupEKINfCpr5DUUw/btKviFEM3g46J7lVoEZnaamd1lZgfD3/UJ5x2PrE62LxJ/lpndb2aHzOy2cFlLIYToBUXHHPk663HVrqGdwD3OuXOAe8L9OF52zp0Xhosj8X8NXOec+3fAj4ErK8ojhBCtUKZQ93XW46qKYBuwN9zeS7AAfS7CBes/CIwXtC90vRBCdEmZQj3LZbSrWQ2qKoI3O+eeC7d/CLw54bzXm9mymd1nZpeEcSPgRefcq+H+EeD0pAeZ2Y7wHssrKysVxRZCiGqUGQeQ5jLaZbdRpiIws7vN7JGYsC16XrgwctIw5dlwNNvHgc+Z2VuLCuqc2+Ocm3POzW3cuLHo5UIIUStlxgGkuYx22W2UqQiccxc65/5DTPgG8CMz2wQQ/j6fcI9nw9/DwL3A+cBR4E1mNvZcOgN4tvI/EkKIFigzDiDNZbTLkcZVu4b2AfPh9jzwjckTzGy9ma0NtzcAvw48FrYgvg1cmna9EEL4SN5xAJP9/hA/k2iXI42rKoJrgQ+Z2UHgwnAfM5szs5vCc94OLJvZQwQF/7XOucfCY58BPm1mhwhsBn9XUR4hhGiEOENu1vTQRfr9Ox1p7JzrXbjgggtcURYXnZuddc4s+F1cLHyLXPep6zlCiO4Zf88QfNNBcR6Edeuyv+/xtZNhdjb9eU2VH8CyiylTOy/Uy4SiimBxMXhp0Rdh5tzCQqHbxN4nmhmyjgsh+kPc95y3QB8zqTyi5U8XJCmCQaxHkDTvtxncemv+4d1Z84drLQMhpoek7zmKWdAtVPQeXZUJg16PIMnq7lwx16wsq75P84sLIaqR57vNMuQm9ftv3erXcriDUARpL6tIIZ1l1fdpfnEhRDWyvts8htw4z6L5edi716/5hgahCHbvDl5CHEUK6Syrvk/ziwshqhH3PY/LkSJTRk96Ft1xh4fzDcUZDnwPZbyGFhbSrf4LC87NzATxMzPJhmR5DQkxHJr4nrs0IDNkr6ExSS91YSH+xRT1KqoDKRIhpoOkb7moS2mdJCmCQXgNZbF6NRw/fmr8zAy8+uqp8U0xHnwSbTauW6cV0oToG2nfMnT3nQ/aayiLOCWQFt8Uvs5VLoTIJjryeH4++Vv2aYnKMWoR4E+LYNWqoJE4SZavshCiW+JaAHF0/S2rRZDCjh3F4ptC7qdC9JO41nwcvn7LUgTADTfAwkLQAoDgd2EhiB/TxspBcj8VohpdrfCVZzxS2rfcldy/IM6C7Hso6zVUljxzDNXl6SOvISHK0eVcX0meQFGPoCQ52pQbeQ2VJ22+kN275ekjhA90Oa/P0hJcfnn8MZ/mI0qyEUgR5CDNiLt5c/xLHI3ghReal00IEZD0nULwPR47Fnyvu3c3U0nbsAGOHj01PqtAb9NJpBFjsZmdZmZ3mdnB8Hd9zDkfMLMHI+FfxwvYm9ktZvb9yLHzqsjTFGlG3KS+waNHu59ISoghkWaIPXq0+Xl9rr++nI3PByeRqsbincA9zrlzgHvC/ZNwzn3bOXeec+484IPAS8D/iJzy5+PjzrkHK8rTCGlG3LSXJf9/Idoj7juNo6mxOWXHB3jhJBJnOMgbgAPApnB7E3Ag4/wdwFJk/xbg0qLPbdtY7FyyEXdxMdlAFDd3SPQ+o1EQZBgWoh7SvkcfFoZJoi0nEZqYawh4MbJt0f2E878F/KfI/i2hMnkYuA5Ym+e5XSiCNEajZE+BKFkrHjXp4SBvJDEUsjx4xhNLDvEbKK0IgLuBR2LCtsmCH/hxyn02ASvA6ybiDFgL7AX+IuX6HcAysLx58+YWkiw/ed2/8mTQJiae0hKaYkjkWWJyqN9AUy2C3F1DwH8F9qQcfz/wT3me61uLwLl8Ne6k6WebbrJ2OduhEF0w2QW7apW+AeeSFUFVY/E+YD7cnge+kXLux4AvRyPMbFP4a8AlBC2NXjK5+EScgSiPF0ATngJaQlP0gTpH10a/xxdeSHYr1TcQUFURXAt8yMwOAheG+5jZnJndND7JzLYAZwL/c+L6JTPbD+wHNgB/WVEer8nyamjKU8AH9zQh0hhP2tbU8o36BjKIayb4HnzsGspLF15DshEI36mj+zKte9b3b6DXXkNdhT4rgq6Q15DwmarLN+Yp6BcXT/bwG438+A4011BJ2p5iQgjRLFXn28lzva8rAJadmqIMWo9ACOEtVUfX5nGI8HEFwKWleCUA7RqypQiEEJ1TdfnGNGPw2BsprsUA3XoOpSmhPs01JGqi84UphKiJsnk5jwt2Ekktiq1bT3gjJdGl51CaEmpzriEpAg9o2nWuTaTQppO877WrvJzUorjjjvQlJLteATBJCY1GLdst4izIvodp8xqalpG/vrvoiXIUea++5eW00fw+eM+1/c0g91F/qeo65wu+FQKiHoq8V1/y8thduok5vep2xW7TtTtJEahrqEPGzW2X4MHbt1GPmspiOinyXn0YwRvtnoqjSndQE11fVWwjdSFF0BFNZtbJ57TVZ+9DISDqp8h77XqRlaUlmJ9PtgsU9UaaxEcX1FqIayb4Hqahayir2VpH87Dt/kfZCKaTou81b1dHE10sadNP19E95UvXV1mQjcAv2shQXfTZayqL6aSNQrtqpSFrvY868n3f7WBSBJ7RRobqe+1F1I8virqJ/J/mIVRXy7Tvrd4kRSAbQUe00ZeqPnu/aXvMhU/jVZpwLEjK1zMz9c0nVHUEtLfEaQffwzS0CJxrvnbW99rLNNPFu6lSC687rzbRIlB+zwZ1DU03SR9qnR9wW90KvnRfNEkXfc1luwqbKGCbKrSHkHeq0IgiAH4XeBR4DZhLOe8igvWNDwE7I/FnAfeH8bcBa/I8V4rgZNqoCaU9o25lM4RaXRf2m7LKpymlpUK7fZpSBG8HfhW4N0kRADPAk8DZwBrgIeDc8NhXgcvC7RuBhTzPlSI4mTZql0nPGI3qLbj77pWRl648usq8KzkdTA9JiqCSsdg597hz7kDGae8CDjnnDjvnfgZ8BdgWLlj/QeD28Ly9BAvYi4K0MaI36V5Hj9Y7wGYoo5O7GHhV1tApp4Pppw2vodOBZyL7R8K4EfCic+7VifhYzGyHmS2b2fLKykpjwvaRNj7UovcqW3APpdDpyvukzHQGXY8WFs2TqQjM7G4zeyQmbGtDwDHOuT3OuTnn3NzGjRvbfLT3tPGhJj1jNIo/v2zBPaRCx4c5ZvIwtS6T4heszjrBOXdhxWc8C5wZ2T8jjDsKvMnMVoetgnG8KMj4g9y1K6iJb94cFJx1fqhJz4D4dWDLFtxt/BdRnO3b9Q6mmVoWrzeze4E/c86dsqK8ma0GngB+k6Cg/x7wcefco2b2NeAfnHNfMbMbgYedczdkPU+L1/vF0pIKbiH6QCOL15vZb5vZEeA9wD+b2Z1h/FvM7A6AsLb/KeBO4HHgq865R8NbfAb4tJkdIrAZ/F0VeUQ39KWLQwgRTy0tgrZRi0AIIYrTSItACCFE/5EiEEKIgSNFIIQQA0eKQAghBk4vjcVmtgIkrPabygbghZrFqQPJVRxfZZNcxfFVtmmUa9Y5d8qI3F4qgrKY2XKcxbxrJFdxfJVNchXHV9mGJJe6hoQQYuBIEQghxMAZmiLY07UACUiu4vgqm+Qqjq+yDUauQdkIhBBCnMrQWgRCCCEmkCIQQoiBM3WKwMx+18weNbPXzCzRxcrMLjKzA2Z2yMx2RuLPMrP7w/jbzGxNTXKdZmZ3mdnB8Hd9zDkfMLMHI+FfzeyS8NgtZvb9yLHz2pIrPO945Nn7IvGNpFde2czsPDP7TvjOHzaz348cqzXNkvJM5PjaMA0OhWmyJXLs6jD+gJl9pIocJeT6tJk9FqbPPWY2GzkW+15bkusTZrYSef4fRY7Nh+/9oJnN1ylXTtmui8j1hJm9GDnWSJqZ2c1m9ryZPZJw3Mzsb0OZHzazd0aOVUuvuIWM+xyAtwO/CtwLzCWcMwM8CZwNrAEeAs4Nj30VuCzcvhFYqEmuvwF2hts7gb/OOP804BiwLty/Bbi0gfTKJRfw04T4RtIrr2zAvwfOCbffAjwHvKnuNEvLM5Fz/hi4Mdy+DLgt3D43PH8tcFZ4n5kW5fpAJB8tjOVKe68tyfUJ4PMx154GHA5/14fb69uUbeL8PwVubiHN3ge8E3gk4fhW4JuAAe8G7q8rvaauReCce9w5dyDjtHcBh5xzh51zPwO+AmwzMwM+CNwenrcXuKQm0baF98t730uBbzrnXso4rypF5foFDadXLtmcc0845w6G2/8CPA80sZZpbJ5Jkfd24DfDNNoGfMU594pz7vvAofB+rcjlnPt2JB/dR7AaYNPkSa8kPgLc5Zw75pz7MXAXcFGHsn0M+HKNz4/FOfe/CCp/SWwD/t4F3EewwuMmakivqVMEOTkdeCayfySMGwEvumAxnWh8HbzZOfdcuP1D4M0Z51/GqZlvd9gkvM7M1rYs1+vNbNnM7ht3V9FsehWRDQAzexdBDe/JSHRdaZaUZ2LPCdPkJwRplOfaJuWKciVBrXJM3HttU67fCd/P7WY2XtK2yfQqdP+wG+0s4FuR6KbSLIskuSunV+aaxT5iZncD/zbm0C7n3DfalmdMmlzRHeecM7NEv91Qy/9HglXdxlxNUBiuIfAj/gxwTYtyzTrnnjWzs4Fvmdl+goKuEjWn2a3AvHPutTC6dJpNI2Z2OTAH/EYk+pT36px7Mv4OtfOPwJedc6+Y2X8maE19sKVn5+Uy4Hbn3PFIXJdp1gi9VATOuQsr3uJZ4MzI/hlh3FGC5tbqsEY3jq8sl5n9yMw2OeeeCwut51Nu9XvA151zP4/ce1wzfsXMvgT8WZtyOeeeDX8PW7BG9fnAP1AhveqSzcx+GfhngorAfZF7l06zGJLyTNw5RyxYq/tXCPJUnmublAszu5BAuf6Gc+6VcXzCe62jUMuUyzl3NLJ7E4FNaHzt+yeuvbcGmXLLFuEy4E+iEQ2mWRZJcldOr6F2DX0POMcCj5c1BC97nwssL98m6J8HmAfqamHsC++X576n9EmGBeG4X/4SINazoAm5zGz9uFvFzDYAvw481nB65ZVtDfB1gr7T2yeO1ZlmsXkmRd5LgW+FabQPuMwCr6KzgHOA71aQpZBcZnY+8EXgYufc85H42PfaolybIrsXE6xpDkFL+MOhfOuBD3Ny67hx2UL53kZgfP1OJK7JNMtiH/AHoffQu4GfhJWd6unVhPW7ywD8NkEf2SvAj4A7w/i3AHdEztsKPEGgyXdF4s8m+EgPAV8D1tYk1wi4BzgI3A2cFsbPATdFzttCoOFXTVz/LWA/QWG2CLyxLbmA94bPfij8vbLp9Cog2+XAz4EHI+G8JtIsLs8QdDVdHG6/PkyDQ2GanB25dld43QHgozXn+Sy57g6/hXH67Mt6ry3J9VfAo+Hzvw28LXLtH4bpeAj4ZJ1y5ZEt3P8scO3EdY2lGUHl77kwPx8hsOdcBVwVHjfgC6HM+4l4RVZNL00xIYQQA2eoXUNCCCFCpAiEEGLgSBEIIcTAkSIQQoiBI0UghBADR4pACCEGjhSBEEIMnP8PNRUZ2fYpuekAAAAASUVORK5CYII=",
Q
Quleaf 已提交
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Visualization of 100 data points in the test set: \n"
     ]
    },
    {
     "data": {
Q
Quleaf 已提交
261
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAD4CAYAAADhNOGaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAh60lEQVR4nO3de8wd9X3n8ffHpia1UBvbeAkB/Bi2pAltuiQ86yQbaZsLCYSVMNmSxKmTddJEXtKQlTbaFUZIm4hda2n3D9SqUbsWSXDwswFKFeFuyLJct380pDxI3AwCGwgXlwTHTiJZUK7f/WPmxOPjc33O3OfzkkbnnJk55/zOzJz5/uZ3G0UEZmbWXcuqToCZmVXLgcDMrOMcCMzMOs6BwMys4xwIzMw67riqE7AUJ554Yqxfv77qZJiZNcp99933s4hY2z+/kYFg/fr1LC4uVp0MM7NGkfT0oPkuGjIz6zgHAjOzjnMgMDPrOAcCM7OOcyAwM+u4XAKBpG9JekHSw0OWS9KfS9on6UFJ784s2yJpbzptySM9ZjabhQVYvx6WLUseFxaqTpEVKa8rgmuB80cs/xhwZjptBf4SQNJq4GvAe4ANwNckrcopTWa2BAsLsHUrPP00RCSPW7c6GLRZLoEgIv4OODRilY3AdyJxD/BmSScD5wG3RcShiPg5cBujA0rtOSdlTXfFFfDii0fPe/HFZL61U1kdyk4Bns28fi6dN2z+MSRtJbmaYN26dcWkcka9nFTvT9TLSQFs3lxdusym8cwz08235mtMZXFE7IiI+YiYX7v2mB7StdCUnJSvWqpV9+0/LJ9V0/zXzKrYH3U7Bsq6ItgPnJZ5fWo6bz/wgb75d5eUptw1ISflq5Zq1X37LyzA4cPHzl+5ErZvLz89Ratif9TyGIiIXCZgPfDwkGX/BvgBIOC9wD+k81cDTwGr0ukpYPW47zrnnHOijubmIpLqtaOn5csjdu2qOnWJYWmcm8v3e3btSj5TSh7r8vurVtb2X4pduyJWrjw2bWvWtHf/TbI/8jqWe58z6PvKOgaAxRh0jh40c9oJ+C7wPPAqSTn/F4BLgEvS5QK+ATwBPATMZ977R8C+dPr8JN+XRyAo4kQ17I8Eyfw6/JmkwemT8vuOQduhLr+/amVs/6Wqc5Ca1bD/+7j9kdexPOrcUOYxUGggKHuaNRAUeaLatSu5AqjrH6qMP3ubTyizqvO2qXOQmsWo//u4/ZHX/hp1JdCaK4Kyp1kDQdF/xjr/ocrIrdf591etzldLdQ5Ssxj1u8btj7yO5WGfU/Yx4ECQUfSJqu5/qKLL7+v++6tW1/qTooNUVb97kuKfYekq44qgzG3hQJBR9Imqzrm+MnT99zdZUSfrKo+JWf7vRdYRVPGfcCDIKGOn1DXXV5au/347WpVXibP+3/NuNVTlf2JYIFCyrFnm5+dj1ltVLiwkHb2eeSbpKHPBBXDLLUdeb99ej3bdZm2wbFlyCu4nwRtvFP/9/f/3rv6/Jd0XEfP98xvTszhvmzfDj3+cHITbt8POnfkOslVGz8G69U40G6bq3srZ//uPf9zNIDBKZwNBVt5DQ5QxeqNHiLQm2b496Z2cNai3sjM3FRlUXlT3Ke+exXm3Ilpqeeg0ZYhumWNNM+74rkuFapvhOoLh1q9PctT95uaSy8hpLaU8tH/8EUhyTDt2DL6MrbrM1Sxvef8P7ViuIxhh0svWSS2lPHTa4qmqy1zN8taEQRvbyoGAJMe9Y0eS85CSx2E58UksJbBM+yfIO3iZVc2Zm+o4EKTybFWwlMAy7Z8g7+BlVrWiMjeugJ7AoIqDuk91HYZ6Fq4oM8u/05X/V0djSGWxrwhqwjl8s/zb+1d518AmXYm41ZCZtVZVreumbQVYFrcaMrPOqaoCuin3L+/JJRBIOl/SY5L2Sdo2YPnVku5Pp8cl/SKz7PXMst15pMfMDKprXde0prAz37xe0nKS21B+hOQ2lfdK2h0Rj/TWiYj/mFn/K8C7Mh/xUkScPWs6zMz69Yphyh5wbt26wZ3j6toUNo8rgg3Avoh4MiJeAa4HNo5Y/9Mk9ziutSIreppUiWTWdFUMONe0fj55BIJTgGczr59L5x1D0hxwOnBnZvabJC1KukfSRcO+RNLWdL3FAwcO5JDs4Yoc0M2DxZm1X9NaAc7cakjSxcD5EfHF9PVngfdExKUD1r0MODUivpKZd0pE7Jd0BkmA+HBEPDHqO4tuNVTkmCceT8XMqlJkq6H9wGmZ16em8wbZRF+xUETsTx+fBO7m6PqDUvWKbAadqCGfip6mVSKZWfvlEQjuBc6UdLqkFSQn+2Na/0h6O7AK+GFm3ipJx6fPTwTeDzzS/94yZItshsmjosfjqZhZ3cwcCCLiNeBS4FbgUeDGiNgj6UpJF2ZW3QRcH0eXRb0DWJT0AHAXcFW2tVGZBrX7zcqroqdplUhmVp2yGpbM3HwUICJuAW7pm/df+l5/fcD7/h54Zx5pmNWoopm5uXybnP36rx8JOmvWwJ/9WX0rkcysGv29k3sNSyD/84V7FqeGFc30KnHz2PC9HXvw4JF5L700++eaWfuU2TvZgSBVRpFN07qdm1l1ymxY4kCQKqPdr1sMmdmkymxY4kCQUXQPRLcYMrNJldmwxIGgRG4xZGaTKrN3ci6thmwyVQ2AZWbNtHlzOecHXxGUrIoBsMysHE0dUNJXBGZmOSiz3X/efEVgZpaDJjcPdyAwM8tBk5uHOxCYmeVg9erp5teJA4GZWcc5EJiZ5eDQoenm14kDgZlZDiYdOaCOTUwdCMzMcjDJyAF1vWe5A8GU6hjNzax6kwwJUdcmprkEAknnS3pM0j5J2wYs/5ykA5LuT6cvZpZtkbQ3nbbkkZ6i1DWam1k9jBs5oK5NTGcOBJKWA98APgacBXxa0lkDVr0hIs5Op2vS964Gvga8B9gAfE3SqlnTVJS6RnMza4a6jkCcxxXBBmBfRDwZEa8A1wMbJ3zvecBtEXEoIn4O3Aacn0OaClHXaG5mzVDXEYjzCASnAM9mXj+Xzuv3B5IelHSTpNOmfC+StkpalLR44MCBHJI9vbpGczNrhjKHlp5GWZXFfwusj4jfI8n175z2AyJiR0TMR8T82rVrc0/gJOoazc2sOeo4AnEegWA/cFrm9anpvF+JiIMR8XL68hrgnEnfWyd1jeZmZrPIIxDcC5wp6XRJK4BNwO7sCpJOzry8EHg0fX4r8FFJq9JK4o+m82qrjtHcasjtjK1BZr4fQUS8JulSkhP4cuBbEbFH0pXAYkTsBv6DpAuB14BDwOfS9x6S9F9JggnAlRHRgA7ZZiM0eWB66yRFRNVpmNr8/HwsLi5WnQyzwdavT07+/ebmkstIs4pIui8i5vvnu2exWd7cztgaxoHALG9uZ2wN40Bglje3M7aGcSAwy5vbGVvDOBCYFWFUO2M3LbWambn5qJlNwU1LrYZ8RWA2Tp45eA9hazXkQGA2St43oRjXtNTFRlYBBwKzUfLOwY9qWuo7H1lFHAismcrKOefdOWxU01IXG1lFHAisecrMOefdOWxU01L3SLaKOBBY85SZcy6ic9iwpqXukWwVcSCw5ikz51xE57BhxVrukWwVcT8Ca5516waP7llUznnz5vza+E/Sj+CKK5Kgtm5dEgTcv8AK5isCa4ZsLvrwYVix4ujlTck5jyvW8p2PLKOsNhEOBFZ//ZXDBw8mj2vWHCmu2bIlOZnWvf29K4RtQmW2icglEEg6X9JjkvZJ2jZg+VclPSLpQUl3SJrLLHtd0v3ptLv/vWYDc9GvvgonnJDknLdvh507m9H+vogKYXdCa6VSWxNHxEwTye0pnwDOAFYADwBn9a3zQWBl+vxLwA2ZZYen/c5zzjknrEOkiOQUf/QkJcvn5gYvn5urMtWD7doVsXLl0elcuTKZP+3n9H53//ZZyudZ7Yw77JeC5PbBx5xT87gi2ADsi4gnI+IV4HpgY1+wuSsierHtHuDUHL43V85U1di4XHSTilvyaIWULTOA5PyQ5U5orVBma+I8AsEpwLOZ18+l84b5AvCDzOs3SVqUdI+ki4a9SdLWdL3FAwcOzJTgfu7ZX3PjmlU2rf39rBXCg8oM+k0bBJ0Tqp1SWxMPukyYZgIuBq7JvP4s8BdD1v0MyRXB8Zl5p6SPZwA/Bv75uO/Mu2ioSSULndUrCpGSx2zRR17FLWWkNQ/DygyWevAO2n4QsWaNi5gqlvehxJCioTwCwfuAWzOvLwcuH7DeucCjwD8b8VnXAheP+868A0ERZXFWsqJPvtOko+igNCznstTvG/V5rm+oXJ6HdpGB4DjgSeB0jlQW/07fOu8iqVA+s2/+qt7VAXAisJe+iuZBk68IrLbKOJgGBZtebmYpZ4pxVxj+I1Qm73zFsEAwcx1BRLwGXArcmub4b4yIPZKulHRhutr/AE4A/rqvmeg7gEVJDwB3AVdFxCOzpmla7tlvuSmj4npQhfN11yXniaXUOYyrS6ljpXtHlNWEVEmQaJb5+flYXFzM9TMXFtyz33Kwfv3g4S/m5pKTdB31D3vRr85pb7lly45tFAZJ/H/jjek/T9J9ETF/zPcsJXFt5J79losmXl72rjDWrDl2Wd3T3nJlNYhzIDDryaMJZRGjlZZh82b42c9g167mpb3FyspXuGjIDAYXj6xc6ROhVS7PYuthRUMOBGbQzLJ9sym5jsBslCYNU2GWMwcC67ZevcCwK+O6DlPRz0NE2Ax8hzLrrnHNJpvSYmaSu56ZjeArAuuuUYO3NanFTKkD11sb+YrAumtY+b/UrApi12/YjHxFYN3VtOGrh2nL77DKOBBYdzWxF/Agk/wOVybbCA4E1l159wKu6mQ77nf4zks2hjuUmeWhzj2T3VnOUu5QZlakOrfccWWyjeFAYJaHOp9sXZlsYzgQmOWhzifbKirFXTndKLkEAknnS3pM0j5J2wYsP17SDenyH0lan1l2eTr/MUnn5ZEes9LVuQVS2UNju3K6cWauLJa0HHgc+AjwHHAv8OnsLScl/THwexFxiaRNwMcj4lOSzgK+C2wA3grcDrwtIl4f9Z2uLLZa8m3uEq6crq0iK4s3APsi4smIeAW4HtjYt85GYGf6/Cbgw5KUzr8+Il6OiKeAfennmTWPb3OXqHN9iQ2URyA4BXg28/q5dN7AddKb3f8SWDPhewGQtFXSoqTFAwcO5JBsswZoYll7netLbKDGVBZHxI6ImI+I+bVr11adHLPiNbWsvc71JTZQHoFgP3Ba5vWp6byB60g6DvhN4OCE77Wua2KuOA917pswSlPv29xheVQWH0dSWfxhkpP4vcAfRsSezDpfBt6ZqSz+txHxSUm/A/wvjlQW3wGc6cpi+5U699gt2rJlg2+YIyX1EGZTKqyyOC3zvxS4FXgUuDEi9ki6UtKF6WrfBNZI2gd8FdiWvncPcCPwCPB/gC+PCwLWMU3NFefBZe1WEo81ZPXW5Vxxl6+GrBAea8iaqcu5Ype1W0kcCKzeBrVA+bVfg8OHu1F57L4JVgIHAqu3/lzxmjXJ48GDzWpSaTaBqhrIORBY/WVzxSecAK+8cvTyulQed7WZq+Wiym4jDgTWLHUbvqB38pfgs59tXuevaTjQFarKBnIOBNYsdao8zmbh4NjWTXW5UslDU3s5N8igcfpGzc+TAwHO6DRKnYYvGJSF69eWgda63J+jJMuXTzc/T50PBM7oNMywJpVQfjSf5CTflmaudSuSa6HXh3SlHTY/T50PBM7oNFB/k0qoJpqPO8m3aaC1OhXJtdTc3HTz89T5QOCMTgtUFc0HFVNJyWPbOn/VqUiupS644Mjh01PWJu58IHBGpwWqiuaDiqmuuy65Kmlb5y/3ci7UwgLs3Hl0ewMJtmwpZxN3fqwhD+fSAr41ojVcWYewxxoawhmdFnCxhTVc1UXUnQ8E4OFcGs/R3Bqu6iJqBwJrB0dza7CqL2pnCgSSVku6TdLe9HHVgHXOlvRDSXskPSjpU5ll10p6StL96XT2LOkxK5V7IlpOqr6onamyWNKfAoci4ipJ24BVEXFZ3zpvAyIi9kp6K3Af8I6I+IWka4H/HRE3TfO9vjGNVc6tDKyBiqos3gjsTJ/vBC7qXyEiHo+IvenzfwReANbO+L1m1XJPRGuRWQPBSRHxfPr8J8BJo1aWtAFYATyRmb09LTK6WtLxM6bHrBxVN/Mwy9HYQCDpdkkPD5g2ZteLpIxpaDmTpJOB64DPR0TvZrOXA28H/iWwGrhsyNuRtFXSoqTFAwcOjP9lZkWqupmHWY7GBoKIODcifnfAdDPw0/QE3zvRvzDoMyT9BvB94IqIuCfz2c9H4mXg28CGEenYERHzETG/dq1LlqxiVTfzMMvRrEVDu4Et6fMtwM39K0haAXwP+E5/pXAmiIikfuHhGdNjVo6qm3lYq5XdIG3WVkNrgBuBdcDTwCcj4pCkeeCSiPiipM+Q5Pb3ZN76uYi4X9KdJBXHAu5P33N43Pe61ZCZtVWRDdKGtRrq/FhD4ywsJA1BnnkmKf7dvt2ZPjMrTpHjDnmsoSXwTWtawh2/rEGqaJDmQDCCm4q3gKO5NUwVDdIcCEZwU/EWcDS3hqmiQZoDwQhuKl5zkxT5tCmau4irE6pokOZAMIKbitfYpEU+bYnmLuLqlLIH03UgGMFNxWts0iKftkRzF3FZgdx81Jpp2bKjb/DaIyXZqKw2tAGe5veaDTGs+ehxVSTGbGbr1g1ubD2oyGfz5uad+PtN83vNpuSiIWumthT5TKprv9dK5UBgzdS1Cpyu/V4rlesIctCGImgzaz8PMdEnrybZbtVnZk3XyUCQ58nbrfrMrOk6GQjyPHm3qeOqmXVTJwNBnifvtnRcNbPu6mQgyPPk7VZ9ZtZ0MwUCSasl3SZpb/q4ash6r0u6P512Z+afLulHkvZJuiG9rWXh8jx5u1WfmTXdrFcE24A7IuJM4I709SAvRcTZ6XRhZv6fAFdHxG8BPwe+MGN6JpL3ybvsAaLMzPI06z2LHwM+EBHPpzeivzsifnvAeocj4oS+eQIOAG+JiNckvQ/4ekScN+5769aPwMysCYrqR3BSRDyfPv8JcNKQ9d4kaVHSPZIuSuetAX4REa+lr58DTpkxPWZmNqWxg85Juh14y4BFRzW2jIiQNOzyYi4i9ks6A7hT0kPAL6dJqKStwFaAdW6SY2aWm7GBICLOHbZM0k8lnZwpGnphyGfsTx+flHQ38C7gb4A3SzouvSo4Fdg/Ih07gB2QFA2NS7eZmU1m1qKh3cCW9PkW4Ob+FSStknR8+vxE4P3AI5FUTtwFXDzq/WZmVqxZA8FVwEck7QXOTV8jaV7SNek67wAWJT1AcuK/KiIeSZddBnxV0j6SOoNvzpgeMzOb0kyBICIORsSHI+LMiDg3Ig6l8xcj4ovp87+PiHdGxL9IH7+Zef+TEbEhIn4rIj4RES/P9nOqMckAdr7vuJnVle9QNqPeAHa9sYt6A9jBkf4Ek6xjZlaVzgwxUVSOfJIB7DxCqZnVWSeuCIrMkU8ygJ1HKDWzOuvEFUGROfJJBrDzCKVm7dWG+r9OBIIic+TjBrBbWIDDh499n0coNWu+ttyhsBOBoMgc+agB7HoHycGDR79nzRqPUGrWBm2p/+vEzev76wggyZEXfTJevz7JIfSbm0tGKTWzZlu2LLkS6CcloxHXTadvXl/VPQNcSWzWbm2p/+tEIIBq7hnQloPEzAab9iZXS61YLrpCujOBoAq+jaVZu01T2rDUiuUyKqQ7UUdQpYWFpOLomWeSK4Ht211JbNZFS60zzLOucVgdgQOBmVkJllqxnGeFdKcri9ukDZ1XzLpoqXWGZdQ1OhA0SFs6r5h10VLrDMuoa3QgaJC2dF4x66KlNmMvo/m76wgapGmdV8ysXgqpI5C0WtJtkvamj6sGrPNBSfdnpn+SdFG67FpJT2WWnT1LetrO/RLMrAizFg1tA+6IiDOBO9LXR4mIuyLi7Ig4G/gQ8CLwfzOr/Ofe8oi4f8b0tJr7JZhZEWYNBBuBnenzncBFY9a/GPhBRLw4Zj0boKqhMsys3WYNBCdFxPPp858AJ41ZfxPw3b552yU9KOlqScfPmJ7Wq2KoDDNrt7F3KJN0O/CWAYuOaqsSESFpaM2zpJOBdwK3ZmZfThJAVgA7gMuAK4e8fyuwFWCdC8XNzHIz9oogIs6NiN8dMN0M/DQ9wfdO9C+M+KhPAt+LiFczn/18JF4Gvg1sGJGOHRExHxHza9eunfT3mZktWVc6cM5aNLQb2JI+3wLcPGLdT9NXLJQJIiKpX3h4xvSYmU1s1Im+Sx04Zw0EVwEfkbQXODd9jaR5Sdf0VpK0HjgN+H9971+Q9BDwEHAi8N9mTI+N0JXcjdkkxp3ou9SB0x3KxuiNHvr007B8Obz+etJap2mjiFZ1lzazuho3qmcbO3B60LklyOYYIAkC0MxLxC7lbswmMeoOggsLSSAYpKi2KlVesfuKYIRhOYaeJt17uI25G7NZDPt/r1kDL710bMYJiruKLuuK3VcESzDu3sJNuvewh6cwS/Ry3k8/nWSEsno99wcFgeXLiwsCW7ZUe8XuQDDCUscJryMPT2F2bHFvxJFg0Oupf+jQ4Pe+8cZ0QWCSop5eenrFzv1Ky2xGROOmc845J8qwa1fEypURyeFy9LRyZbK8SXbtipibi5CSx6al32xWc3OD/89zc9OtM86gc8egc8aw71rKd04CWIwB59TKT+pLmcoKBBFHTp4QsXz5kZ1T1UnUJ3OzpZMGn3ClI+tMehIfZdJgMiw9RWU2HQhaII8DtGoOZFalSU/Qsx6nkwScUelZvryY/4YDQQvkccmaVfZJuQ2BzJqtrGNwmoBT5n/CgaAFJs1lTKKKk3LegcxsKcrIAE3z/yozQzYsELgfQYOM6wlZ1WdNyn0ZrEt6oxI880zSwrAOoxG4H0EL5NkEdFSvyqK4L4N1SZPuHeJA0CB53qGsipPyoEAmwQUXFPedZjaeA0HD5JXLGHd1UcS4J5s3Jz0os705I2DnzmaN29QGHonWjjKo4qDuU1cri/M2rJKqyIrkulQYd7kZaxtbb3V5f04DtxoqXlsOxiJP1nm2fFqqNp4Ip1GXYJyXru/PaQwLBC4aykmb7mZUZEVyHSqMuz4k97T7t+7FSG3cn6Vv80HRYdIJ+ASwB3gDmB+x3vnAY8A+YFtm/unAj9L5NwArJvneOl4RtCmXVeRvqUPurQ5XJVWaZv/WYX+N07b9WeQ2p4iiIeAdwG8Ddw8LBMBy4AngDGAF8ABwVrrsRmBT+vyvgC9N8r11DARtOhiL/vNXXYTWpqC9FNPs3yZsqyakcRpF/p5CAsGvPmR0IHgfcGvm9eXpJOBnwHGD1hs11TEQtO1grPpkXaQm5HKLNun+bUIGp237s8htPiwQlFFHcArwbOb1c+m8NcAvIuK1vvmN1Lbx/pvUGWZaefbHaKpJ928d6nTGadv+rGKbjw0Ekm6X9PCAaWNxyRqYjq2SFiUtHjhwoMyvnkjbDsa2a3Ogy1NTMjht2p9VbPPjxq0QEefO+B37gdMyr09N5x0E3izpuPSqoDd/WDp2ADsgGWtoxjQVYvPmZh+AZv16x3Pdxsxpsyq2+dhAkIN7gTMlnU5yot8E/GFSFqa7gIuB64EtwM0lpMfMpuAMTvnK3uYz1RFI+rik50gqer8v6dZ0/lsl3QKQ5vYvBW4FHgVujIg96UdcBnxV0j6SOoNvzpIeMzObnoehNjPrCA9DbWZmAzkQmJl1nAOBmVnHNbKOQNIBYMCNFidyIkmP5rpxuqZT13RBfdPmdE2vrmlbarrmImJt/8xGBoJZSFocVFlSNadrOnVNF9Q3bU7X9OqatrzT5aIhM7OOcyAwM+u4LgaCHVUnYAinazp1TRfUN21O1/TqmrZc09W5OgIzMztaF68IzMwsw4HAzKzjWhkIJH1C0h5Jb0ga2sRK0vmSHpO0T9K2zPzTJf0onX+DpBU5pWu1pNsk7U0fVw1Y54OS7s9M/yTponTZtZKeyiw7u6x0peu9nvnu3Zn5VW6vsyX9MN3fD0r6VGZZrttr2PGSWX58+vv3pdtjfWbZ5en8xySdN0s6lpCur0p6JN0+d0iayywbuE9LTNvnJB3IpOGLmWVb0n2/V9KWktN1dSZNj0v6RWZZYdtM0rckvSDp4SHLJenP03Q/KOndmWVL316DblvW9ImK7qU8Qbr+FNiWPt8G/MmY9VcDh4CV6etrgYsL2F4TpQs4PGR+ZdsLeBtwZvr8rcDzwJvz3l6jjpfMOn8M/FX6fBNwQ/r8rHT944HT089ZXmK6Ppg5hr7US9eofVpi2j4H/MWA964GnkwfV6XPV5WVrr71vwJ8q6Rt9q+BdwMPD1l+AfADklv9vhf4UR7bq5VXBBHxaEQ8Nma1DcC+iHgyIl4huSfCRkkCPgTclK63E7gop6RtTD9v0s+9GPhBRLyY0/cPM226fqXq7RURj0fE3vT5PwIvAMf0nMzBwONlRHpvAj6cbp+NwPUR8XJEPAXsSz+vlHRFxF2ZY+gekptAlWGSbTbMecBtEXEoIn4O3AacX1G6Pg18N6fvHiki/o4k8zfMRuA7kbiH5OZeJzPj9mplIJhQFfdSPikink+f/wQ4acz6mzj2ANyeXhJeLen4ktP1JiW3C72nV1xFjbaXpA0kObwnMrPz2l7DjpeB66Tb45ck22eS9xaZrqwvkOQoewbt07xMmrY/SPfRTZJ6dzOsxTZLi9FOB+7MzC5ym40zLO0zba8y7lBWCEm3A28ZsOiKiKjsTmej0pV9EREhaWjb3TTKv5Pkhj49l5OcEFeQtCO+DLiyxHTNRcR+SWcAd0p6iORkt2Q5b6/rgC0R8UY6e8nbq40kfQaYB34/M/uYfRoRTwz+hEL8LfDdiHhZ0r8nuaL6UInfP84m4KaIeD0zr+ptlrvGBoKoyb2Up0mXpJ9KOjkink9PXC+M+KhPAt+LiFczn93LHb8s6dvAfyozXRGxP318UtLdwLuAv6Hi7SXpN4Dvk2QC7sl89pK31wDDjpdB6zwn6TjgN0mOp0neW2S6kHQuSXD9/Yh4uTd/yD7N66Q2Nm0RcTDz8hqSeqHeez/Q9967y0pXxibgy9kZBW+zcYalfabt1eWioV/dS1lJK5dNwO5Ial5691KGfO+lvDv9vEk+95hyyfRk2CuXvwgY2LKgiHRJWtUrWpF0IvB+4JGqt1e6775HUm56U9+yPLfXwONlRHovBu5Mt89uYJOSVkWnA2cC/zBDWqZKl6R3Af8TuDAiXsjMH7hPc0rXpGk7OfPyQpLb2UJyJfzRNI2rgI9y9NVxoelK0/Z2korXH2bmFb3NxtkN/Lu09dB7gV+mGZ7ZtldRtd9VTsDHScrIXgZ+Ctyazn8rcEtmvQuAx0mi+RWZ+WeQ/FH3AX8NHJ9TutYAdwB7gduB1en8eeCazHrrSSL8sr733wk8RHJC2wWcUFa6gH+VfvcD6eMX6rC9gM8ArwL3Z6azi9heg44XkqKmC9Pnb0p//750e5yRee8V6fseAz6W8/E+Ll23p/+D3vbZPW6flpi2/w7sSdNwF/D2zHv/KN2W+4DPl5mu9PXXgav63lfoNiPJ/D2fHtPPkdTpXAJcki4X8I003Q+RaRU5y/byEBNmZh3X5aIhMzPDgcDMrPMcCMzMOs6BwMys4xwIzMw6zoHAzKzjHAjMzDru/wPTby8hcT1iEgAAAABJRU5ErkJggg==",
Q
Quleaf 已提交
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      " You may wish to adjust the parameter settings to generate your own data set!\n"
     ]
    }
   ],
   "source": [
    "# Generate data set\n",
    "train_x, train_y, test_x, test_y = circle_data_point_generator(\n",
    "        Ntrain, Ntest, boundary_gap, seed_data)\n",
Q
Quleaf 已提交
284 285
    "\n",
    "# Visualization\n",
Q
Quleaf 已提交
286 287 288 289 290 291 292 293 294 295 296 297
    "print(\"Visualization of {} data points in the training set: \".format(Ntrain))\n",
    "data_point_plot(train_x, train_y)\n",
    "print(\"Visualization of {} data points in the test set: \".format(Ntest))\n",
    "data_point_plot(test_x, test_y)\n",
    "print(\"\\n You may wish to adjust the parameter settings to generate your own data set!\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Data preprocessing\n",
Q
Quleaf 已提交
298 299 300
    "Different from classical machine learning, quantum classifiers need to consider data preprocessing heavily. We need one more step to convert classical data into quantum information before running on a quantum computer. In this tutorial we use \"Angle Encoding\" to get quantum data.\n",
    "\n",
    "First, we determine the number of qubits that need to be used. Because our data $\\{x^{k} = (x^{k}_0, x^{k}_1)\\}$ is two-dimensional, according to the paper by Mitarai (2018) we need at least 2 qubits for encoding. Then prepare a group of initial quantum states $|00\\rangle$. Encode the classical information $\\{x^{k}\\}$ into a group of quantum gates $U(x^{k})$ and act them on the initial quantum states. Finally we get a group of quantum states $|\\psi_{\\rm in}\\rangle^k = U(x^{k})|00\\rangle$. In this way, we have completed the encoding from classical information into quantum information! Given $m$ qubits to encode a two-dimensional classical data point, the quantum gate is:\n",
Q
Quleaf 已提交
301 302
    "\n",
    "$$\n",
Q
Quleaf 已提交
303
    "U(x^{k}) = \\otimes_{j=0}^{m-1} R_j^z\\big[\\arccos(x^{k}_{j \\, \\text{mod} \\, 2}\\cdot x^{k}_{j \\, \\text{mod} \\, 2})\\big] R_j^y\\big[\\arcsin(x^{k}_{j \\, \\text{mod} \\, 2}) \\big],\n",
Q
Quleaf 已提交
304 305 306
    "\\tag{2}\n",
    "$$\n",
    "\n",
Q
Quleaf 已提交
307
    "**Note:** In this representation, we count the first qubit as $j = 0$. For more encoding methods, see [Robust data encodings for quantum classifiers](https://arxiv.org/pdf/2003.01695.pdf). We also provide several built-in [encoding methods](./DataEncoding_EN.ipynb) in Paddle Quantum. Here we also encourage readers to try new encoding methods by themselves!\n",
Q
Quleaf 已提交
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
    "\n",
    "Since this encoding method looks quite complicated, we might as well give a simple example. Suppose we are given a data point $x = (x_0, x_1)= (1,0)$. The label of this data point should be 1, corresponding to the **blue** point in the figure above. At the same time, the 2-qubit quantum gate $U(x)$ corresponding to the data point is,\n",
    "\n",
    "$$\n",
    "U(x) =\n",
    "\\bigg( R_0^z\\big[\\arccos(x_{0}\\cdot x_{0})\\big] R_0^y\\big[\\arcsin(x_{0}) \\big] \\bigg)\n",
    "\\otimes\n",
    "\\bigg( R_1^z\\big[\\arccos(x_{1}\\cdot x_{1})\\big] R_1^y\\big[\\arcsin(x_{1}) \\big] \\bigg),\n",
    "\\tag{3}\n",
    "$$\n",
    "\n",
    "Substituting in specific values, we get:\n",
    "\n",
    "$$\n",
    "U(x) =\n",
    "\\bigg( R_0^z\\big[0\\big] R_0^y\\big[\\pi/2 \\big] \\bigg)\n",
    "\\otimes\n",
    "\\bigg( R_1^z\\big[\\pi/2\\big] R_1^y\\big[0 \\big] \\bigg),\n",
    "\\tag{4}\n",
    "$$\n",
    "\n",
    "Recall the matrix form of rotation gates:\n",
    "\n",
    "$$\n",
    "R_x(\\theta) :=\n",
    "\\begin{bmatrix}\n",
    "\\cos \\frac{\\theta}{2} &-i\\sin \\frac{\\theta}{2} \\\\\n",
    "-i\\sin \\frac{\\theta}{2} &\\cos \\frac{\\theta}{2}\n",
    "\\end{bmatrix}\n",
    ",\\quad\n",
    "R_y(\\theta) :=\n",
    "\\begin{bmatrix}\n",
    "\\cos \\frac{\\theta}{2} &-\\sin \\frac{\\theta}{2} \\\\\n",
    "\\sin \\frac{\\theta}{2} &\\cos \\frac{\\theta}{2}\n",
    "\\end{bmatrix}\n",
    ",\\quad\n",
    "R_z(\\theta) :=\n",
    "\\begin{bmatrix}\n",
    "e^{-i\\frac{\\theta}{2}} & 0 \\\\\n",
    "0 & e^{i\\frac{\\theta}{2}}\n",
    "\\end{bmatrix}.\n",
    "\\tag{5}\n",
    "$$\n",
    "\n",
    "Then the matrix form of the two-qubit quantum gate $U(x)$ can be written as\n",
    "\n",
    "$$\n",
    "U(x) = \n",
    "\\bigg(\n",
    "\\begin{bmatrix}\n",
    "1 & 0 \\\\ \n",
    "0 & 1\n",
    "\\end{bmatrix}\n",
    "\\begin{bmatrix}\n",
    "\\cos \\frac{\\pi}{4} &-\\sin \\frac{\\pi}{4} \\\\ \n",
    "\\sin \\frac{\\pi}{4} &\\cos \\frac{\\pi}{4} \n",
    "\\end{bmatrix}\n",
    "\\bigg)\n",
    "\\otimes \n",
    "\\bigg(\n",
    "\\begin{bmatrix}\n",
    "e^{-i\\frac{\\pi}{4}} & 0 \\\\ \n",
    "0 & e^{i\\frac{\\pi}{4}}\n",
    "\\end{bmatrix}\n",
    "\\begin{bmatrix}\n",
    "1 &0 \\\\ \n",
    "0 &1\n",
    "\\end{bmatrix}\n",
Q
Quleaf 已提交
376
    "\\bigg) \\, .\n",
Q
Quleaf 已提交
377 378 379
    "\\tag{6}\n",
    "$$\n",
    "\n",
Q
Quleaf 已提交
380
    "After simplification, we can get the encoded quantum state $|\\psi_{\\rm in}\\rangle$ by acting the quantum gate on the initialized quantum state $|00\\rangle$,\n",
Q
Quleaf 已提交
381 382
    "\n",
    "$$\n",
Q
Quleaf 已提交
383
    "|\\psi_{\\rm in}\\rangle =\n",
Q
Quleaf 已提交
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
    "U(x)|00\\rangle = \\frac{1}{2}\n",
    "\\begin{bmatrix}\n",
    "1-i &0 &-1+i &0 \\\\\n",
    "0 &1+i &0 &-1-i \\\\\n",
    "1-i &0 &1-i &0 \\\\\n",
    "0 &1+i &0 &1+i\n",
    "\\end{bmatrix}\n",
    "\\begin{bmatrix}\n",
    "1 \\\\\n",
    "0 \\\\\n",
    "0 \\\\\n",
    "0\n",
    "\\end{bmatrix}\n",
    "= \\frac{1}{2}\n",
    "\\begin{bmatrix}\n",
    "1-i \\\\\n",
    "0 \\\\\n",
    "1-i \\\\\n",
    "0\n",
    "\\end{bmatrix}.\n",
    "\\tag{7}\n",
    "$$\n",
    "\n",
    "Then let us take a look at how to implement this encoding method in Paddle Quantum. Note that in the code, we use the following trick: \n",
    "\n",
    "$$\n",
    "(U_1 |0\\rangle)\\otimes (U_2 |0\\rangle) = (U_1 \\otimes U_2) |0\\rangle\\otimes|0\\rangle\n",
    "= (U_1 \\otimes U_2) |00\\rangle.\n",
    "\\tag{8}\n",
    "$$"
   ]
  },
  {
   "cell_type": "code",
Q
Quleaf 已提交
418
   "execution_count": 6,
Q
Quleaf 已提交
419 420
   "metadata": {
    "ExecuteTime": {
Q
Quleaf 已提交
421 422
     "end_time": "2021-03-09T04:03:37.354267Z",
     "start_time": "2021-03-09T04:03:37.258314Z"
Q
Quleaf 已提交
423 424
    }
   },
Q
Quleaf 已提交
425
   "outputs": [],
Q
Quleaf 已提交
426
   "source": [
Q
Quleaf 已提交
427 428
    "# Gate: rotate around Y-axis, Z-axis with angle theta\n",
    "def Ry(theta):\n",
Q
Quleaf 已提交
429 430 431 432
    "    \"\"\"\n",
    "    :param theta: parameter\n",
    "    :return: Y rotation matrix\n",
    "    \"\"\"\n",
Q
Quleaf 已提交
433 434
    "    return np.array([[np.cos(theta / 2), -np.sin(theta / 2)],\n",
    "                     [np.sin(theta / 2), np.cos(theta / 2)]])\n",
Q
Quleaf 已提交
435
    "\n",
Q
Quleaf 已提交
436
    "def Rz(theta):\n",
Q
Quleaf 已提交
437 438 439 440
    "    \"\"\"\n",
    "    :param theta: parameter\n",
    "    :return: Z rotation matrix\n",
    "    \"\"\"\n",
Q
Quleaf 已提交
441 442
    "    return np.array([[np.cos(theta / 2) - np.sin(theta / 2) * 1j, 0],\n",
    "                     [0, np.cos(theta / 2) + np.sin(theta / 2) * 1j]])\n",
Q
Quleaf 已提交
443 444 445 446 447 448 449 450
    "\n",
    "# Classical -> Quantum Data Encoder\n",
    "def datapoints_transform_to_state(data, n_qubits):\n",
    "    \"\"\"\n",
    "    :param data: shape [-1, 2]\n",
    "    :param n_qubits: the number of qubits to which\n",
    "    the data transformed\n",
    "    :return: shape [-1, 1, 2 ^ n_qubits]\n",
Q
Quleaf 已提交
451
    "        the first parameter -1 in this shape means can be arbitrary. In this tutorial, it equals to BATCH.\n",
Q
Quleaf 已提交
452 453 454 455 456 457
    "    \"\"\"\n",
    "    dim1, dim2 = data.shape\n",
    "    res = []\n",
    "    for sam in range(dim1):\n",
    "        res_state = 1.\n",
    "        zero_state = np.array([[1, 0]])\n",
Q
Quleaf 已提交
458
    "        # Angle Encoding\n",
Q
Quleaf 已提交
459
    "        for i in range(n_qubits):\n",
Q
Quleaf 已提交
460
    "            # For even number qubits, perform Rz(arccos(x0^2)) Ry(arcsin(x0))\n",
Q
Quleaf 已提交
461
    "            if i % 2 == 0:\n",
Q
Quleaf 已提交
462 463
    "                state_tmp=np.dot(zero_state, Ry(np.arcsin(data[sam][0])).T)\n",
    "                state_tmp=np.dot(state_tmp, Rz(np.arccos(data[sam][0] ** 2)).T)\n",
Q
Quleaf 已提交
464
    "                res_state=np.kron(res_state, state_tmp)\n",
Q
Quleaf 已提交
465
    "            # For odd number qubits, perform Rz(arccos(x1^2)) Ry(arcsin(x1))\n",
Q
Quleaf 已提交
466
    "            elif i% 2 == 1:\n",
Q
Quleaf 已提交
467 468
    "                state_tmp=np.dot(zero_state, Ry(np.arcsin(data[sam][1])).T)\n",
    "                state_tmp=np.dot(state_tmp, Rz(np.arccos(data[sam][1] ** 2)).T)\n",
Q
Quleaf 已提交
469 470 471
    "                res_state=np.kron(res_state, state_tmp)\n",
    "        res.append(res_state)\n",
    "    res = np.array(res)\n",
Q
Quleaf 已提交
472 473
    "\n",
    "    return res.astype(\"complex128\")"
Q
Quleaf 已提交
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "quantum data after angle encoding"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "As a test, we enter the classical information:\n",
      "(x_0, x_1) = (1, 0)\n",
      "The 2-qubit quantum state output after encoding is:\n",
      "[[[0.5-0.5j 0. +0.j  0.5-0.5j 0. +0.j ]]]\n"
     ]
    }
   ],
   "source": [
Q
Quleaf 已提交
500 501 502 503 504 505 506 507 508 509 510 511 512
    "print(\"As a test, we enter the classical information:\")\n",
    "print(\"(x_0, x_1) = (1, 0)\")\n",
    "print(\"The 2-qubit quantum state output after encoding is:\")\n",
    "print(datapoints_transform_to_state(np.array([[1, 0]]), n_qubits=2))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Building Quantum Neural Network \n",
    "After completing the encoding from classical data to quantum data, we can now input these quantum states into the quantum computer. Before that, we also need to design the quantum neural network.\n",
    "\n",
Q
Quleaf 已提交
513 514
    "<img src=\"./figures/qclassifier-fig-circuit.png\" width=\"600px\" /> \n",
    "<center> Figure 3: Parameterized Quantum Circuit </center>\n",
Q
Quleaf 已提交
515
    "\n",
Q
Quleaf 已提交
516
    "\n",
Q
Quleaf 已提交
517
    "For convenience, we call the parameterized quantum neural network as $U(\\boldsymbol{\\theta})$. $U(\\boldsymbol{\\theta})$ is a key component of our classifier, and it needs a certain complex structure to fit our decision boundary. Similar to traditional neural networks, the structure of a quantum neural network is not unique. The structure shown above is just one case. You could design your own structure. Let's take the previously mentioned data point $x = (x_0, x_1)= (1,0)$ as an example. After encoding, we have obtained a quantum state $|\\psi_{\\rm in}\\rangle$,\n",
Q
Quleaf 已提交
518 519
    "\n",
    "$$\n",
Q
Quleaf 已提交
520
    "|\\psi_{\\rm in}\\rangle =\n",
Q
Quleaf 已提交
521 522 523 524 525 526 527 528 529 530 531 532 533
    "\\frac{1}{2}\n",
    "\\begin{bmatrix}\n",
    "1-i \\\\\n",
    "0 \\\\\n",
    "1-i \\\\\n",
    "0\n",
    "\\end{bmatrix}.\n",
    "\\tag{9}\n",
    "$$\n",
    "\n",
    "Then we input this quantum state into our quantum neural network (QNN). That is, multiply a unitary matrix by a vector to get the processed quantum state $|\\varphi\\rangle$\n",
    "\n",
    "$$\n",
Q
Quleaf 已提交
534
    "|\\psi_{\\rm out}\\rangle = U(\\boldsymbol{\\theta})|\\psi_{\\rm in}\\rangle.\n",
Q
Quleaf 已提交
535 536 537 538 539 540
    "\\tag{10}\n",
    "$$\n",
    "\n",
    "If we set all the QNN parameters to be $\\theta = \\pi$, then we can write down the resulting state:\n",
    "\n",
    "$$\n",
Q
Quleaf 已提交
541 542
    "|\\psi_{\\rm out}\\rangle =\n",
    "U(\\boldsymbol{\\theta} =\\pi)|\\psi_{\\rm in}\\rangle =\n",
Q
Quleaf 已提交
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
    "\\begin{bmatrix}\n",
    "0 &0 &-1 &0 \\\\\n",
    "-1 &0 &0 &0 \\\\\n",
    "0 &1 &0 &0 \\\\\n",
    "0 &0 &0 &1\n",
    "\\end{bmatrix}\n",
    "\\cdot\n",
    "\\frac{1}{2}\n",
    "\\begin{bmatrix}\n",
    "1-i \\\\\n",
    "0 \\\\\n",
    "1-i \\\\\n",
    "0\n",
    "\\end{bmatrix}\n",
    "= \\frac{1}{2}\n",
    "\\begin{bmatrix}\n",
    "-1+i \\\\\n",
    "-1+i \\\\\n",
    "0 \\\\\n",
    "0\n",
    "\\end{bmatrix}.\n",
    "\\tag{11}\n",
    "$$"
   ]
  },
  {
   "cell_type": "code",
Q
Quleaf 已提交
570
   "execution_count": 11,
Q
Quleaf 已提交
571 572
   "metadata": {
    "ExecuteTime": {
Q
Quleaf 已提交
573 574
     "end_time": "2021-03-09T04:03:37.426687Z",
     "start_time": "2021-03-09T04:03:37.374976Z"
Q
Quleaf 已提交
575 576 577 578 579
    }
   },
   "outputs": [],
   "source": [
    "# Simulation of building a quantum neural network\n",
Q
Quleaf 已提交
580
    "def cir_Classifier(theta, n, depth):\n",
Q
Quleaf 已提交
581
    "    \"\"\"\n",
Q
Quleaf 已提交
582
    "    :param theta: dim: [n, depth + 3], \"+3\" because we add an initial generalized rotation gate to each qubit\n",
Q
Quleaf 已提交
583 584 585 586 587 588 589
    "    :param n: number of qubits\n",
    "    :param depth: circuit depth\n",
    "    :return: U_theta\n",
    "    \"\"\"\n",
    "    # Initialize the network\n",
    "    cir = UAnsatz(n)\n",
    "    \n",
Q
Quleaf 已提交
590
    "    # Build a generalized rotation layer\n",
Q
Quleaf 已提交
591 592 593 594 595 596 597 598
    "    for i in range(n):\n",
    "        cir.rz(theta[i][0], i)\n",
    "        cir.ry(theta[i][1], i)\n",
    "        cir.rz(theta[i][2], i)\n",
    "\n",
    "    # The default depth is depth = 1\n",
    "    # Build the entangleed layer and Ry rotation layer\n",
    "    for d in range(3, depth + 3):\n",
Q
Quleaf 已提交
599 600
    "        # The entanglement layer\n",
    "        for i in range(n-1):\n",
Q
Quleaf 已提交
601
    "            cir.cnot([i, i + 1])\n",
Q
Quleaf 已提交
602 603
    "        cir.cnot([n-1, 0])\n",
    "        # Add Ry to each qubit\n",
Q
Quleaf 已提交
604 605 606
    "        for i in range(n):\n",
    "            cir.ry(theta[i][d], i)\n",
    "\n",
Q
Quleaf 已提交
607
    "    return cir"
Q
Quleaf 已提交
608 609 610 611 612 613
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Q
Quleaf 已提交
614 615 616 617
    "### Measurement\n",
    "After passing through the PQC $U(\\theta)$, the quantum data becomes $\\lvert \\psi_{\\rm out}\\rangle^k = U(\\theta)\\lvert \\psi_{\\rm in} \\rangle^k$. To get its label, we need to measure this new quantum state to obtain the classical information. These processed classical information will then be used to calculate the loss function $\\mathcal{L}(\\boldsymbol{\\theta})$. Finally, based on the gradient descent algorithm, we continuously update the PQC parameters $\\boldsymbol{\\theta}$ and optimize the loss function. \n",
    "\n",
    "Here we measure the expected value of the Pauli $Z$ operator on the first qubit. Specifically,\n",
Q
Quleaf 已提交
618 619 620
    "\n",
    "$$\n",
    "\\langle Z \\rangle =\n",
Q
Quleaf 已提交
621
    "\\langle \\psi_{\\rm out} |Z\\otimes I\\cdots \\otimes I| \\psi_{\\rm out}\\rangle.\n",
Q
Quleaf 已提交
622 623 624 625 626 627 628 629 630 631 632 633 634 635
    "\\tag{12}\n",
    "$$\n",
    "\n",
    "Recall that the matrix of the Pauli $Z$ operator is defined as:\n",
    "\n",
    "$$\n",
    "Z := \\begin{bmatrix} 1 &0 \\\\ 0 &-1 \\end{bmatrix}.\n",
    "\\tag{13}\n",
    "$$\n",
    "\n",
    "Continuing our previous 2-qubit example, the expected value we get after the measurement is\n",
    "\n",
    "$$\n",
    "\\langle Z \\rangle =\n",
Q
Quleaf 已提交
636
    "\\langle \\psi_{\\rm out} |Z\\otimes I| \\psi_{\\rm out}\\rangle =\n",
Q
Quleaf 已提交
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
    "\\frac{1}{2}\n",
    "\\begin{bmatrix}\n",
    "-1-i \\quad\n",
    "-1-i \\quad\n",
    "0 \\quad\n",
    "0\n",
    "\\end{bmatrix}\n",
    "\\begin{bmatrix}\n",
    "1 &0 &0 &0 \\\\\n",
    "0 &1 &0 &0 \\\\\n",
    "0 &0 &-1 &0 \\\\\n",
    "0 &0 &0 &-1\n",
    "\\end{bmatrix}\n",
    "\\cdot\n",
    "\\frac{1}{2}\n",
    "\\begin{bmatrix}\n",
    "-1+i \\\\\n",
    "-1+i \\\\\n",
    "0 \\\\\n",
    "0\n",
    "\\end{bmatrix}\n",
    "= 1. \\tag{14}\n",
    "$$\n",
    "\n",
Q
Quleaf 已提交
661 662
    "This measurement result seems to be our original label 1. Does this mean that we have successfully classified this data point? This is not the case because the range of $\\langle Z \\rangle$ is usually between $[-1,1]$. \n",
    "To match it to our label range $y^{k} \\in \\{0,1\\}$, we need to map the upper and lower limits. The simplest mapping is \n",
Q
Quleaf 已提交
663 664
    "\n",
    "$$\n",
Q
Quleaf 已提交
665
    "\\tilde{y}^{k} = \\frac{\\langle Z \\rangle}{2} + \\frac{1}{2} + bias \\quad \\in [0, 1].\n",
Q
Quleaf 已提交
666 667 668 669 670 671
    "\\tag{15}\n",
    "$$\n",
    "\n",
    "Using bias is a trick in machine learning. The purpose is to make the decision boundary not restricted by the origin or some hyperplane. Generally, the default bias is initialized to be 0, and the optimizer will continuously update it like all the other parameters $\\theta$ in the iterative process to ensure $\\tilde{y}^{k} \\in [0, 1]$. Of course, you can also choose other complex mappings (activation functions), such as the sigmoid function. After mapping, we can regard $\\tilde{y}^{k}$ as the label we estimated. $\\tilde{y}^{k}< 0.5$ corresponds to label 0, and $\\tilde{y}^{k}> 0.5$ corresponds to label 1. It's time to quickly review the whole process before we finish discussion,\n",
    "\n",
    "$$\n",
Q
Quleaf 已提交
672 673 674
    "x^{k} \\rightarrow |\\psi_{\\rm in}\\rangle^{k} \\rightarrow U(\\boldsymbol{\\theta})|\\psi_{\\rm in}\\rangle^{k} \\rightarrow\n",
    "|\\psi_{\\rm out}\\rangle^{k} \\rightarrow ^{k}\\langle \\psi_{\\rm out} |Z\\otimes I\\cdots \\otimes I| \\psi_{\\rm out} \\rangle^{k}\n",
    "\\rightarrow \\langle Z \\rangle  \\rightarrow \\tilde{y}^{k}.\\tag{16}\n",
Q
Quleaf 已提交
675 676
    "$$\n",
    "\n",
Q
Quleaf 已提交
677 678 679 680 681 682 683 684
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "###  Loss function\n",
Q
Quleaf 已提交
685
    "\n",
Q
Quleaf 已提交
686
    "To calculate the loss function in Eq. (1), we need to measure all training data in each iteration. In real practice, we devide the training data into \"Ntrain/BATCH\" groups, where each group contains \"BATCH\" data pairs.\n",
Q
Quleaf 已提交
687
    "\n",
Q
Quleaf 已提交
688
    "The loss function for the i-th group is \n",
Q
Quleaf 已提交
689
    "$$\n",
Q
Quleaf 已提交
690
    "\\mathcal{L}_{i} = \\sum_{k=1}^{BATCH} \\frac{1}{BATCH} |y^{i,k} - \\tilde{y}^{i,k}|^2,\\tag{17}\n",
Q
Quleaf 已提交
691
    "$$\n",
Q
Quleaf 已提交
692 693 694
    "and we train the PQC with $\\mathcal{L}_{i}$ for \"EPOCH\" times. \n",
    "\n",
    "If you set \"BATCH = Ntrain\", there will be only one group, and Eq. (17) becomes Eq. (1)."
Q
Quleaf 已提交
695 696 697 698
   ]
  },
  {
   "cell_type": "code",
Q
Quleaf 已提交
699
   "execution_count": 6,
Q
Quleaf 已提交
700 701
   "metadata": {
    "ExecuteTime": {
Q
Quleaf 已提交
702 703
     "end_time": "2021-03-09T04:03:37.439183Z",
     "start_time": "2021-03-09T04:03:37.432202Z"
Q
Quleaf 已提交
704 705 706 707 708 709 710
    }
   },
   "outputs": [],
   "source": [
    "# Generate Pauli Z operator that only acts on the first qubit\n",
    "# Act the identity matrix on rest of the qubits\n",
    "def Observable(n):\n",
Q
Quleaf 已提交
711
    "    r\"\"\"\n",
Q
Quleaf 已提交
712 713 714 715
    "    :param n: number of qubits\n",
    "    :return: local observable: Z \\otimes I \\otimes ...\\otimes I\n",
    "    \"\"\"\n",
    "    Ob = pauli_str_to_matrix([[1.0,'z0']], n)\n",
Q
Quleaf 已提交
716
    "\n",
Q
Quleaf 已提交
717 718 719 720 721
    "    return Ob"
   ]
  },
  {
   "cell_type": "code",
Q
Quleaf 已提交
722
   "execution_count": 7,
Q
Quleaf 已提交
723 724
   "metadata": {
    "ExecuteTime": {
Q
Quleaf 已提交
725 726
     "end_time": "2021-03-09T04:03:37.503213Z",
     "start_time": "2021-03-09T04:03:37.473028Z"
Q
Quleaf 已提交
727 728 729 730 731
    }
   },
   "outputs": [],
   "source": [
    "# Build the computational graph\n",
Q
Quleaf 已提交
732
    "class Opt_Classifier(paddle.nn.Layer):\n",
Q
Quleaf 已提交
733 734 735
    "    \"\"\"\n",
    "    Construct the model net\n",
    "    \"\"\"\n",
Q
Quleaf 已提交
736 737 738
    "    def __init__(self, n, depth, seed_paras=1, dtype='float64'):\n",
    "        # Initialization, use n, depth give the initial PQC\n",
    "        super(Opt_Classifier, self).__init__()\n",
Q
Quleaf 已提交
739 740 741 742
    "        self.n = n\n",
    "        self.depth = depth\n",
    "        # Initialize the parameters theta with a uniform distribution of [0, 2*pi]\n",
    "        self.theta = self.create_parameter(\n",
Q
Quleaf 已提交
743
    "            shape=[n, depth + 3],  # \"+3\" because we add an initial generalized rotation gate to each qubit\n",
Q
Quleaf 已提交
744
    "            default_initializer=paddle.nn.initializer.Uniform(low=0.0, high=2*PI),\n",
Q
Quleaf 已提交
745 746 747 748 749
    "            dtype=dtype,\n",
    "            is_bias=False)\n",
    "        # Initialize bias\n",
    "        self.bias = self.create_parameter(\n",
    "            shape=[1],\n",
Q
Quleaf 已提交
750
    "            default_initializer=paddle.nn.initializer.Normal(std=0.01),\n",
Q
Quleaf 已提交
751 752 753 754 755 756 757
    "            dtype=dtype,\n",
    "            is_bias=False)\n",
    "\n",
    "    # Define forward propagation mechanism, and then calculate loss function and cross-validation accuracy\n",
    "    def forward(self, state_in, label):\n",
    "        \"\"\"\n",
    "        Args:\n",
Q
Quleaf 已提交
758
    "            state_in: The input quantum state, shape [-1, 1, 2^n] -- in this tutorial: [BATCH, 1, 2^n]\n",
Q
Quleaf 已提交
759 760 761
    "            label: label for the input state, shape [-1, 1]\n",
    "        Returns:\n",
    "            The loss:\n",
Q
Quleaf 已提交
762
    "                L = 1/BATCH * ((<Z> + 1)/2 + bias - label)^2\n",
Q
Quleaf 已提交
763
    "        \"\"\"\n",
Q
Quleaf 已提交
764 765
    "        # Convert Numpy array to tensor\n",
    "        Ob = paddle.to_tensor(Observable(self.n))\n",
Q
Quleaf 已提交
766
    "        label_pp = reshape(paddle.to_tensor(label), [-1, 1])\n",
Q
Quleaf 已提交
767
    "\n",
Q
Quleaf 已提交
768 769
    "        # Build the quantum circuit\n",
    "        cir = cir_Classifier(self.theta, n=self.n, depth=self.depth)\n",
Q
Quleaf 已提交
770
    "        Utheta = cir.U\n",
Q
Quleaf 已提交
771
    "\n",
Q
Quleaf 已提交
772
    "        # Because Utheta is achieved by learning, we compute with row vectors to speed up without affecting the training effect\n",
Q
Quleaf 已提交
773
    "        state_out = matmul(state_in, Utheta)  # shape:[-1, 1, 2 ** n], the first parameter is BATCH in this tutorial\n",
Q
Quleaf 已提交
774 775
    "\n",
    "        # Measure the expectation value of Pauli Z operator <Z> -- shape [-1,1,1]\n",
Q
Quleaf 已提交
776
    "        E_Z = matmul(matmul(state_out, Ob), transpose(paddle.conj(state_out), perm=[0, 2, 1]))\n",
Q
Quleaf 已提交
777
    "\n",
Q
Quleaf 已提交
778
    "        # Mapping <Z> to the estimated value of the label\n",
Q
Quleaf 已提交
779 780
    "        state_predict = paddle.real(E_Z)[:, 0] * 0.5 + 0.5 + self.bias  # |y^{i,k} - \\tilde{y}^{i,k}|^2\n",
    "        loss = paddle.mean((state_predict - label_pp) ** 2)  # Get average for \"BATCH\" |y^{i,k} - \\tilde{y}^{i,k}|^2: L_i:shape:[1,1]\n",
Q
Quleaf 已提交
781
    "\n",
Q
Quleaf 已提交
782
    "        # Calculate the accuracy of cross-validation\n",
Q
Quleaf 已提交
783
    "        is_correct = (paddle.abs(state_predict - label_pp) < 0.5).nonzero().shape[0]\n",
Q
Quleaf 已提交
784 785
    "        acc = is_correct / label.shape[0]\n",
    "\n",
Q
Quleaf 已提交
786
    "        return loss, acc, state_predict.numpy(), cir"
Q
Quleaf 已提交
787 788 789 790 791 792 793 794 795 796 797 798 799
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Training process\n",
    "\n",
    "After defining all the concepts above, we might take a look at the actual training process."
   ]
  },
  {
   "cell_type": "code",
Q
Quleaf 已提交
800 801
   "execution_count": 11,
   "metadata": {},
Q
Quleaf 已提交
802 803
   "outputs": [],
   "source": [
Q
Quleaf 已提交
804 805
    "# Draw the figure of the final training classifier\n",
    "def heatmap_plot(Opt_Classifier, N):\n",
Q
Quleaf 已提交
806 807 808 809 810 811 812 813 814 815 816
    "    # generate data points x_y_\n",
    "    Num_points = 30\n",
    "    x_y_ = []\n",
    "    for row_y in np.linspace(0.9, -0.9, Num_points):\n",
    "        row = []\n",
    "        for row_x in np.linspace(-0.9, 0.9, Num_points):\n",
    "            row.append([row_x, row_y])\n",
    "        x_y_.append(row)\n",
    "    x_y_ = np.array(x_y_).reshape(-1, 2).astype(\"float64\")\n",
    "\n",
    "    # make prediction: heat_data\n",
Q
Quleaf 已提交
817
    "    input_state_test = paddle.to_tensor(\n",
Q
Quleaf 已提交
818
    "        datapoints_transform_to_state(x_y_, N))\n",
Q
Quleaf 已提交
819
    "    loss_useless, acc_useless, state_predict, cir = Opt_Classifier(state_in=input_state_test, label=x_y_[:, 0])\n",
Q
Quleaf 已提交
820 821 822 823 824 825 826
    "    heat_data = state_predict.reshape(Num_points, Num_points)\n",
    "\n",
    "    # plot\n",
    "    fig = plt.figure(1)\n",
    "    ax = fig.add_subplot(111)\n",
    "    x_label = np.linspace(-0.9, 0.9, 3)\n",
    "    y_label = np.linspace(0.9, -0.9, 3)\n",
Q
Quleaf 已提交
827
    "    ax.set_xticks([0, Num_points // 2, Num_points - 1])\n",
Q
Quleaf 已提交
828
    "    ax.set_xticklabels(x_label)\n",
Q
Quleaf 已提交
829
    "    ax.set_yticks([0, Num_points // 2, Num_points - 1])\n",
Q
Quleaf 已提交
830 831 832
    "    ax.set_yticklabels(y_label)\n",
    "    im = ax.imshow(heat_data, cmap=plt.cm.RdBu)\n",
    "    plt.colorbar(im)\n",
Q
Quleaf 已提交
833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853
    "    plt.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Learn the PQC via Adam"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {
    "ExecuteTime": {
     "end_time": "2021-03-09T04:03:38.325454Z",
     "start_time": "2021-03-09T04:03:38.299975Z"
    }
   },
   "outputs": [],
   "source": [
Q
Quleaf 已提交
854
    "def QClassifier(Ntrain, Ntest, gap, N, DEPTH, EPOCH, LR, BATCH, seed_paras, seed_data):\n",
Q
Quleaf 已提交
855 856
    "    \"\"\"\n",
    "    Quantum Binary Classifier\n",
Q
Quleaf 已提交
857 858 859 860 861 862 863 864 865 866 867 868
    "    Input:\n",
    "        Ntrain         # Specify the training set size\n",
    "        Ntest          # Specify the test set size\n",
    "        gap            # Set the width of the decision boundary\n",
    "        N              # Number of qubits required\n",
    "        DEPTH          # Circuit depth\n",
    "        BATCH          # Batch size during training\n",
    "        EPOCH          # Number of training epochs, the total iteration number \"EPOCH * (Ntrain / BATCH)\" is chosen to be about 200\n",
    "        LR             # Set the learning rate\n",
    "        seed_paras     # Set random seed to initialize various parameters\n",
    "        seed_data      # Fixed random seed required to generate the data set\n",
    "        plot_heat_map  # Whether to plot heat map, default True\n",
Q
Quleaf 已提交
869
    "    \"\"\"\n",
Q
Quleaf 已提交
870 871 872 873
    "    # Generate data set\n",
    "    train_x, train_y, test_x, test_y = circle_data_point_generator(Ntrain=Ntrain, Ntest=Ntest, boundary_gap=gap, seed_data=seed_data)\n",
    "    # Read the dimension of the training set\n",
    "    N_train = train_x.shape[0]\n",
Q
Quleaf 已提交
874
    "    \n",
Q
Quleaf 已提交
875
    "    paddle.seed(seed_paras)\n",
Q
Quleaf 已提交
876 877
    "    # Initialize the registers to store the accuracy rate and other information\n",
    "    summary_iter, summary_test_acc = [], []\n",
Q
Quleaf 已提交
878 879 880
    "\n",
    "    # Generally, we use Adam optimizer to get relatively good convergence\n",
    "    # Of course, it can be changed to SGD or RMSprop\n",
Q
Quleaf 已提交
881 882
    "    myLayer = Opt_Classifier(n=N, depth=DEPTH)  # Initial PQC\n",
    "    opt = paddle.optimizer.Adam(learning_rate=LR, parameters=myLayer.parameters())\n",
Q
Quleaf 已提交
883 884 885
    "\n",
    "\n",
    "    # Optimize iteration\n",
Q
Quleaf 已提交
886 887 888 889
    "    # We divide the training set into \"Ntrain/BATCH\" groups\n",
    "    # For each group the final circuit will be used as the initial circuit for the next group\n",
    "    # Use cir to record the final circuit after learning.\n",
    "    i = 0  # Record the iteration number\n",
Q
Quleaf 已提交
890
    "    for ep in range(EPOCH):\n",
Q
Quleaf 已提交
891
    "        # Learn for each group\n",
Q
Quleaf 已提交
892
    "        for itr in range(N_train // BATCH):\n",
Q
Quleaf 已提交
893 894
    "            i += 1  # Record the iteration number\n",
    "            # Encode classical data into a quantum state |psi>, dimension [BATCH, 2 ** N]\n",
Q
Quleaf 已提交
895 896 897
    "            input_state = paddle.to_tensor(datapoints_transform_to_state(train_x[itr * BATCH:(itr + 1) * BATCH], N))\n",
    "\n",
    "            # Run forward propagation to calculate loss function\n",
Q
Quleaf 已提交
898
    "            loss, train_acc, state_predict_useless, cir \\\n",
Q
Quleaf 已提交
899 900 901
    "                = myLayer(state_in=input_state, label=train_y[itr * BATCH:(itr + 1) * BATCH])  # optimize the given PQC\n",
    "            # Print the performance in iteration\n",
    "            if i % 30 == 5:\n",
Q
Quleaf 已提交
902 903
    "                # Calculate the correct rate on the test set test_acc\n",
    "                input_state_test = paddle.to_tensor(datapoints_transform_to_state(test_x, N))\n",
Q
Quleaf 已提交
904
    "                loss_useless, test_acc, state_predict_useless, t_cir \\\n",
Q
Quleaf 已提交
905
    "                    = myLayer(state_in=input_state_test,label=test_y)\n",
Q
Quleaf 已提交
906
    "                print(\"epoch:\", ep, \"iter:\", itr,\n",
Q
Quleaf 已提交
907 908 909
    "                      \"loss: %.4f\" % loss.numpy(),\n",
    "                      \"train acc: %.4f\" % train_acc,\n",
    "                      \"test acc: %.4f\" % test_acc)\n",
Q
Quleaf 已提交
910 911
    "                # Store accuracy rate and other information\n",
    "                summary_iter.append(itr + ep * N_train)\n",
Q
Quleaf 已提交
912
    "                summary_test_acc.append(test_acc) \n",
Q
Quleaf 已提交
913 914 915 916 917
    "\n",
    "            # Run back propagation to minimize the loss function\n",
    "            loss.backward()\n",
    "            opt.minimize(loss)\n",
    "            opt.clear_grad()\n",
Q
Quleaf 已提交
918 919 920 921
    "            \n",
    "    # Print the final circuit\n",
    "    print(\"The trained circuit:\")\n",
    "    print(cir)\n",
Q
Quleaf 已提交
922
    "    # Draw the decision boundary represented by heatmap\n",
Q
Quleaf 已提交
923
    "    heatmap_plot(myLayer, N=N)\n",
Q
Quleaf 已提交
924
    "\n",
Q
Quleaf 已提交
925
    "    return summary_test_acc"
Q
Quleaf 已提交
926 927 928 929
   ]
  },
  {
   "cell_type": "code",
Q
Quleaf 已提交
930
   "execution_count": 13,
Q
Quleaf 已提交
931 932
   "metadata": {
    "ExecuteTime": {
Q
Quleaf 已提交
933 934
     "end_time": "2021-03-09T04:04:19.852356Z",
     "start_time": "2021-03-09T04:03:38.709491Z"
Q
Quleaf 已提交
935 936 937 938 939 940 941 942 943 944
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The dimensions of the training set x (200, 2) and y (200, 1)\n",
      "The dimensions of the test set x (100, 2) and y (100, 1) \n",
      "\n",
Q
Quleaf 已提交
945 946 947 948 949 950 951
      "epoch: 0 iter: 4 loss: 0.1547 train acc: 0.8500 test acc: 0.6400\n",
      "epoch: 3 iter: 4 loss: 0.1337 train acc: 0.9500 test acc: 0.8800\n",
      "epoch: 6 iter: 4 loss: 0.1265 train acc: 1.0000 test acc: 1.0000\n",
      "epoch: 9 iter: 4 loss: 0.1247 train acc: 1.0000 test acc: 1.0000\n",
      "epoch: 12 iter: 4 loss: 0.1261 train acc: 1.0000 test acc: 1.0000\n",
      "epoch: 15 iter: 4 loss: 0.1268 train acc: 1.0000 test acc: 1.0000\n",
      "epoch: 18 iter: 4 loss: 0.1269 train acc: 1.0000 test acc: 1.0000\n",
Q
Quleaf 已提交
952
      "The trained circuit:\n",
Q
Quleaf 已提交
953
      "--Rz(0.542)----Ry(3.458)----Rz(2.692)----*--------------x----Ry(6.191)--\n",
Q
Quleaf 已提交
954
      "                                         |              |               \n",
Q
Quleaf 已提交
955
      "--Rz(3.514)----Ry(1.543)----Rz(2.499)----x----*---------|----Ry(2.968)--\n",
Q
Quleaf 已提交
956
      "                                              |         |               \n",
Q
Quleaf 已提交
957
      "--Rz(5.947)----Ry(3.161)----Rz(3.897)---------x----*----|----Ry(1.579)--\n",
Q
Quleaf 已提交
958
      "                                                   |    |               \n",
Q
Quleaf 已提交
959
      "--Rz(0.718)----Ry(5.038)----Rz(1.348)--------------x----*----Ry(0.036)--\n",
Q
Quleaf 已提交
960
      "                                                                        \n"
Q
Quleaf 已提交
961 962 963 964
     ]
    },
    {
     "data": {
Q
Quleaf 已提交
965
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAATsAAAD5CAYAAABYi5LMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAAhMklEQVR4nO2dfYxld3nfv9/7Nnd2ZnY9u2NjwMbgYjfYITXFKm1RC4obbFIJQ0gTg9qaisZ9gbRKQtRaqgoyopg2BVEJpWwcKyYSb3IkalQUamLcVLyFpRAsOwG/UeLF4PXs++7M3Lenf5wzw/X4Ps85594zO+fO/X6ko71zn/s7v9/cc+bZ3zm/73m+NDMIIcRep7bbAxBCiAuBkp0QYiZQshNCzARKdkKImUDJTggxEyjZCSFmgkbRBiRvAvBRAHUAd5nZndviVwC4G8DFAI4D+Mdm9lTWfmtzi1ZfODQ6VqvHY6r5OZuMGvrBqFnmBybZ75h9TrTfihGKoSZQSsX79aOROitTuhWEB4O+3yyK9Xphl4N+d3S7jTOw3vpEp0pt/2WG3nquz9ra6hfN7KZJ+iuTQsmOZB3AxwD8AoCnAHyT5H1m9sjQx34HwCfM7B6SPw/ggwD+Sda+6wuHsPIL/25kbG7xYNi22Z5zY42mnwjrDT9Wq8eT3qgta/75VIsSYdAuifuxWkbbcWH4v4XPJPrNwSBIPIOgz6AdAAyCMQ16/o57XT/x9DrBgDLads6fDWKn3dj6qWNhn2urR0e+3/3L/xG2y0V/A81XvCXXRzv/966VyTssj6KXsX8LwGNm9oSZdQB8GsDN2z5zDYAH0tdfHhEXQkwxrNVzbVWjaLJ7MYC/Gvr5qfS9Yf4cwC+lr98CYInk6OtTIcSUwZlJdnl4D4DXkfw2gNcBOApg5Fye5G0kj5A8Mtjwp/RCiIrA6U12RRcojgK4fOjny9L3tjCzHyGd2ZFcBPBWMzs5amdmdhjAYQBoHrxCD+kKUXFIot5s7fYwxqJosvsmgKtIvgxJkrsFwNuHP0ByBcBxMxsAuB3JyqwQYo9QxVlbHgolOzPrkXw3gC8ikZ7cbWYPk7wDwBEzuw/A6wF8kKQB+FMA78qz71Z7Dpe94uUjY0sH58O2K0v+auyhRf9/oQP7/NhSO/5q5lv+AW83/Fiz7q9uNjNWVJvBCnE9WDWNdrtTq7hZRCuu0aJqd+Cvfnb78cXBerDiut7zV03PrPtSj1PnO2Gfq2f9+LHTG27s5Mk1N3Z69Yqwz+NHXzTy/WefvD9sl4v0MnYaKayzM7MvAPjCtvf+49DrewHcO/nQhBBVg4h1rVVmOkcthNglylugIHkTye+RfIzkvx8RfwnJL5P8NsnvkvzFodjtabvvkbwxz8gLz+yEEDNMSZexOR9Q+A8APmtmv0vyGiRXlC9NX98C4FoALwLwJZJXm5l/LwJKdkKIIpColbMau/WAQrJbbj6gMJzsDMD+9PUBAD9KX98M4NNmtgHgSZKPpfv7WtShkp0QIjfJPbvcM7sVkkeGfj6cys2A0Q8ovGZb+/cB+F8kfx3AAoB/MNT269vabn+44Xko2Qkh8lPsMvZZM7t+gt7eBuAPzOy/kvw7AP6Q5M+OuzMlOyFEAZhZhSgnmQ8oAHgngJsAwMy+RrINYCVn2+dRmWTXatXxkssPjIxde9no9ze5fNnX4a0EWroDc/6vfyBLZxdUU2kF2rXGBDq7RhAPdhtXWsmQ2Y27XB/XAonLJvWDYD/YcTej6kkn0OFFsfNB5ZJTgQYPAJ4NdHhPn/V1dk884z8++dBfnQr79DSMJ5rNsF0uWJqoOPMBBQA/BHADgD8g+QoAbQDHANwH4JMkP4xkgeIqAH+W1WFlkp0QovoQRK0x+QJFzgcUfgvA75H8DSSLFe+wpHbYwyQ/i2QxowfgXVkrsYCSnRCiCCU+QZHjAYVHALzWafsBAB8o0p+SnRCiADP0uJgQYoYhwLqSnRBij0PN7IQQM8EsVT3ZKdrNOn7mRftHxq55wVLY9qUX+dKTg/v8X3ExkI8sBDEAmKv5UgV2zvuxni834Ebs2sTeaNcoAMDAl0AwiIUONnnibqcZopUgbjX/mFndl09Ysx332fDjg30LbmzD/BJiZ7uxnOOFG37bSxb92FLL/w76GRKb86dHn0eRSVQR6o3KpI1CTOeohRC7AslMF7yqomQnhCjEuPaau42SnRCiELtV3XpSlOyEEPlhtpl7VVGyE0LkJinxpGQnhNjrkKgHxk9VpjLJrtWo4SWOi1gkLQGAS5f85f/lucAFrO87ONXOxZUluH7Gb9v19zs4d3qsGAAMOr40xaJYN5KsxM9PW0bcI1OLFcQ550tE2PJjtXlfPgIA3OdLmOr7RsueAKA+71fdac8vh33uW/TP3UjdFLmvnVwPjieAv3x69LlZKylJaWYnhNjzkFqgEELMCFl68aqiZCeEKIR0dkKIPQ/J0h47u9BM56iFELsGa8y1Ze4n2yT7IyS/k27fJ3lyKNYfit2XZ9ya2Qkh8sPY0yT3bnKYZJvZbwx9/tcBvGpoF2tmdl2RPiuT7Bo14pBjjhNVLgGAg4E5TnvDl5DUzh7zd3rm2bDPwalVN9YLYoPzvmSlf9aPAUD3vC8v6a/5xi79rl/1xCIHGwA2GK/qCWvxRQMDGUSj7Xsc1INYa38sPaktXuTHDhzy+1y+xI8d8GVGALBvyW9r874UZj0wAHpBUC0FAA4ujP6OIsOmvJQoKs5jkj3M2wC8d5IOdRkrhChAvkvYNCGukDwytN02tKNRJtkjja5JXgHgZQAeGHq7ne7z6yTfnGfklZnZCSGmgGI6u0lNsje5BcC92xzErjCzoySvBPAAyYfM7PFoJ5rZCSFyQwC1OnNtGRQxur4FwKeG3zCzo+m/TwB4EM+9nzcSJTshRH7SmV2eLYMtk2ySLSQJ7XmrqiR/BsAygK8NvbdMci59vYLEbtG717eFLmOFEIUoY4Eip0k2kCTBT6fm2Ju8AsDHSQ6QTNjuHF7F9VCyE0IUgKU9QZFlkp3+/L4R7b4K4JVF+1OyE0LkRoUASqBRIw62R5dqilzAAGCu57t5hVq6E0+7of7qj8M+e6t+287xk25s4+RZv92Zc3Gf53ydXW890NkFsUGWzi7Qe0Uw4wZ1vemferXAWau5zy/x1Nq/L+xz7qITbmz+kpNuzNb941Lv+d8tANSDp+b3Lfu/y/6WXwJreT52NDu06OjsshcNcqEST0KIPQ+Z1J6cRpTshBC5IYi6ZnZCiD0PoWQnhNj7EEp2QogZgCynoMBuoGQnhMgNSS1QTEqdxAGnVNNChvQkcgLjOV9u0AvkJb1j3mN6CWs/9ktAra3641lf9R3EOmd8CQ0AdM76rlLdc36s3/EdwvrdDHexHZOe+NKKxrx/WrYWfNnF3H5fygEAndP+9xtJdxb7wXeU4aLWbPtlp2ptv8TTvjm/5NSBufjPdtH5OypDH5dcxirZCSFmAN2zE0LseajVWCHELCCdnRBiZqjLSlEIsdfR42JCiJlAOrsSIIE553+MuVosf+CGX5WiHzh99U8848bWjx0P+zx/zJe0rD1z0m/3rD/WjdMbYZ9RvLfuO4j11qZNeuLHWo5zFgC0l335DRC7rEVEFVr2zcVyl9DRbOliN9Ze8GP7gu8OAOadqjGlWCBO8T276ZyPCiF2jXqNubYsJjTJvpXko+l2a55xV2ZmJ4SoPmVJTyYxySZ5EImH7PUADMC30rb+5RY0sxNCFGCzEEAJM7stk2wz6wDYNMn2eBt+6jB2I4D7zex4muDuB3BTVoea2QkhclPw2dgVkkeGfj5sZofT16NMsl/j9LndJDu3wfYwSnZCiEIUuIzdSZPswugyVgiRm817diVcxk5ikl2k7RaVmdmRQMuRK7DrG80kcb+axeDsSTfWOx1VJ/FjSdyvXhLJS9ZW/bGunYh/z6jqSee8H1sL5COdQSwt6dt40pMslX0r+GOYP+PH2kuBjCao7gLEMppa3f9/vz7vy12aGSY/jUNn3Fh03jbMl8nMNeLvdp9j1lOO9KS0Z2O3TLKRJKpbALz9ef2NMMlG4jX7n0gupz+/AcDtWR1WJtkJIaaAklZjJzHJNrPjJN+PJGECwB1mFgtjoWQnhCgAQTRLqmc3rkl2+v7dAO4u0p+SnRAiNwRQkv3sBUfJTgiRH5ZT8Xg3ULITQuQmmdkp2QkhZoAyVnV3AyU7IURudM+uBJJVHkdn14tLH9m6r1eyNV/z1j3n69oiJ6okvubG1gO9XKSlWz8R/57nN3zt1dnewN9voKXL1tmFYZesP4hIZ7fW92MHgjJXg77/HQBA3dGfAXFZqeaSfy50M86TuXO+HhMd/1xgz3c7a9R8hzXAL65ZxoSMJBqBJrHKVCbZCSGmA83shBB7HkL37IQQs4CsFIUQs4BmdkKImUH37IQQex6SaGo1djKIwKItWIYHYunJYH086Un3fFxuKXL66pzzxxuVaYqkJQBwqutLK84FsotpK/HUGXPqUI9VIOExay74co7eBOeJBfISC85N9v3zpE6/5BQAtJxkVMaELLmMLWFHu0Blkp0QYjrQ42JCiD2PFiiEELMBgSm9ZScPCiFEfjaLd+bZMveVYZKdfuZXSD5C8mGSnxx6vz9koH3fqLbb0cxOCJGbsi5j85hkk7wKibfEa83sBMlLhnaxZmbXFelTyU4IkZ/yLmO3TLIBgOSmSfYjQ5/5NQAfS42wYWbPTNJhZZId6S9pcxBLMqwbSFN6/hJ+f92XIvTXY7lLd80fU2/dj0UuYFHlEiCWl0Rtp016Et1dqdMfTyvj+2uNecx668E51PFjQIb0JDg3EZzzWcnGm3mxJHexAjO7SU2yrwYAkl9BYsrzPjP74zTWTvfdA3CnmX0uazCVSXZCiOmgQM6c1CS7AeAqAK9H4g37pyRfaWYnAVxhZkdJXgngAZIPmdnj0c60QCGEKEQNzLVlkMfo+ikA95lZ18yeBPB9JMkPZnY0/fcJAA8CeFX2uIUQIieJSXa+LYMtk2ySLST+sNtXVT+HZFYHkitILmufILlMcm7o/dfiuff6RqLLWCFEflhOxeOcJtlfBPAGko8A6AP4bTNbJfl3AXyc5ADJhO3O4VVcDyU7IURumO8SNRdZJtlmZgB+M92GP/NVAK8s2p+SnRCiEFP6tFi1kp0rVxjEkoJIXjIIpAH9rr+83+/0wy4HXT/eW/NjkdSjm6HyiNqOG1vLMKkZ33Anq6F/UycaU1gtJUNGE8lLouMdxQbBOQTE518omQqkJ7WMqjA7/TiXqp4IIfY8MskWQswMU5rrlOyEEMWYVr2akp0QIjdkOY+d7QZKdkKIQmiBQggxE0zpxE7JTgiRH63G7jQWa8Fs4OugLNDoWaDnGmQIzKL4INhvtNssndhO6OyydHQZCkefCTSD42rpsnSKg6DtIHBu6weaykEno/xYpBENzlsG53xWrnFLPMXN8hGUYqs605HshBCVYUpznZKdECI/8o0VQswMkp4IIfY8mtkJIWYETu1q7LQ++SGE2A24+RRF9pa5q8l8Y28l+Wi63Zpn6GPN7EjeBOCjSCqM3mVmd26LzwH4BIBXA1gF8Ktm9oNx+tprjOvWNUvoO6ouNANLOD6T+MaSPAjgvQCuRyJy+lba9kTUZ+GZ3dAg3wjgGgBvI3nNto+9E8AJM3s5gI8A+FDRfoQQFcUG+baYLd9YM+sA2PSNHcbzjb0RwP1mdjyN3Q/gpqwOx7mMzTPImwHck76+F8ANnNYlHCHEc6ANcm0ZjPKNffG2z1wN4GqSXyH59fSKMm/b5zHOZWwec9utz6TGGqcAHALw7Bj9CSEqg4VPfmwjMsnOw0jf2ALtn7ezXYPkbQBuA4AXX3Z5xqeFELuOWZ5L1E0ik+y8vrHfMLMugCdJbvrGHkVqsTjU9sGswYxzGZtnkFufIdkAcADJQsVzMLPDZna9mV1/aGVljKEIIS40JV3Gju0bi59aLC6TXAbwhvS9kHGSXZ5B3gdgczn4lwE8kNqiCSGmnRIWKMysB2DTN/YvAHx20zeW5JvSj30RwGrqG/tlpL6xZnYcwPuR5KJvArgjfS+k8GVsTnPb3wfwhyQfA3AcSULcMVir7+TuSyUSZGaYRk2tmLMo435Hk4hGGTwWwJq/Z05i5RWct8bx9ztw5hXlzDYKXcbGexrTNzaN3Q3g7iL9jXXPLscg1wH8o3H2LYSoMIbSkt2FRo+LCSEKYGA/ruFXVZTshBDF0MxOCLHnMUu2KUTJTghRDM3shBCzQA4NXSVRshNCFKA86cmFplLJztMHIUtzFOmgglit6f/69VbcZ73pa6TqLT8WOWdl6egijVm03ywHsYhxyy1l/S7ReMf9jrJ0io3gmDFoXAtiWTq76BxjfTyd3a7eMjMDBlqNFULscQhdxgohZoXIC7fCKNkJIQog6YkQYhbQ42JCiNnAQC1QCCFmAs3sJsMskEjU42Gy2XJjtXbbjdVbTT8WSAaStr5soDnvt22e9mUM7Qz34U4gc4jlJf7JmSXX6Nt4ZaWy9hvJS+aDxnEsloE02sFxCY5ZI4q1/XMPiM9NNPzzDzW/zyw5UH8nc5EVKsteKSqT7IQQ04FN6WqsTLKFEAVIZ3Z5tgyyTLJJvoPkMZLfSbd/PhTrD72/vVL6SDSzE0Lkx1DKZWwek+yUz5jZu0fsYs3MrivSp5KdECI3ZgbrdsvY1Zb/NACQ3PSf3p7sSkOXsUKIApR2GZvX6PqtJL9L8l6Sw66GbZJHUvPsN+cZuWZ2Qoj8mMEunEn25wF8ysw2SP4LAPcA+Pk0doWZHSV5JYAHSD5kZo9HO6tUsvOW1K0eL+/XWr68hEGsHsgGGgt+OwBoLqwFMV9S0Frw+1zsb4R9xpIDf5IeyUA6gwwZw5hPBk0iPVls+L/LQiAvWWjGFyqtRf+4NIPjEslL6u25sM/o/Itig8B5rN+ND0rXWS0tzc00/2rsRCbZZjbsNX0XgP88FDua/vsEyQcBvApAmOx0GSuEKEAys8uzZZDpP03yhUM/vgmJvyxSc+y59PUKgNcix72+Ss3shBAVp6TV2Jz+0/8mNczuIfGffkfa/BUAPk5ygGTCdueIVdznoWQnhMhPeauxefynbwdw+4h2XwXwyqL9KdkJIQqgx8WEELOAno0VQswK0/psbGWSncHQc3QO1gyqQwBge8GN1dr73FhrKYjt92MA0D5w3o311v16X/3O+P8r1s/40pRWzz8Bo2oq3awKGjskPWkGxjlRZZP9QbWZ+eVYLjS335eQzO33JSSTnCfR+ccghoY/1m6sUELHORcyVEY50cxOCDEDmBmsV84CxYVGyU4IkZ+SpCe7gZKdEKIAuowVQswCBlhfyU4Isecx+cYKIWYEXcYKIfY8ZhhoNXYyzPxyQ9aKtUyYC7RMC/vdWOsiPzZ3xtfRAUDv3Lobi7R0FgjXahnuWPWWH2+e80/AxUD3V8UST83ABWxcrRwAtAMdXnvZP4fmlpfcWKTBA4Da0rIbs6bfdtDwx9obdMI+zzvn36CMEk9msB21L9s5KpPshBDVxwxKdkKIWcD0uJgQYgbQzE4IMQuYGfqd6VygUFl2IUQhbDDItWUxoUn2rSQfTbdb84xbMzshRH5KWo2dxCSb5EEA7wVwPZKndb+Vtj0R9VmZZDcwYKM3emm8x3iY9ZZf4ql+4JAbs3On3dj8oVh6Muj4cg7WAqevoERRY96PAbFrWTeQnuxUyakIZmhP6s3oe/CPd+TOFslSAGB+ZdGPXXzRWLH68iVhn7Ulv63N+efteqD5OZdxzNaceFnmYiXds5vEJPtGAPeb2fG07f0AbgLwqaiRLmOFELkxs7IuYycxyc7b9jko2QkhCjHoD3JtSE2yh7bbCnb1eQAvNbOfA3A/EpPssanMZawQYgoYWHgLZxs7ZZJ9FMDrt7V9MGswmtkJIXJjKG01dmyTbCRes29IzbKXAbwhfS9EMzshRH5KWo2dxCTbzI6TfD+ShAkAd2wuVkQo2QkhClHWExTjmmSnsbsB3F2kv8oku74ZTm2Mvhdwrhu7izXnD7ixxoGL3Vi941cuaWZMwxcDeUmj7UsgGgt+NYvm0tmwz6jSSm/dl5501/x7LINuLGMYjFn2pJYhPakF0pNmID1pLoznAgYA7UP+edI+FFTAufRSN1Y/5McAgMH515/zq6mc7/rn36mN+AmGs8650C/DXsyAgZ6NFULsdQwq8SSEmAXMMOhO57OxSnZCiPyo6okQYjbQZawQYgYww+bTEVOHkp0QogCqVDwx/YHhxNroG59nO7GRymJgqsOFDTdWN/+gNRqx3KU2H1Ra2b/qxtqnT7qxTobJTzcy+Vn3f89+N5CeZDz6M+4lCzPMg2ot/9RrtP3jXQ9kPVnSk8hgqb7/oB9beaEbqx3yYwDQX/SlJxtNvwrL2bP+IsCJQEoEAKtnRxvy9MpIUgNgsEOVcnaayiQ7IUT1MZguY4UQM4ABVoY4eRdQshNCFGLcp2p2GyU7IURu5BsrhJgNzGCa2Qkh9jy2c74lO42SnRAiNwZgoAWKyegNDM+eH60PWnX0d5u0gnJCBxd8nRPqvmaLgWMZADQOrPi7DVzLBmd8t7fWeoaj2do5N2ZBuSrrjf5ek51m3H8ZjPm/eC12SkNQIostvwxWLYgx0D4CQG1p2Y8tXuTGbJ8f6y/47nUA0Gn7ZaWOB3q5Z875x+wn53xNJQAcd3R2/TIuP6f4MlZl2YUQhShguBOSZZI99Lm3kjSS16c/v5Tk2pB59n/PM+7KzOyEENUnWY2dfGaX1ySb5BKAfwvgG9t28biZXVekT83shBD5SZNdni2DLZNsM+sA2DTJ3s77AXwIgH+fJidKdkKI/Jih3+3n2jLINLom+TcBXG5m/3NE+5eR/DbJ/03y7+UZui5jhRC5MRR6gmKF5JGhnw+b2eE8DUnWAHwYqaPYNp4G8BIzWyX5agCfI3mtmfkrg1CyE0IUoZiV4iQm2UsAfhbAgyQB4FIA95F8k5kdAbCRDMe+RfJxAFcDGE6sz6MyyW6jN8APVkdLLw7MjT/MjZ7fdilwd1pY9iUDANAY+NKA2oYvEWHPv/VQ68aSgnrf75NRLJCPWD/jcmOHpCes+3Gr++W1LJALRe0AwFp+CaheIDXqNf12ZwMXMAA4FZRq+okjEQGAx4/7MqQnnold6E6fXBv5fr8sC8RypCdbJtlIktwtAN6+1YfZKQBb+i6SDwJ4j5kdIXkxgONm1id5JYCrADyR1WFlkp0QovoklYonT3Y5TbI9/j6AO0h2AQwA/EuZZAshyiVdoChnV7FJ9rb3Xz/0+o8A/FHR/pTshBD5KUlntxso2QkhcmNQiSchxCxQ0j273UDJTghRgOktBFCZZLfW7ePhp06N1fbUhl89YmWfL1VYnvelCllyl3bDf/ikVfclLa2m73DVnPOrtwBA0CXqNb9t9JhMqmHy28Zhl6wqQGb+B6K/pX7QrpvxR9gJBrWxHsSCCiTHMyryeJV8AODHZ3yp0aM/OePGHj4aamdxypFw9XuTX36aAYPgGFSZyiQ7IUT1McT/aVQZJTshRCGi2XWVUbITQuTGEN9mqDJKdkKI3JhpZieEmBE0sxNC7HkMppndpHQ6ffzwhydHxk4GS/QA8PDSnBs7uOhLTy7a50tPFttxBY2ltv/VzTf9ih5zgX6kmaHziOQlzcDAJtptbVxtyYREDlXRYl83MAjKkp6sB9KLcx1fvnRm3Y+dCqQlALAaVDY5dto/r73KJYAvLdnkxNGnRr7f68YymTwkq7ET72ZXqEyyE0JUH92zE0LMDLpnJ4TY8yTSk+nMdkp2QojcTLPOTu5iQojcmCWPi+XZshjXJDt97/a03fdI3phn7JrZCSEKUcZl7CQm2SSvQeJZcS2AFwH4EsmrzSwsoVxoZseE/5Zm1O+mvo6jPverafxhkh8q0ocQoroYEtOHPFsGk5hk3wzg02a2YWZPAngs3V9I0ZndG5E4+VwF4DUAfjf9dwuShwD8FwCvNrNjJO8heYOZ/Um04+75NTz10CMjY80FvywSADTbi26s1vD1co2Wr4er12P9GQN9Wj3Q0kUllSbRvEXjiWJVxIJLoCgWafcAYBBU2I3a9gIHsV4n9mPod3w3ue667xLWPeeXcdo4E3vLrJ/8yeixrPuud/kpTVQ8yiR7ey7ZMskm+dvb2n59W9vnGGyPoug9u5sBfMISvg7gIpIv3PaZKwE8ambH0p+/BOCtBfsRQlSQzQWKPBtSk+yh7ba8/QyZZP9WWWMvOrMblY1fjMShe5PHAPx1ki9N428G4D/GIISYGgpKT3bEJDtH25GUvkBhZidI/isAn0Fy6f5VAH9t1GfTTH8bANTml8seihCiZDZXY0tgEpPsNQCfJPlhJAsUVwH4s6wOM5MdyXcB+LWhAWZmVDP7PIDPp+1vAzDyxoaZHQZwGACaF10+peodIWaLMnR2k5hkp5/7LIBHAPQAvCtrJRbIkezM7GNIlohB8h8CeDfJTyO5mXjKzJ7e3obkJWb2DMllAP8awK9k9SOEqD5lPkExrkl2+vMHAHygSH9FL2O/AOAXkdyXOw/gn20GSH7HzK5Lf/woyb+Rvr7DzL5fsB8hRAWZ5icoGLk8XUhIHgPw/9IfVwA8u4vDEcXRMasmw8flCjO7eJKdkfxjDN1Ly+BZM7tpkv7KpDLJbhiSR4JVHFFBdMyqiY7LT9GzsUKImUDJTggxE1Q12R3e7QGIwuiYVRMdl5RK3rMTQoiyqerMTgghSmVXk51KRk0fWQUXSc6R/Ewa/0b6jLTYQXIckytI/kn6N/Qgyct2Y5y7zW7P7IZLRt2GpGTUcxgqGXWDmV0L4FKSN1zQUQoAzym4+EYA1wB4W1pIcZh3AjhhZi8H8BEktcjEDpHzmPwOkmpFPwfgDgAfvLCjrAa7nexUMmq6yFNw8WYA96Sv7wVwA6MifmJS8hyTawA8kL7+8oj4TLDbyc4rGTXMVskokg0kJaMuh9gN8hyvrc+YWQ/AKQCHLsjoZpM8x+TPAfxS+votAJbSK6aZYreTXSZmdgLAZsmo/wPgB3CqqAghRvIeAK8j+W0Ar0NSqWjm/oYuuOHOTpaMEjtOnqKJm595Kp2JHwCwemGGN5NkHhMz+xHSmR3JRQBvNbOTF2qAVeGCz+zM7GNmdl1aIeVzAP5puir7txGUjEr/3SwZddcFHLL4KVsFF0m2kBRc3F537D4At6avfxnAAyYx506SeUxIrqRlzgHgdgB3X+AxVoLdvoz9AoAnkNyX+z0kiQxAUjJq6HMfJfkIgK8AuFMlo3aH9B7cZsHFvwDw2c2Ci2m5bAD4fQCHSD4G4DcBuH6gYnJyHpPXA/geye8DeAEK1oHbK+gJCiHETLDbMzshhLggKNkJIWYCJTshxEygZCeEmAmU7IQQM4GSnRBiJlCyE0LMBEp2QoiZ4P8DX2J1bRLhxNUAAAAASUVORK5CYII=",
Q
Quleaf 已提交
966 967 968 969 970 971 972 973 974 975 976 977 978
      "text/plain": [
       "<Figure size 432x288 with 2 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
Q
Quleaf 已提交
979
      "The main program finished running in  8.05081820487976 seconds.\n"
Q
Quleaf 已提交
980 981 982 983 984 985 986 987 988 989 990 991 992 993
     ]
    }
   ],
   "source": [
    "def main():\n",
    "    \"\"\"\n",
    "    main\n",
    "    \"\"\"\n",
    "    time_start = time.time()\n",
    "    acc = QClassifier(\n",
    "        Ntrain = 200,    # Specify the training set size\n",
    "        Ntest = 100,     # Specify the test set size\n",
    "        gap = 0.5,       # Set the width of the decision boundary\n",
    "        N = 4,           # Number of qubits required\n",
Q
Quleaf 已提交
994 995 996 997
    "        DEPTH = 1,       # Circuit depth\n",
    "        BATCH = 20,      # Batch size during training\n",
    "        EPOCH = int(200 * BATCH / Ntrain),\n",
    "                        # Number of training epochs, the total iteration number \"EPOCH * (Ntrain / BATCH)\" is chosen to be about 200\n",
Q
Quleaf 已提交
998 999 1000 1001 1002 1003 1004
    "        LR = 0.01,       # Set the learning rate\n",
    "        seed_paras = 19, # Set random seed to initialize various parameters\n",
    "        seed_data = 2,   # Fixed random seed required to generate the data set\n",
    "    )\n",
    "    \n",
    "    time_span = time.time()-time_start\n",
    "    print('The main program finished running in ', time_span, 'seconds.')\n",
Q
Quleaf 已提交
1005
    "\n",
Q
Quleaf 已提交
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
    "if __name__ == '__main__':\n",
    "    main()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "By printing out the training results, you can see that the classification accuracy in the test set and the data set after continuous optimization has reached $100\\%$."
   ]
  },
Q
Quleaf 已提交
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Benchmarking Different Encoding Methods\n",
    "\n",
    "Encoding methods are fundemental in supervised quantum machine learning [4]. In paddle quantum, commonly used encoding methods such as amplitude encoding, angle encoding, IQP encoding, etc., are integrated. Simple classification data of users (without reducing dimensions) can be encoded by an instance of the ``SimpleDataset`` class and image data can be encoded by an instance of the ``VisionDataset`` class both using the method ``encode``."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "<class 'numpy.ndarray'>\n",
      "(100, 4)\n"
     ]
    }
   ],
   "source": [
    "# Use circle data above to accomplish classification\n",
    "from paddle_quantum.dataset import *\n",
    "\n",
    "# The data are two-dimensional and are encoded by two qubits\n",
    "quantum_train_x = SimpleDataset(2).encode(train_x, 'angle_encoding', 2)\n",
    "quantum_test_x = SimpleDataset(2).encode(test_x, 'angle_encoding', 2)\n",
    "\n",
    "print(type(quantum_test_x)) # ndarray\n",
    "print(quantum_test_x.shape) # (100, 4)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Here we define an ordinary classifier, and it will be used by different data afterwards."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "metadata": {},
   "outputs": [],
   "source": [
    "# A simpler classifier\n",
    "def QClassifier2(quantum_train_x, train_y,quantum_test_x,test_y, N, DEPTH, EPOCH, LR, BATCH):\n",
    "    \"\"\"\n",
    "    Quantum Binary Classifier\n",
    "    Input:\n",
    "        quantum_train_x     # training x\n",
    "        train_y             # training y\n",
    "        quantum_test_x      # testing x\n",
    "        test_y              # testing y\n",
    "        N                   # Number of qubits required\n",
    "        DEPTH               # Circuit depth\n",
    "        EPOCH               # Number of training epochs\n",
    "        LR                  # Set the learning rate\n",
    "        BATCH               # Batch size during training\n",
    "    \"\"\"\n",
    "    Ntrain = len(quantum_train_x)\n",
    "    \n",
    "    paddle.seed(1)\n",
    "\n",
    "    net = Opt_Classifier(n=N, depth=DEPTH)\n",
    "\n",
    "    # Test accuracy list\n",
    "    summary_iter, summary_test_acc = [], []\n",
    "\n",
    "    # Adam can also be replaced by SGD or RMSprop\n",
    "    opt = paddle.optimizer.Adam(learning_rate=LR, parameters=net.parameters())\n",
    "\n",
    "    # Optimize\n",
    "    for ep in range(EPOCH):\n",
    "        for itr in range(Ntrain // BATCH):\n",
    "            # Import data\n",
    "            input_state = quantum_train_x[itr * BATCH:(itr + 1) * BATCH]  # paddle.tensor\n",
    "            input_state = reshape(input_state, [-1, 1, 2 ** N])\n",
    "            label = train_y[itr * BATCH:(itr + 1) * BATCH]\n",
    "            test_input_state = reshape(quantum_test_x, [-1, 1, 2 ** N])\n",
    "\n",
    "            loss, train_acc, state_predict_useless, cir = net(state_in=input_state, label=label)\n",
    "\n",
    "            if itr % 5 == 0:\n",
    "                # get accuracy on test dataset (test_acc)\n",
    "                loss_useless, test_acc, state_predict_useless, t_cir = net(state_in=test_input_state, label=test_y)\n",
    "                print(\"epoch:\", ep, \"iter:\", itr,\n",
    "                      \"loss: %.4f\" % loss.numpy(),\n",
    "                      \"train acc: %.4f\" % train_acc,\n",
    "                      \"test acc: %.4f\" % test_acc)\n",
    "                summary_test_acc.append(test_acc)\n",
    "\n",
    "            loss.backward()\n",
    "            opt.minimize(loss)\n",
    "            opt.clear_grad()\n",
    "\n",
    "    return summary_test_acc"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Now we can test different encoding methods on the circle data generated above. Here we choose five encoding methods: amplitude encoding, angle encoding, pauli rotation encoding, IQP encoding, and complex entangled encoding. Then the curves of the testing accuracy are shown below."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Encoding method: amplitude_encoding\n",
      "epoch: 0 iter: 0 loss: 0.3066 train acc: 0.4000 test acc: 0.5400\n",
      "epoch: 0 iter: 5 loss: 0.2378 train acc: 0.7000 test acc: 0.7000\n",
      "epoch: 0 iter: 10 loss: 0.2308 train acc: 0.8000 test acc: 0.6700\n",
      "epoch: 0 iter: 15 loss: 0.2230 train acc: 0.8000 test acc: 0.6100\n",
      "Encoding method: angle_encoding\n",
      "epoch: 0 iter: 0 loss: 0.2949 train acc: 0.5000 test acc: 0.3600\n",
      "epoch: 0 iter: 5 loss: 0.1770 train acc: 0.7000 test acc: 0.7000\n",
      "epoch: 0 iter: 10 loss: 0.1654 train acc: 0.8000 test acc: 0.7000\n",
      "epoch: 0 iter: 15 loss: 0.1966 train acc: 0.7000 test acc: 0.5800\n",
      "Encoding method: pauli_rotation_encoding\n",
      "epoch: 0 iter: 0 loss: 0.2433 train acc: 0.6000 test acc: 0.7000\n",
      "epoch: 0 iter: 5 loss: 0.2142 train acc: 0.7000 test acc: 0.7000\n",
      "epoch: 0 iter: 10 loss: 0.2148 train acc: 0.7000 test acc: 0.7000\n",
      "epoch: 0 iter: 15 loss: 0.2019 train acc: 0.8000 test acc: 0.7600\n",
      "Encoding method: IQP_encoding\n",
      "epoch: 0 iter: 0 loss: 0.2760 train acc: 0.6000 test acc: 0.4200\n",
      "epoch: 0 iter: 5 loss: 0.1916 train acc: 0.6000 test acc: 0.6200\n",
      "epoch: 0 iter: 10 loss: 0.1355 train acc: 0.9000 test acc: 0.7300\n",
      "epoch: 0 iter: 15 loss: 0.1289 train acc: 0.9000 test acc: 0.6700\n",
      "Encoding method: complex_entangled_encoding\n",
      "epoch: 0 iter: 0 loss: 0.3274 train acc: 0.3000 test acc: 0.2900\n",
      "epoch: 0 iter: 5 loss: 0.2120 train acc: 0.7000 test acc: 0.7000\n",
      "epoch: 0 iter: 10 loss: 0.2237 train acc: 0.7000 test acc: 0.7000\n",
      "epoch: 0 iter: 15 loss: 0.2095 train acc: 0.8000 test acc: 0.7200\n"
     ]
    }
   ],
   "source": [
    "# Testing different encoding methods\n",
    "encoding_list = ['amplitude_encoding', 'angle_encoding', 'pauli_rotation_encoding', 'IQP_encoding', 'complex_entangled_encoding']\n",
    "num_qubit = 2 # If qubit number is 1, CNOT gate in cir_classifier can not be used\n",
    "dimension = 2\n",
    "acc_list = []\n",
    "\n",
    "for i in range(len(encoding_list)):\n",
    "    encoding = encoding_list[i]\n",
    "    print(\"Encoding method:\", encoding)\n",
    "    # Use SimpleDataset to encode the data\n",
    "    quantum_train_x= SimpleDataset(dimension).encode(train_x, encoding, num_qubit)\n",
    "    quantum_test_x= SimpleDataset(dimension).encode(test_x, encoding, num_qubit)\n",
    "    quantum_train_x = paddle.to_tensor(quantum_train_x)\n",
    "    quantum_test_x = paddle.to_tensor(quantum_test_x)\n",
    "    \n",
    "    acc = QClassifier2(\n",
    "            quantum_train_x, # Training x\n",
    "            train_y,         # Training y\n",
    "            quantum_test_x,  # Testing x\n",
    "            test_y,          # Testing y\n",
    "            N = num_qubit,   # Number of qubits required\n",
    "            DEPTH = 1,       # Circuit depth\n",
    "            EPOCH = 1,       # Number of training epochs\n",
    "            LR = 0.1,        # Set the learning rate\n",
    "            BATCH = 10,      # Batch size during training\n",
    "          )\n",
    "    acc_list.append(acc)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 22,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEWCAYAAABrDZDcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABqp0lEQVR4nO2dd1hUR9uH76FXRYq9gF0QsIC9RRM1MdZoTDTWVGPUN74x9Uui6f1NNKZb0kzsxpgYjTHGLmDvDVFBRXovy+58f5xlsyAgIMuCzH1dXHDOmTPnOWeX+Z15ZuZ5hJQShUKhUNRcbKxtgEKhUCisixIChUKhqOEoIVAoFIoajhIChUKhqOEoIVAoFIoajhIChUKhqOEoIajmCCF8hRBSCGFnpev3E0JEF3OstxDidCXZMVcI8YPx76ZCiHQhhK1xu54QYrsQIk0I8aHQWCKESBJChFWGfdWNkp5ndUIIsU0I8UgF1bVUCPFGRdRV1bBK43G7IoSIAuoBekAH7AaekFJetqZd1kJKuQNoY4XrXgLczHY9BsQDtaSUUgjRG7gLaCylzKhM24QQvsAFwF5KmVeZ1y4vRTzPKokQYi7QUkr5kLVtqW6oHkHFM1RK6QY0AGKBBVa2x2JYqxdSDpoBJ+S/qyebAVHlEYFqdM8KRalRQmAhpJTZwCrAP3+fEMJRCPGBEOKSECJWCPGFEMLZeKyfECJaCPFfIcR1IcRVIcQUs3OdjW6Ni0KIFCHEzvxzjYw31hsvhHjJ7Ly5QoiVQogfjK6Ro0KI1kKIF4zXuSyEGGhWfooQ4qSxbKQQ4nGzY/k2PieEuAYsKXzfQoiZQogTQojGhd1GQogoIcQzQogjxntYLoRwMjv+rPG+rwghHjG6vFoW9XyFEH5CiH+Mdv4JeJsdM7nLhBBLgUnAs0b3xuPAN0B34/Y84zn3CiEOCSGShRC7hRBBhex+TghxBMgw1tvNWC5ZCHFYCNHPrPw2IcTrQohdRvs2CyHy7dtu/J1svH73Iu7NRgjxvBDivBAiQQixQgjhWejeJhXzedsKIV40npsmhNgvhGhiPNZDCBFufPbhQogeZX2epbg/hBATjd/TBCHEy8bnd2cxn+NSIcRnQoiNxuexSwhRXwjxsdBcd6eEEB3NyjcUQqwWQsQJIS4IIWYa9w8GXgTGGus5bHaZZiXYOkwIcdz4OW4TQrQzO9ZRCHHAeN5ywPy76i2E2GA8L1EIsUMIUX3bUyml+qmgHyAKuNP4twvwLfCd2fH/AesBT8Ad+BV423isH5AHvAbYA/cAmUAd4/GFwDagEWAL9AAcAV9AAl8DzkAwkAO0M543F8gGBqG5Ar9Dc028ZLzOo8AFMxuHAC0AAfQ12tCpkI3vGq/tbNwXbTz+CnAA8DErH13o+YQBDY3P4CSa6wxgMHANCDA+ux+M99WymGe9B/jIaEcfIA34wXgs/5nYGbeXAm+YnTsZ2Gm23RG4DnQ1PttJRlsdzew+BDQx3nMjIMH4GdmguZkSzO57G3AeaG0svw14pyjbirm3WcBeoLHx/r4Efip0fnGf9xzgKJpLThiPexmfdxIwAe178KBx26scz7Ok+/MH0oFegAPwAZqb9M5i7nUpmtuuM1pDuxXt+znR+Fm8AfxtLGsD7Ef7njkAzYFIYJDZd/2HQvWXZGtrIMP4+dkDzwLnjHU7ABeBp43HRhvv4w3juW8DXxiP2QO9AWHtNqjcbZe1DbidftAajHQg2filuQIEGo8J45euhVn57hgbYbRGMwuzBgKtcepm/AfIAoKLuGb+P2ljs31hwAPGv+cCf5odG2q00da47W4836OYe1oHzDKzMRdwMjveD4hBa0R2ArULHSssBA+Zbb8HfGH8ezFGUTRut6QYIQCaogmSq9m+ZZRfCD4HXi90jdNAXzO7p5odew74vlD5TcAk49/bgP8zO/Yk8EdRthXzzE8CA8y2Gxi/T3al+LxPA8OLqHMCEFZo3x7jsyjr8yzp/l7BKFrGbRfjd6YkIfjabHsGcNJsOxBINv7dFbhU6PwXgCVm3/WihKA4W18GVpgds0H7LvdDE8MrmDXuaGN++ULwGvALxbyoVLcf5e+seEZIKbcIbYbFcOAfIYQ/YED7p9gvhMgvK9DeevJJkAUHEDPRBum80d6Wzpdw3WtFnJdPrNnfWUC8lFJvto2xfLIQ4m7gVbS3JRujzUfNzo+TmtvLHA+0AdmxUsqUEmwsys6Gxr8bAhFmx0oaYG8IJMmCPv6LaG/s5aEZMEkIMcNsn4OZbYXtaQaMEUIMNdtnD/xttl3S51Eae9YKIQxm+/RoExFuVn8Tiv6eNER7RuZcROvdlOd5Fnf9hpg9KyllphAioYR64MbvZ+Ht/LqbAQ2FEMlmx22BHTepvyRbTc9ESmkQQlxGeyZ6IEYaW30j5s/vfTTh2Wz8f/5KSvnOTeyoslRfn1YVR0qpl1KuQftC9ULr/mYBAVJKD+NPbakNLN+MeDT3TgvLWayNYQCr0brz9aSUHsDvaIKVT1HhapOAe4ElQoie5bz8VTRXSD4lNUJXgTpCCFezfU3LeV3QGq43zT4XDymli5TyJ7MyslD57wuVdy1lQ1DU8yvKnrsL1e8kpYwp5blFfU+uoDWk5jRFewOuyOdZ4HMU2jiWVznrKsxltB60+XNxl1LeYzxemmdrToFnIrQWvQn/PpNGwuytDbNnIqVMk1L+V0rZHBgGzBZCDCjHPVUJlBBYCKExHKiD1tU1oPl1/yeEqGss00gIMehmdRnPXQx8ZBwssxVCdDc23BWJA5qPOA7IM/YOBpZ8isnGbcB4YI0Qoks5rr0CmCKEaCeEcEHrthd3rYtovYd5QggHIUQvNJdXefkaeEII0dX4ubkKIYYIIdyLKf8DMFQIMcj4WTgJbWC8cTHlzYlD6x02L6HMF8CbQohmAEIIH+N3qTR8A7wuhGhlvJcgIYQXmqC3FkKME9pg91g0f/6GCn6eq9CeTQ8hhAPaW7Mo+ZRSEwakCW3g3tn47NsLIUKNx2MB3zIM2q4AhgghBggh7IH/oo237EZzm+UBM4UQ9kKIUYDpey20yQUtjUKRgvbCZ7jhCtUEJQQVz69CiHQgFXgTzW983HjsObTBqL1CiFRgC6WfZ/8MmosmHEhEG7Ct0M9PSpkGzET7B0kCxqENbpf2/D+BqWjPoFMZr70RmI/mXjmHNlgK2j9mUYxD8xknormyvivL9QpdOwJt0PxTtPs+h+Y7L678ZTS334toDftltEHam34eUspMtO/FLuOMk25FFPsE7blvFkKkoT2LrqW8nY/QPr/NaN/BRYCzlDIBrdf2X7SB7WeBe6WU8cbzKuR5Gr/rM4Cf0d6q09HGuor7HMtStx7tHjqgDSjHowlfbWORlcbfCUKIA6Wo7zTwENoU73g08RsqpcyVUuYCo9C+B4nAWGCN2emt0P5/09FE4zMppblrsFohCrrAFIqqgXEa3zG0mTvVYuGV4kaEEG5okydaSSkvWNkcRTGoHoGiyiCEGCm0tRZ10Ho8vyoRqH4IIYYKIVyMYw4foPVko6xrlaIklBAoqhKPo7kRzqP5XKdZ1xxFORmONhB7Bc2F8oBUrocqjXINKRQKRQ1H9QgUCoWihlPtFpR5e3tLX19fa5uhUCgU1Yr9+/fHSyl9ijpW7YTA19eXiIiImxdUKBQKhQkhROGV5SaUa0ihUChqOEoIFAqFooajhEChUChqOEoIFAqFooajhEChUChqOEoIFAqFooajhEChUChqOEoIFAqFogqTo88h4loEnx/+nFOJpyxyjWq3oEyhUChuZ3L0ORyJO0LEtQjCY8M5fP0wuYZcBAJPR0/aerat8GsqIVAoFAorkp2XzZG4I4THhhNxLYIjcUfINeRiI2xo69mWB9o+QGj9UDrW7Uhtx9o3r7AcKCFQKBSKSiQrL0tr+K+FE34tnKPxR9EZdNgIG9p5tmNcu3GE1AuhY72O1HKoVSk2KSFQKBQKC5KVl8Wh64eIiI3Q3vjjj5BnyMNG2ODv6c9D7R4ipH4IHet2xN2huDTZlkUJgUKhUFQgmbpMDsUdIuJaBBGxERyNP0qeIQ9bYYu/lz8T/CcQWk9z9bg5uFnbXEAJgUKhUNwSmbpMDl0/RHis5uo5Hn+cPKk1/AHeAUz0n2jy8bvau1rb3CJRQqBQKBRlIEOXwcHrB02zek7EnyBP5mEn7AjwDmBy+8mE1AuhQ90OVbbhL4wSAoVCoSiB9Nx0Dl4/SHhsOPuv7ed4wnH0Uo+dsKO9d3umtJ9CSP0QOvh0wMXexdrmlgslBAqFQmFGem46B64f0N74r4VzMvGk1vDb2BHkHcTU9lMJrR9KsE9wtW34C6OEQKFQ1GjSctM4EHuAiNh/G36DNJga/ocDHzY1/M52ztY21yIoIVAoFDWK1NxUDsQeIPxaOBGxEZxKPIVBGrC3sSfIJ4jHgh4jpF4IQT5Bt23DXxglBAqF4rYmJSdFa/iNK3dPJZ5CInGwcSDIJ4jHgx4ntH4ogd6BONk5Wdtcq6CEQKFQmMg+cYKExUvIOXsW544dcAkNxSU0FPu6da1tWqlJyUkxLd6KiI3gdOJpU8PfoW4HpgVPI6S+9sbvaOtobXOrBEoIFIoajpSSjJ27SFi8iMw9e7FxdcUpKJDUXzeQ/PNyABz8/DRR6NJFE4Z6VUcYkrOT2R+73/TGfybpDBKJo60jHXw68GSHJwmpF0KgT6Bq+ItBCYFCUUORubmk/P47iYuXkHPmDHZ161L3mf/iMXYstu7uyLw8sk+eJDMsnMywMFJ//53kFSsAcGjWTBOFLl1w6RKKfb16lWZ3UnaS1vBfCyc8NpyzSWcBcLJ1IrhuMNM7TCe0fijtvdvjYOtQaXZVZ4SU0to2lImQkBAZERFhbTMUimqLPi2N5BUrSfzuO/JiY3Fs1QrPqVOpPeQehEPxDafU68k+eYrMsDDtZ/9+DGlpANg3a4prvjCEhmJfv36F2ZuYnWhy84RfC+dc8jkAnO2c6eDTgZD6IVrD79Uee1v7Crvu7YYQYr+UMqTIY0oIFIqage7aNRK/+57kFSswpKfj0q0bXlOn4Nq7N0KIMtcn9XqyT53Segzh4WRGRGBITQXAvmlTXEJDTOJg36BBqetNyEowNfr7Y/cXaPg71u1ISD2t4Q/wCritGn693kB2uo6sNB1Z6blkG39npenISsslK11HQO+GNPX3Klf9JQmBcg0pFLc52adPk7h4MSm//Q5SUmvQIDynTsW5fcAt1StsbXEOCMA5IACvKZORej05p0+TGR5ORlg4aVv+ImX1GgDsGzc2uZFcQ0Oxb9TIVE98VrxpcDf8WjiRKZGA1vB3qtuJIc2HEFIvhADvAOxtqk/Dr88zNuzmjXl+456u0xp6YwOflZZLTmZe0RUJcHK1x9ndofgyt4jqESgUtyFSSjL37iVh0WIydu5EuLjgMfo+PCdOwqFxo5tXUBE2GAzknDlDZlgYGWFhZIVHoE9JAUBXz5OYVh7sa5DBdu944jwELnYudKzXkdB6oYTWD6WdV7sq1fDr8wz/NuTGRj07Pb+Bz2/QjW/z6bpiG20hwMlNa9idzX47mW+72+Pspv12dLXHxqbsPbYbr6t6BApFjUDqdKT+sYmEJYvJOXESW29vfP7zH+o8MBZbD49KtUXY2ODUti2pTT052sub8KveRB/eTZ0TMfhfTsJ/fxJjsyRjAVnfh1rduuPm1BWXtl2w925ULndVWcjT6Qs25umF3trTdGSn55KZpiM7LZfcbH0x9ym0ht3YiPs0dTc14v829vY4Gfc5udgjKqBhr0iUECgUtwH69AxSVq8i4dtvybtyFYfmzWnwxuvUGjoUG8fKnTIZmxFr8vFHxEZwMfUiAG72bnRq0wn/PuMIqR9CG4/W6M9HaeMLYWFk/rODtHXrAbBr2ADX/OmqXbpg37jxTYUhL1f/b2Nu1qhn57tmCr2964pp2G1sBE5mb+T1mjnh5O6Ai1ljbt7QOzrbVbmGvawo15BCUY3RXb9O0vc/kLR8OYbUVFxCQvCcOhW3fn0RNjaVYsO1jGumgd3wa+FcSrsEgLu9O53qdSK0figh9UNoW6cttja2xdYjDQZyz58nIyyMzLBw0iIOaQ22gxv6uk0RrQKQTVqi92pIrnAyuWLy39rzcopp2G1Fia4XcxeNk5s9ji52Fu+NWAOruYaEEIOBTwBb4Bsp5TuFjv8PuMO46QLUlVJ6WNImheJ2IOfcORKWLCF1/a9IvR73u+7Ca+oUnIODLX7t/IY//43/ctplANwd3OlctzP3t7mf0PqhtKnTpkDDr8vRk5GWVcD1kv92nl3gLd6PLNmIvMBhBS+cDZwFcToOB30WTo4SZw9n6jbwxCXIG5daDji7ORT0v9dywMHJ9rZs2CsSiwmBEMIWWAjcBUQD4UKI9VLKE/llpJRPm5WfAXS0lD0KRXVHSklmeDiJixaT/s8/CCcnPMaMwXPyJByaNrXYda+kXzG5esKvhROTHgMS6th6EVq7G2MaT6SlUxs8pQ85GXqyTuZyJVzH+bSjBaZC5ukMRdZva29TYNC0Tn1Xo2vmxrd12/gYdIf3kxUeRkZYOPr4eADs6tb9d+Vzl1AcfH1V418GLOYaEkJ0B+ZKKQcZt18AkFK+XUz53cCrUso/S6q3vK6hmPQYLqZcLPN5CssSfeIi+rh0XB1scbCtHFdGtcNgwO7MVezDz2F7NRnp7Iiusx+6jr5IZ8v4/5OkDZGpaVyNv05uhgFnnRtueg888cFZ54bItsNQzExGO3sbMx97vhumoEvG3Adv71i+N3YpJbkXokwL3DLCw9DHacJg6+ONa2gX0xiDg58SBqssKBNCjAYGSykfMW5PALpKKZ8qomwzYC/QWEp5g6NPCPEY8BhA06ZNO1+8WPYGfcmxJXy0/6Myn6ewHB6Z9Rhz5FlspZqzUKWxM+Dkbk+tWi4F39DN/exm/nZ7x+LHASyJlJLcqKh/F7iFhZF3/ToAtt7euHb5N1aSQ/PmNU4YqsP00QeAVUWJAICU8ivgK9B6BOW5wD1+99CxrvI8VQUOXk5iydYTTI6W5IpcnLpfJi1PT1p2HmnZOtKy9aRm68gzFHQlONja4uZoh7uTHbWc7HFzssXd0R53Z22fo50Ngtvgnzs9C5u9p7DddwqRlYOhSV0MvQMwtG0KlTQ7xTX1Ii1PL8cl9yL2LXtDv+ehSWilXLu8CCFw9PPD0c+POmPvR0qJ7uJFMsLDzeIlbQTA1ssLly5aZFXXLl1waNGixgmDOZYUghigidl2Y+O+ongAmG5BW6jnWo96rpUXGEtxI6nZOt7ccJLlEZm8b3uB6zn30PtOO4JG33tDWSklyZk6opOyiE7KJCY5y/T3uaQsomOzSM8p6Jtwc7SjkYczjevk/7iYfjeq40wdF/sq/c+eE3mBxKVLSVm3DqnT4TagP15TH8alk5VeYHKmQcQi2DUfFt0FLfpD3+ehaVfr2FNGhBA4+Pri4OtLnTFjNGG4fNm0wC0zLJy0jX8AYOvpaRxjMApDy5ZV+rtS0VjSNWQHnAEGoAlAODBOSnm8ULm2wB+AnyyFMWr6aPXk71PXeWHNUa6nZfN+u8tk7KuNvasbY98egk05xgaklKRm5XE5KdMkENpvo3AkZZFWSChcHGwLCYQzjTz+/dvT1cEq//yZBw6QsGgx6Vu3IuztqT1yJJ6TJuHY3K/SbSmS3AwIXwS750NGHDTvpwlCs+7WtuyWkFKii442jjGEkxEWRt7VqwDY1qlTYPDZsWXLSpuOaymsFnROCHEP8DHa9NHFUso3hRCvARFSyvXGMnMBJynl86WpUwlB9SIlS8frG06wan80req68fE99chcupCw5JGMmNmeRv6Wi2ufkqUrUiDy/07NLigUzva2/wpEoR5F4zrOeFWgUEi9nrS//iJx8RKyDh3CtnZt6owfR53x47HzKl9QMYuTmwkRi2HXx5og+PXVXEbNeljbsgpBSokuJsbkRsoMC0N35QoAth4epiQ9Ll274NiqVbUTBhV9VGEVtp6K5YU1R4lPz+WJvs2Z2b8FOUsms+zgBPwCPBj0VDer2peSpTMKQ0HXU75wpGTpCpR3srcxup5cbuhZNK7jgrfbzYXCkJ1Nyrp1JC5ZSu7Fi9g3bozn5Ml4jBqJjYuLJW+34sjNhP1LYOfHkHEd/PpoPQTfnta2rMLJjY75d+VzWBi6GM27bVu7Ns5m0VUdW7eu8sKghEBRqaRk6pi34ThrDsTQpp47H4wJJrBxbdj9KX8sT+ZiXjfGvd4Ld8+qnR82LVunCURiIddTsvZ3cmZBoXC0synUkzCOT3g400hkY/PLapKXLUOflIRTYCBeD0/F/a67ELbWmWVzy+Rmwv6lWg8hPRZ8e0Pf58Cvt7Utsxi6mJh/B5/Dw9Fd1hbT2dSujUtIiGlmkmObNlVOGJQQKCqNP0/E8tLaoyRk5DK9Xwum92+Jo50tXD3C5U9nsT7hZboO9SNkSBXxf98C6Tl5ph6FeW8iv3eRmJFLg4x4Rp7bzl2XwnHS6zjaJJBDPe9FBnagsWdBwfBxc6yQKJOVji4L9n8LO/8H6degWS/NZXQbC0I+uitXtLDbRnHQXdLCa9jUqoVLSIhpZpJT27ZWF3wlBAqLk5SRy7xfj7Pu0BXa1td6Ae0b1dYO6rLQf3EHK84+RZ6bLw/O646dfTV9Cy4lWYcPE/v1IrL+2oK0tSO++x0c6T6Ek47eJsFIyMgtcI6DrdajKG7mU133Ki4Uuiw48J0mCGlXoVlPYw+hjxZ7uQagu3bN5ErKCAtDd9EoDO7umjAYB6Cd2lW+MCghUFiUTcev8dLaYyRn5jL9jpZMv6MlDnZm3eLf53D47yvsTHuYu58IpHkHH+sZa0GkwUD6tm0kLF5MVsR+bGrVos4DD1DnofHY171xUDwz19ijKGJ8IiYpk/j0gkJhbytomC8S+bOdPP+d+VSvlhO2VUEodNlmgnAFmnY39hD61hhByEcXG/vv4HN4OLlRUQDYuLnh0rmzaeWzU7u2CDvLLutSQqCwCIkZucxdf5z1h6/g36AW748JIqBh7YKFzmwm8/tH+DHpa+q3rse9M4Jvu/nZhpwcUtav1waAIyOxa9gAr0mTqH3faGzdXMtdb1au3uhmKjTzySgccWk5Bcrb2ZgJhdn4hCYYLtSvbKHQZcPB72HHR5ogNOmmCULzfjVOEPLRxV7XegzGXkPuhQsA2Li64hzSWRt8Dg3Fyd+/woVBCYGiwtl49Cov/3KMlCwdM/q3Ylq/FtgXXg+QHgefd2dr4mOcTgnlgVe6UKd++RvGqoY+OZmkn38m8Ycf0cfH4+jfDq+pD1Nr8CCLv90BZOv0N8x2Mh+zuF6EUDTwcKKxh4txULvgwHb9Wk7YWSLeU17Ov4KQGgNNumouoxb9a6wg5KO7fp2siAjTArfcSC1Np42rK86dO5lWPjv5+yPsby1bmxICRYWRkJ7DK+uP89uRq7RvVIv3RwfTrkGtGwtKCcvGEnvqEqvi36LDnU3peV/LyjfYAuRGx5D47bckr16NzMzEtXdvvKZOwaVbtyrV28nW6bliFIqiehaxqQWFwtZGUL+WE43rONPcx42ufp50be5Jg9rOFWNQXg4c/MEoCNHQOFTrIbQYUOMFIZ+8uDgy84UhPJzcc+cBsHFxwblTJzwnT8atV/mm6SohUFQIvx3RegFp2TpmDWjF432L6AXkE/Y18rc5rDb8SFpObcbP64aDc1UJbVU+so4dJ3HxIlL/2AQ2NtQeMgTPqVNxatPa2qaVi5w8PVeTswuNT2i/T8emkWZccNfMy4Vufl50be5Jt+ZeNPS4RWHIy4FDP2qCkHIZGoVAvxegpRKEwuTFx5MZEWGcrhqG91MzqDVoYLnqUkKguCXi0nJ45ZdjbDx2jcBGtflgTDBt6rsXf8L1U/BVX046P8LWswMYMLkdbbs1qDyDKxApJRk7dpCwaDGZ+/Zh4+aGx9j78ZwwAfv69a1tnsXQGyQnr6ayNzKBfRcS2ReZYFqJ3dTTha5+mih0a+FFo/IKQ14uHF4G2z+ElEvQqLO2MK3VXUoQikFKWe5epxICRbmQUvLrkau8+ssxMnL0/OeuVjzWu3nJfuS8HPhmADnJSfwY/xm167oy6pnO1S6nq8zNJWXDbyQuWUzO2XPY1auH58SJeNw/Blv3EkTwNkVvkJy6lsq+yESTOOSvvG5cx1kTheZedPXzpIlnGVdI5+XC4Z9gxweQfAkadtJcRq0GKkGoQJQQKMrM9bRsXl53jE3HYwlu4sEHo4NoVa8UDeDm/4PdC9jZcCWHD9ox5vkQ6jYrYgyhiqJPTSVp+XKSvv+BvOvXcWzdGq+Hp1Lr7rsRDg7WNq/KYDBITsemsTcygb2RCYRdSCTJuNK6kUe+MGi9hsZ1nEv3FqvXaYKw/QNIvggNO2o9hNaDlCBUAEoIFKVGSskvh64w99fjZObqmX1Xax7p5Ve62SSR2+C74SS2mcnyHf1p26MBdzzU1uI2VwS6q1dJ/PY7kleuxJCRgWuP7nhOmYprr55VagC4qmIwSM5cT2PveaMr6UIiicYFc408nLXxBT+t19DE8ybCoNfBkeWw/X1IioIGHbRZRm3uVoJwCyghUJSK66nZvLj2GFtOxtKxqQfvjw6mZV230p2cmQif90Tau7Je/yVxlzMYP68bzu5V+y06+9QpEhYv1hKWSEmtu+/Ga+oUnPz9rW1atcZgkJy9ns6+CwnGXsO/wtCgtlOBHkNTT5eihUGvgyMrjIJwAeoHaS6jNvcoQSgHSggUJSKlZO3BGOauP05OnoFnBrZhai+/0i8+khJWTITTG4ns9TsbV6TTe2xrgu5obFnDy4mUkozdu0lctJiM3buxcXHRksBPmoh9w4bWNu+2RErJuevpJlHYG5lgCrFRv5aTSRS6NvfC16uQMOjz4KhREBIjoX6g5jJqO0QJQhlQQqAoltjUbF5cc5S/Tl2nc7M6vDc6iBY+pewF5HPwB/hlOnn9XmPZn6E4ONly/4uh5Uo4Y0mkTkfqxo0kLF5CzqlT2Pp44zlhInXG3o9t7do3r0BRYUgpOR+Xzp5IbUbS3shE4tO1dQ31ajkaB561XoOft6smDPo8OLrSKAjnoV4g9H0W2t4LVSzSZ1VECYHiBqSUrD4Qw2u/HidXb2DOoLZM7uFb9hAECefhi97QqBPh3vMJ2xDFiKc70qhNHcsYXg706ekkr1hJ4nffkXftGg4tW+A1ZSq1ht6LjRoArhJowpBhdCVpPYb8EBp13R3pauZKau7piDi2Bra/BwnnoF57oyAMVYJQAkoIFAW4mpLFC2uOsu10HKG+dXhvdDB+3uUI/aDXweJBkHCO1Af+YdmHF/EL8mbQo+0r3uhyoIuNJen770lavgJDWhouoaF4PjwVtz59qlyseEVBpJRciM8wicLeyARTyAwfd0e6+nnS3c+DAfqd1Ds4H5FwFuoGaILQbpgShCJQQqAAtH+ulRHRvL7hBHkGybOD2zCpu2/5QxtvfVN7KxuzlD92tuTi8QTGze1m9YQz2WfOkLh4CSm//QZ6Pe6DBuI1dSrOgYFWtUtRfqSURCVkamsYjK6ka6nZANR1tWOaz2FGpS2jdsYFZF1/RJ854D9CCYIZSggUXEnO4vk1R9l+Jo6ufp68NzqIZl63EADu4h5Yeg8EPcDldm+y/uNDdB3WnJB7fCvM5rIgpSRzXxgJixeRsX0HwtkZj/vuw3PSRByaNLGKTQrLIaXkYkJmAVdSbEomQ2z28rTDOpoTTZJbC7K6/5cG3cYibKt3eJOKQAlBDUZKyc/hl3nzt5MYpOT5u9vyUNdmt5bgJDsFvugFwgb9I/+w/IPT6HV6Hny1a6UnnJF5eaRu2kTi4iVkHz+OrZcXng+Nx+OBB7CrU3XGKRSWRUrJ5cQsrcdw/jou5zYwIXc5rW1iiKQxf9ebjH3QKLq2qEurum5VO8GPhVBCUEOJTsrkhTVH2XE2nu7NvXj3viCaelVAgvQ1j8HRVTD1Dw6facDOlWe5Z1ogfsGVl3DGkJFB8uo1JH77LbqYGBx8ffGcOoXaw4dj4+hYaXYoqiZSSqITM7i86yf8ji+kQc4FzhkaMj9vJLscexPavC7dmnvStbkXbeq51whhUEJQw5BSsizsEm/9dhKAF+5px7guTSvmy350Fax+GPq9QGan2fz46l7q+9WqtIQzeXFxJP7wI0k//4whJQXnTp3wengqbnfcoQaAFUVjMMDJ9eRufRuHhFNcd2jK53IU36aFYMAGDxd7LeS2ceVz2/q3pzAoIahBXE7M5LnVR9h9PoGeLb14Z1RQ2YOAFUfyJfi8F/i0gSkb2frjWU7vu8YDL1s+4UxOZKS2AviX9ci8PNzvvBPPqVNw6djRotdV3EYYDHDqV9j2Llw/js6jBQf9HmV1Thd2R6VwOTELgNrO9nTJj67a3JN29WvdFsJQkhCoEZTbBINB8uO+i7y98RQ2QvDWyEAe7NKk4t7SDXpY8zhIA4z6ithLmZzcfZWOdzW1mAhIKcnav5+ERYtJ//tvhKMjtUffh9ekSTj4+lrkmorbGBsb8B+urTc4tQH7f96ly8Hn6eLZAgbOIabpveyLSjFFV/3zRCygCUOor6dpHUO7BrWqRm7oCkQJwW3ApYRMnl19mL2RifRu5c079wWVP0Z8cez8H1zaDSO+QHr4sv2r/bjUcrDILCGp15P25xYSliwm+/ARbD088J4+nTrjx2Hn6Vnh11PUMGxswH+YtiL59G/wz7uw7gkaeTZnVJ85jBp5P9jacSU5i30XEkyht7ec1ITB3cmugCvJv2H1FwblGqrGGAyS7/ZE8e4fp7GzEfzfve24P6QCewH5xOyHRQO1hTqjF3Nyz1W2fneKOye3o00FJpwxZGWRvHYtiUu/RXfpEvZNm+I1ZTK1R4zAxrmChU2hyEdKOP07bHsHrh2BOn7QZw4EjQWzaafXUrILBNG7EJ8BgLujHaF+//YY/BvUskzu51tEjRHchkTFZ/Ds6iOEXUikb2sf3h4VeOspBIsiJx2+7KMlnJm2kxzc+fGVPdT2cWbUnM4VIjp5iYkk/fAjScuWoU9Oxik4CK+pD+N+5wCEbeVOR1XUYKSE0xvhn3fg6mGo4wu9n4HgB8D2xsTxsanZJlHYdyGByLh/hSHEt44pWU9Aw6ohDEoIbiMMBsnS3VG8t+kU9rY2vHyvP2M6N7bcjJ31M+DA9zDpV/Drzc6VZzm89TL3vxCKT9Nby9RlyM7m+ocfkbxiBTInB7f+/fF6eCrOnTqpHAAK6yElnPlD6yFcPQQezaDPMxD8YJGCkM/11Gz2XsgPopfAeaMwuJkJQ1c/TwIb1baKMCghuE2IjEvn2VVHiLiYxB1tfHhrVCANalvQZXLyV1j+EPR6Gu6cS+KVDJa/EUbbng24Y/ytJZzRXb9O9FMzyD5yRBsAnjoVx+bNK8hwhaICkBLOboZtb8OVg+DR1NhDeBDsbh6s8HpaNmEXEk29hnPX0wFwdbAlxNdTS9bT3IvARrWxrwRhUEJQzdEbJEt2XeD9TadxtLPh1aEBjOrUyLJvzalX4fPu2pf/4S1IW3vWf3KIuEtpt5xwJuvYcaKnT0eflkaj99/DfcCACjRcoahgpISzfxoF4QDUbgq9Z0OH8aUShHzi0nJMwrDvQgJnYjVhcHGwpXOzf11JQY0tIwxKCKox5+PSmbPyMAcuJTOgbV3eGhVIvVoWDupmMMAPo+DSXnhiB3i34vzB6/zx5bFbTjiTunEjV154EVvPOjT5/HOc2rSpQMMVCgsiJZzbormMYiKgdhOjIDxUJkHIJz5dE4b8IHqnY9MAcLa3NRtj8CSwkQcOdrcuDEoIqiF6g2TRzkg+3HwGJ3tb5g7zZ0QHC/cC8tmzEDa9CPd+DCFTyMvVs2zuPhycy59wRhoMxH+6kPjPPsO5UycaL5iPnZdXxduuUFgaKeH8X5ogRIdDrcaaIHR8COzKH94kMSOXMLMgeqeuacLgZG9DSDNPuvp5cndgfVrWLd/YnFpQVs04dz2NOauOcPBSMnf51+PNEe2pa+leQD7XjsKWudBmCHSeDMCBzZdIS8xmxOyO5RIBQ2YmV154kbRNm6g9ahT1576qEsIoqi9CQMs7ocUAOL9VE4TfZsOOD7XxtE4TyyUInq4ODG7fgMHttSnZmjAkmha4ffjnGerWciy3EJSERXsEQojBwCeALfCNlPKdIsrcD8wFJHBYSjmupDpv5x5Bnt7A1zsu8L8tZ3BxsGXesACGBTesvBk0uiz46g7ISoRpu8HVm9T4LJbN24dfsDeDHil7whnd1atcnj6dnFOnqTtnDp6TJ6kZQYrbCykh8m9NEC7vg1qNNEHoOAHsK+4FLikjF3s7G9wcy/f+bpUegRDCFlgI3AVEA+FCiPVSyhNmZVoBLwA9pZRJQoi6lrKnqnMmNo05Kw9zODqFwQH1eX1Ee3zcKzmK5p+vQtxJeGg1uHoDsHv1OYSAHqNalrm6rEOHuPzUDGRWFk0+/wy3vn0r2mKFwvoIAS36Q/M7IHKbtlL592dgx0f/9hAqQBDquFquF23JOUtdgHNSykgpZS7wMzC8UJlHgYVSyiQAKeV1C9pTJcnTG1j49znunb+Ty0lZfDquI58/1KnyReDsnxD2JXSdpnV7gcunEjl/MI7Og33LnHUs5ZdfuDhxEjbOzvgu/1mJgOL2RwhocQdM2QgT12sL0jbOgfkdYO8XWo+7inJTIRBCDBVClEcwGgGXzbajjfvMaQ20FkLsEkLsNbqSagynrqUy8rPdvL/pNHf512Pz0324N6gSXUH5pMfBuiehrj/cORcAvd7AjuVnqeXtRIe7Sp/hSxoMXP/wQ6489zzOHTrgu2I5ji3L3ptQKKotQkDzvjDld20hpmdz+OM5+KQD7P28SgpCaRr4scBZIcR7QohbW0V0I3ZAK6Af8CDwtRDCo3AhIcRjQogIIUREXFxcBZtQ+ej0Bhb8dZahC3ZyJTmLheM6sXB8J7zdrJBQRUpY/5SWdey+b0xd2GPbYki6mkGvMa1KnXVMn55B9FMzSPj6GzzGjqXpom9UljBFzUUI8OtjFIQN4N0K/ngePgmGPZ9VKUG46RiBlPIhIUQttIZ6qRBCAkuAn6SUaSWcGgOYv0o2Nu4zJxrYJ6XUAReEEGfQhCG8kA1fAV+BNlh8M5urMievpvLMysMcv5LK0OCGzB3qj5c1BCCfiMXacvrB70C9AAAyU3MJ+zWSpgGe+AZ5l6qa3OgYop98kpzz56n3f/9HnfHj1KCwQpGPX2/tJ2qnNqi86QUtom/PWRAyFRwqKGdIOSmVy0dKmQqsQvPzNwBGAgeEEDNKOC0caCWE8BNCOAAPAOsLlVmH1htACOGN5iqKLIP91YbcPAMfbznD0AU7iU3N5ouHOrHgwY7WFYG407DpJW0aXJfHTbv3rjtPns5ArzGtStWYZ0ZEEDVmDLpr12jy1Zd4PjReiYBCURS+vWDyBpj8O9RtC5tfgk+CYPcCyM2wmlmlGSMYJoRYC2wD7IEuUsq7gWDgv8WdJ6XMA54CNgEngRVSyuNCiNeEEMOMxTYBCUKIE8DfwBwpZcKt3FBV5PiVFIYv3MXHW84yJKgBfz7d1zRX2Grk5cLqR7Q3kRGfaTHagdgLqZzcfZXg/k1KlXAmefVqLk6Zim3t2tqgcM+elrZcoaj++PbUxg+m/KH1xDf/n+Yy2jXfKoJw03UEQohvgUVSyu1FHBsgpfzLUsYVRXVaR5CbZ+DTv8/x2d/nqOPqwJsj2jMwoL61zdL48xXY9Qk8sAzaDgFAGiSr3ttPemI241/rhoNT8Z5Dqddz/f0PSFy6FNeePWn00YfY1q5dWdYrFLcXl/ZqLqPIv8HFG3rMgNBHwNGtwi5xq+sI5gJXzSpzBupJKaMqWwSqE8diUnhm5WFOXUtjVMdGvDLUHw+XKrKaNvIf7c2j82STCACc2nuV61Gp3Dm5XYkioE9LI2b2f8nYsYM6EyZQ77lnEXZqkbpCUW6adoOJ6+DSPi0fwpZXYfd8oyA8WqGCUBSl+e9dCfQw29Yb94VaxKJqTk6engV/nePzf87j5erANxNDuNO/nrXN+pfMRFj7BHi1gEFvmXbnZOWxZ+156jevTeuuxfdaci9e5PK0J8m9dIn68+ZRZ+z9lWG1QlEzaNoVJqyFy2FaD2HLXO2lrccM6PIoOFZ8eAkonRDYGReEASClzDUO/ioKcSQ6mWdWHuZMbDqjOzfm5SH+1HYpPpFFpSMlbPgPZFyHB7eAw79jAOEbLpCVrmPojNbFDvRm7N1L9Kz/IICmixbh2rVL5ditUNQ0mnSBCWvgcri2UvmveVoP4d7/QcDICr9caYQgTggxTEq5HkAIMRyIr3BLqjE5eXo+2XKWL7dH4uPmyJLJodzRtgpGyzi0DE78AgNehYYdTbsTr2Rw9O9o/Hs1LDbrWNLPP3PtjTdx8G1Gk88/x6FJ6ReZKRSKctIkFB5aBdH7NZdRrcJrciuG0gjBE8CPQohPAYG2WniiRayphhy6nMyclYc5ez2d+0Ma89IQf2o7V6FeQD6JkbDxWWjWS5u7bERKyY4VZ7B3sqXb8BszhEmdjti33yFp2TLc+val4YcfYOtmWX+lQqEoROPOMH6lxaovzYKy80A3IYSbcTvdYtZUI7J1ev635Qxfb4+kXi0nlk4JpV+bKtgLANDrYPWjYGMLo77UfhuJPBRH9Kkk+jzQGme3gh4/fXIy0U8/TeaevXhOnUrd/85WyeQVituQUk31EEIMAQIAp3z/sZTyNQvaVaU5cCmJOSsPcz4ugwe7NOGFe9pRy6kK9gLy2f6+llFp9GKo/W92MV2unl0rz+HVyJWA3g0LnJITGcnladPIu3KVBm+9hceoivdLKhSKqsFNhUAI8QXgAtwBfAOMBsIsbFeVJFun56M/z/DNjkjq13Liu6ld6NPax9pmlcylfZoQBD8I7e8rcOhgMQln0nfsJGb2bISDA02/XYpLp06VbbVCoahEStMj6CGlDBJCHJFSzhNCfAhstLRhVY39FxOZs/IIkfEZjOvalBfubot7Ve4FAGSnwppHtNyqd79X4FBqfBYHNl2kZUhdGrXWAsNJKUn6/nti33kXx9atabLwU+wbWWZwSqFQVB1KIwTZxt+ZQoiGQAJavKEaQVaung82n2bxrgs0rO3MDw93pVer0gViszq/z4GUaG0Zu1OtAod2GRPO9LxPCxEtc3O59vrrJK9chdudA2j07rvYuN48xIRCoaj+lEYIfjWGhn4fOICWUvJrSxpVVQi7kMizqw4TlZDJhG7NeO7utuVOE1fpHF0FR36Gvs9ri1TMuHwykciDcXQd3hy3Ok7kJSURM2MmmREReD3xOD4zZyJsLJmzSKFQVCVKbNWMCWn+klImA6uFEBsAJyllSmUYZy0yc/N474/TfLsnisZ1nFn2aFd6tKgmvQCA5MuwYTY0DoU+cwoc0hLOnNESztzZhOwzZ4ie9iR5cXE0fP99ag+910pGKxQKa1GiEEgpDUKIhUBH43YOkFMZhlmLvZEJPLvqCJcSM5nUvRnPDm6La3XpBQAY9LD2cZB6GPUV2Ba0/ejf0SRdy+SeJ4PI2rmdK/99BhtXV5r98D3OQUFWMlqhUFiT0rRwfwkh7gPWyJuFKq3GZOTk8d4fp/h2z0Waerrw82Pd6Nbcy9pmlZ1dn8DFXTDicy1FnhmZqbmEb7hAU39P3MN+IfrDD3Hy96fxZwuxr1eF4iEpFIpKpTRC8DgwG8gTQmSjrS6WUspaJZ9Wfdh9Pp7nVh8hOimLKT19mTOoDS4O1agXkE/MAfj7TfAfoU0XLcQeY8KZ1pfWE7fhJ9zvHkzDt97Cxtm58m1VKBRVhtKsLLZMuLsqQHpOHu9sPMkPey/h6+XC8se608XP09pmlY/cDFjzKLjV0wJTFQocF3shlVO7r9I8+zCGv37Ce+YMvKdNU5nEFApFqRaU9Slqf1GJaqoTu87F8+yqI1xJyeLhXn48M7ANzg7VOHzCphch4TxMWg8uBcVMGiTblh7GMS+NJkeW0+jjj6k1eJCVDFUoFFWN0vg/zKedOAFdgP1Af4tYZGHSsnW8vfEUy/Zdorm3K6ue6E7nZtW0F5DPyQ2wf6kWTM7vRt0++M0W4mNtaX/9L1r+sBgnf//Kt1GhUFRZSuMaGmq+LYRoAnxsKYMsyY6zcTy/+ihXU7J4rE9zZt/VGif7atwLAEi7ButnQINguOP/ChySUnJ14VdEHKhPHZsMun/9Eg5qUFihUBSiPCOi0UC7ijbE0ny9PZI3fz9JCx9XVk3rQaemdaxt0q1jMMC6aaDLglHfgN2/0UMN2dlcffEl9p92RtekJQOe6YVDvWo4C0qhUFic0owRLEBbTQxgA3RAW2FcrbijrQ+JmbnMGtCq+vcC8tn3BZzfCkM+Ap/Wpt262OtET59OwoUEokNfwr93I+q1VCKgUCiKpjQ9ggizv/OAn6SUuyxkj8VoWded5wa3tbYZFce1Y1qC69Z3Q8hU0+6so0eJnv4U+vR0Lt77Pg7pdkUmnFEoFIp8SiMEq4BsKaUeQAhhK4RwkVJmWtY0RbHosrSpok4eMPxT01TRlN9+4+qLL2Hn7Y18bRHXNiTS54HmNyScUSgUCnNKE1nsL8B8xZEzsMUy5ihKxZa5cP2EtnrY1RtpMHD9k0+48t9ncGrfnkY//kzY7gy8GrndkHBGoVAoClMaIXAyT09p/NvFciYpSuTsFm1soOsT0OpODJmZxMz6Dwmff0Ht+0bRbMlijoankp6YQ++xrQoknFEoFIqiKI1rKEMI0UlKeQBACNEZyLKsWYoiyYjXZgn5tIM756K7coXL058i5/Rp6r3wPHUmTiQtIZsDmy/RyizhjEKhUJREaYTgP8BKIcQVtDhD9YGxljRKUQRSausFspNhwloyj50iesZMZHY2Tb74HLc+2kKy/IQzPYwJZxQKheJmlGZBWbgQoi3QxrjrtJRSZ1mzFDewfwmc/h0GvUXy3nNce/kV7Bo0oMm3S3Fs0QK4MeGMQqFQlIabOpCFENMBVynlMSnlMcBNCPGk5U1TmIg7A3+8iPTtx/WdmVx9/gWcO3fGd/nPJhEwJZzxcabDnU2sbLBCoahOlGYk8VFjhjIApJRJwKMWs0hRkLxcWPMIepyJ3ulJwqLFeDz4AE2//gq7Ov+OAeQnnOk1phV2t8uCOYVCUSmUZozAVggh8pPSCCFsATUxvbL4+01yzx4j+kgwOTHh1HvlZTzHjStQxJRwJsAL30C1glihUJSN0gjBH8ByIcSXxu3HjfsUlubCDjLXfk703sZIu0yafv0Vrj163FAsP+FM7/tbqfwCCoWizJRGCJ5Da/ynGbf/BL6xmEUKjawkkt5+jGs7vXBo2pAmX3yBg6/vDcWuXUjh1O6rdBzYFI96anmHQqEoOzcdI5BSGqSUn0spRxt/vswPN3EzhBCDhRCnhRDnhBDPF3F8shAiTghxyPjzSHlu4nZD6nRce3IU17aDa+cgfFesKFIEpEGy4+czuNR2IOSeG48rFApFaShN9NFWwNuAP1piGgCklCVGMjOOJSwE7kILXR0uhFgvpTxRqOhyKeVTZTX8dkWfmkrMo+PIOHyNOgMCqPfJjwi7oj+mk3uucv1iGndO8cfBqRrmWFYoFFWC0swaWgJ8jhZ59A7gO+CHUpzXBTgnpYyUUuYCPwPDy2toTSA3Koqo0feRceQc9Qd5UX/B8mJFICdTx95152nQojatu6hkMwqFovyURgicpZR/AUJKeVFKORcYUorzGgGXzbajjfsKc58Q4ogQYpUx+1mNJGP3bi7cPxZ93BWaDsymzrxlYFP8NNDwDVFkpevoPba1GiBWKBS3RGmEIEcIYQOcFUI8JYQYCbhV0PV/BXyllEFog9DfFlVICPGYECJCCBERFxdXQZeuOiQuW8alRx/D3s0G3wFXcX3kA/BoWmz5hCvpHNkWTUCvhvg0da9ESxUKxe1IaYRgFlq00ZlAZ+AhYFIpzosBzN/wGxv3mZBSJkgpc4yb3xjrvwEp5VdSyhApZYiPj08pLl09kDodV+fNI/a113ELaU+zHqdx6DEaAkcXf46U7Fh+FgcnW7oNb1GJ1ioUituVUsUaMv6ZDkwpQ93hQCshhB+aADwAFFgJJYRoIKW8atwcBpwsQ/3VGn1yMtH/eZrMvXvxmjwBH4efEDaN4J73Szwv8mAcMaeT6PNAa5zc7CvJWoVCcTtjsakmUso8IcRTwCbAFlgspTwuhHgNiJBSrgdmCiGGoQ1EJwKTLWVPVSLn/HkuT3uSvKtXafDO23jITXAkGqZsBKfaxZ6ny9Wzc9VZlXBGoVBUKBadcyil/B34vdC+V8z+fgF4wZI2VDXSt28nZvZ/EY6ONP3uW1zsI2HVMujzLDTtVuK5BzddJD0xh7v+668SzigUigqjNNFHe5Zmn6JkpJQkLF3K5SemYd+kCX4rV+DS3Ac2PA2NQqDvsyWenxqfZUo407CVSjijUCgqjtK8Vi4o5T5FMcjcXK6+/DLX33kX9wH98f3xB+zr14M1j4M+D0Z9BbYl+/t3rVIJZxQKhWUo1jUkhOgO9AB8hBCzzQ7VQvP5K0pBXmIi0TNnkhWxH+8np+H91FMIGxvY+T+4uBOGLwSvkmf/XD6RSOShOLqNUAlnFApFxVPSGIED2noBO8B8snoqUPz8RoWJ7NNniJ42jbyEBBp++AG1hxjX4V05CFvfBP/h0GF8iXXo9QZ2rDAmnBlQ/NoChUKhKC/FCoGU8h/gHyHEUinlRQDjwjI3KWVqZRlYXUnbupUrz8zBxtWVZj98j3NgoHYgNwNWPwquPnDvx3CTVcH5CWeGPBmErb0aIFYoFBVPaWYNvS2EeALQo60NqCWE+ERKWfKE9xqKlJKEb74h7qP/4RQQQOOFn2JfzywW0KaXIOEcTPwFXDxLrCsjJYcwY8KZZirhTIWh0+mIjo4mOzvb2qYoFBWOk5MTjRs3xt6+9OuMSiME/lLKVCHEeGAj8DywH1BCUAhDTg5XX36Z1PW/Uuueu2nw5pvYODv/W+DU71oS+h4zoXnfm9a3d9159CrhTIUTHR2Nu7s7vr6+6rkqbiuklCQkJBAdHY2fn1+pzyuNr8FeCGEPjADWSyl1gCyfmbcveXFxXJw4kdT1v+IzayYNP/ywoAikXYP1T0H9QOj/fzet79qFFE7tuUaHO5uohDMVTHZ2Nl5eXkoEFLcdQgi8vLzK3NstTY/gSyAKOAxsF0I0QxswVhjJPnGCy09OR5+SQqP5n1Br4MCCBQwGWPekNj5w3yKwcyyxPvOEM53v9rWc4TUYJQKK25XyfLdLk6FsvpSykZTyHqlxES0vgQJI3bSZqPEPgRD4LvvxRhEACPsKzv8Fg94EnzY3rTM/4UyPUS1VwhmFQmFxSrOyuJ4QYpEQYqNx25/SRR+9rZFSErdwITGzZuHUujV+K5bj1K7djQVjj8Ofr0DrwRDy8E3rVQlnFApFZVOaMYKlaIHj8qOcnQH+YyF7qgWGrCxiZs8mfsGn1B4+nKbffYtdUeGxddnaVFGnWjDs05tOFQUI23BBJZxRlBs3Ny1VyJUrVxg9Wlvuc+jQIX7//feSTiuSuXPn8sEHH1SofZagqHtWlI1ihUAIke+T8JZSrgAMoEUVRZtKWiPRxcZy8aEJpP2xibpznqHBO29j41iMz/+veXD9OAz/DNxunkchISado9tiCOjdSCWcUdwSDRs2ZNWqVUD5haC6YX7PirJRkgM6DOgEZAghvDDOFBJCdANSKsG2KkfWkSNET38KQ0YGjRcuxL1/CUMl5/6CvZ9Bl8egdRHjBoWQUrJjhTHhzLDmFWi1oiTm/XqcE1cqdu6Df8NavDo04KblRowYweXLl8nOzmbWrFk89thjuLm5MW3aNH7//XcaNGjAW2+9xbPPPsulS5f4+OOPGTZsGEuXLmXt2rWkpKQQExPDQw89xKuvvlqg7qioKO69914OHDjAK6+8QlZWFjt37uSFF17g5MmTuLm58cwzzwDQvn17NmzYgK+vL2+++SbffvstdevWpUmTJnTurOWKOn/+PNOnTycuLg4XFxe+/vpr2rZtW+R9xcXF8cQTT3Dp0iUAPv74Y3r27MncuXO5dOkSkZGRXLp0if/85z/MnDkTgO+++44PPvgAIQRBQUF8//33REVFMXXqVOLj4/Hx8WHJkiU0bdqUCxcuMG7cONLT0xk+/N806Pn3fOzYMZYuXcr69evJzMzk/PnzjBw5kvfeew+ARYsW8e677+Lh4UFwcDCOjo58+umnZfyUby9Kcg3l+yVmA+uBFkKIXWjJ62dY2rCqRsqG37g4YSLCwYFmP/9UsghkJMC6aeDTFu56rVT1nz+gJZzpOqy5SjhTQ1i8eDH79+8nIiKC+fPnk5CQQEZGBv379+f48eO4u7vzf//3f/z555+sXbuWV14xRXAnLCyM1atXc+TIEVauXElERESR13BwcOC1115j7NixHDp0iLFjxxZrz/79+/n5559NPYjw8HDTsccee4wFCxawf/9+PvjgA5588sli65k1axZPP/004eHhrF69mkceecR07NSpU2zatImwsDDmzZuHTqfj+PHjvPHGG2zdupXDhw/zySefADBjxgwmTZrEkSNHGD9+vEk0Zs2axbRp0zh69CgNGjQo1o5Dhw6xfPlyjh49yvLly7l8+TJXrlzh9ddfZ+/evezatYtTp04Ve35NoqQegXmwubVoeQUEkAPcCRyxsG1VAmkwEDd/PglffIlLSAiN5n+CnWcJK4KlhPUzICsJHloN9s7FlzWiy9Wza/VZvBq7EdCnUQVar7gZpXlztxTz589n7dq1AFy+fJmzZ8/i4ODA4MGDAQgMDMTR0RF7e3sCAwOJiooynXvXXXfh5aWtNh81ahQ7d+4kJCTkluzZsWMHI0eOxMVFW7cybNgwANLT09m9ezdjxowxlc3JySmyDoAtW7Zw4sQJ03Zqairp6ekADBkyBEdHRxwdHalbty6xsbFs3bqVMWPG4O3tDYCn8f9rz549rFmzBoAJEybw7LNaqPZdu3axevVq0/7nnnuuSDsGDBhA7dpaoid/f38uXrxIfHw8ffv2NV1jzJgxnDlzpiyP6bakJCGwRQs6V3jEssasbjJkZBDz3HOkb/kLjzGjqf/yywgHh5JP2r8UTv8GA9/UFo+VggP5CWem+GNjowaIawLbtm1jy5Yt7NmzBxcXF/r160d2djb29vamSQI2NjY4GsefbGxsyMvLM51feCJBWSYW2NnZYTAYTNs3W3xkMBjw8PDg0KFDparfYDCwd+9enJxujJTraDaeZmtrW+CeykJp7reirlUTKMk1dFVK+ZqUcl5RP5VmoZXQxcQQNW486Vv/pt6LL1D/tdduLgLxZ2HTi9C8H3QrvutsTmp8Fgc3XaJVaD2VcKYGkZKSQp06dXBxceHUqVPs3bu3TOf/+eefJCYmkpWVxbp16+jZs/hcUe7u7qSlpZm2fX19OXDgAAAHDhzgwoULAPTp04d169aRlZVFWloav/76KwC1atXCz8+PlStXAtp41uHDh4u93sCBA1mw4N+UJTcTkP79+7Ny5UoSEhIASExMBKBHjx78/PPPAPz444/07t0bgJ49exbYXxZCQ0P5559/SEpKIi8vz9SzqOmUZoygxpF54CAX7h+L7soVmnz5JZ4TJ978DSQvF1Y/oq0aHvEF2JQuUuiuVecQtoIeo1TCmZrE4MGDycvLo127djz//PN061ZymtLCdOnShfvuu4+goCDuu+++Et1Cd9xxBydOnKBDhw4sX76c++67j8TERAICAvj0009p3bo1AJ06dWLs2LEEBwdz9913Exoaaqrjxx9/ZNGiRQQHBxMQEMAvv/xS7PXmz59PREQEQUFB+Pv788UXX5R4LwEBAbz00kv07duX4OBgZs/WPNILFixgyZIlpsHj/LGDTz75hIULFxIYGEhMTEypnxlAo0aNePHFF+nSpQs9e/bE19fX5D6q0Ugpi/wBPIs7Zs2fzp07S0uStHqNPNk+UJ4dOFBmnz9f+hP/fFXKV2tJeWJ9qU+5dDxBfvr4XzJi44Uy26koPydOnLC2CbfEkiVL5PTp061tRrUlLS1NSimlTqeT9957r1yzZo2VLap4ivqOAxGymHa12NdWKWVipalRFUDq9cS+9z5XX3wR55DO+C1fjmPzUk7jjNoJOz+GjhOg3dBSnaISzigU1mHu3Ll06NCB9u3b4+fnx4gRI6xtktVRgWwAfXo6V/77DOn//EOdceOo98LziNLG8s5K0nIPe/rB4HdKfU2VcEZRXiZPnszkyZOtbQZvvvmmadwgnzFjxvDSSy9ZyaLSUR1WS1c2NV4Ici9f5vK0aeReiKL+q69Q58EHS3+ylLBhNqRfg4c3g6NbqU7LTzjTrL0XvkHe5bRcobAuL730UpVv9BWlo0YLQca+MGJmzUJKSdNF3+BaxgE7jiyH42u0/AKNOpf6tPyEM73GtCqjxQqFQlHx1FifRNLyFVx6+GFsPT3xW7G87CKQFAW/PQNNu0Ov2Tctns+1SJVwRqFQVC1qXI9A5uUR+867JP3wA669e9Poow+xdS9jgDd9Hqx5TIsmOuorsLEt3bUNkh3Lz+CqEs4oFIoqRI0SAn1KCjFPzyZj9248J02i7rNzELala8QLsONDuLwPRn0DHqWf8ZOfcObOKf4q4YxCoagy1BjXUM6FC0SNfYCM8HAavPG6NjOoPCJwORz+eRcC74egMTcvn3/9/IQzLVXCGUXFERUVRfv27a1txk2ZPHmyKUT0I488UiAWkcL61JjX0vRt/6BPSaHZksW4lDc4V04arHkEajWCIWWbgha24QLZ6Tp6z1QJZxQ1m2+++cbaJigKUWOEwHPyJGoPvRc771uYrrnxOUi+BJN/A6fSL0vPTzjj37sRPk1Uwpkqxcbn4drRiq2zfiDcffM1JcXlI5g1axYbNmzA2dmZX375hXr16nH+/HnGjx9PRkYGw4cP5+OPPzZF9MxHr9fz/PPPs23bNnJycpg+fTqPP/54sdd///33WbFiBTk5OYwcOZJ58+YRFRXF3XffTa9evdi9ezeNGjXil19+wdnZmXPnzvHEE08QFxeHra0tK1eupHnz5jz77LNs3LgRIQT/93//x9ixY5FSMmPGDP7880+aNGmCg1mcrn79+vHBBx8QEhJyS/erqDhqjGtICHFrInB8LRz6EXr/F5r1KPVpUkp2rDiDg7NKOKMoSHH5CLp168bhw4fp06cPX3/9NaDF4J81axZHjx6lcePGRda3aNEiateuTXh4OOHh4Xz99demgHKF2bx5M2fPniUsLIxDhw6xf/9+tm/fDsDZs2eZPn06x48fx8PDwxSYbfz48UyfPp3Dhw+ze/duGjRowJo1azh06BCHDx9my5YtzJkzh6tXr7J27VpOnz7NiRMn+O6779i9e3eRdtzK/SoqjhrTI7glUqLh11naWoG+Rcc+Lw4t4UwyfR9srRLOVEVK8eZuKYrLR3DvvfcC0LlzZ/78809Ai82/bt06AMaNG2fKLmbO5s2bOXLkiMkXn5KSwtmzZ/Hz8yuy7ObNm+nYsSOg5Rw4e/YsTZs2xc/Pjw4dOphsiIqKIi0tjZiYGEaOHAlgCjG9c+dOHnzwQWxtbalXrx59+/YlPDyc7du3m/Y3bNiQ/v37F/kMbuV+FRWHEoKbYTDA2ie0KaOjvgbb0jfm5gln/HurhDOKfylNPoKyxtCXUrJgwQIGDRpUqrIvvPDCDa6jqKioG+L4Z2VlldqGsnIr96uoOCzqGhJCDBZCnBZCnBNCPF9CufuEEFIIcWsplizBngUQtQPufhe8WpTp1AN/aAln+oxtrRLOKApQ1nwE3bp1M7lo8mPxF2bQoEF8/vnn6HQ6AM6cOUNGRkaxZRcvXmzyu8fExHD9+vVir+/u7k7jxo1Nb+k5OTlkZmbSu3dvli9fjl6vJy4uju3bt9OlSxf69Olj2n/16lX+/vvvEu+vPPerqDgsJgRCCFtgIXA34A88KITwL6KcOzAL2GcpW8rNlUPw1+taRNGOD5Xp1NT4LA5uzk8442ER8xTVl7LmI/j444/56KOPCAoK4ty5c0XG0H/kkUfw9/enU6dOtG/fnscff7zYN+yBAwcybtw4unfvTmBgIKNHjy6QvKYovv/+e+bPn09QUBA9evTg2rVrjBw5kqCgIIKDg+nfvz/vvfce9evXZ+TIkbRq1Qp/f38mTpxI9+7dS/9wSnm/igqkuPjUt/oDdAc2mW2/ALxQRLmPgSHANiDkZvVaOh+BiZwMKed3lvKDNlJmJJT59N8+Oyy/mLlNpiVmW8A4xa1QHfMRZGRkSIPBIKWU8qeffpLDhg2zskWWpabdb0VT1nwElhwjaARcNtuOBrqaFxBCdAKaSCl/E0LMsaAtZWfz/0HCWZiwDlxKSFZfBJdOJHDhcDzdRjTHrY7jzU9QKG7C/v37eeqpp5BS4uHhweLFi61tkkWpafdrbaw2WCyEsAE+AiaXouxjwGMATZtWQhKX0xshYhF0fwpa3FGmU/V5BnauOEttlXBGUYH07t27xDzBxXH06FEmTJhQYJ+joyP79lU9T6w55b1fRfmwpBDEAE3Mthsb9+XjDrQHthlnDdQH1gshhkkpI8wrklJ+BXwFEBISIi1oM6TFwi/ToV4gDHilzKcfyU84M10lnFFYn8DAwJsmj1coLNlShQOthBB+QggH4AFgff5BKWWKlNJbSukrpfQF9gI3iEClIiX88iTkZsB932iJ6MtARkoO4b9doFmgF76BKuGMQqGoHlhMCKSUecBTwCbgJLBCSnlcCPGaEGKYpa57S4R9Bee2wMA3oG7bMp++d+159HkGeo1WCWcUCkX1waJjBFLK34HfC+0r0t8ipexnSVtuyvWTsPllaDUQQh8p8+nXIlM4tfcanQY1UwlnFApFtUI5sQF02bD6EXB0h+ELtYQzZaBgwplmFjJSoVAoLIMSAoC/XoPYYzDiM3CrW+bTT+7WEs70uK+lSjijqFS2bdtmitWzfv163nnn1mMnLV26lCtXrpS5XHXPM+Dm5gbAlStXGD16tJWtqVyUEJzfCnsXau6g1jeP0VKYnEwde4wJZ1qFqoQzCusxbNgwnn++2EguBSgppk95heCbb77B3/+G4AHVjoYNG5oC99UUavbra0YCrJ0G3m3grtfLVUXYrxfIydDRe6xKOFMdeTfsXU4lnqrQOtt6tuW5LiVHqY2KimLw4MF07tyZAwcOEBAQwHfffccHH3zAr7/+SlZWFj169ODLL79ECFEghn98fDwhISFERUUVqHPp0qVERETw6aefFnnNyZMn4+TkxMGDB+nZsycTJ07kiSeeIDMzkxYtWrB48WL++usvIiIiGD9+PM7OzuzZs4f333//BptWr159Q7m7777bZONPP/3EW2+9hZSSIUOG8O677wIUm3+gKOLi4njiiSe4dOkSoIWd6NmzJ3PnzuXSpUtERkZy6dIl/vOf/zBz5kwA0zMUQhAUFMT3339PVFQUU6dOJT4+Hh8fH5YsWULTpk25cOEC48aNIz09neHDhxf4bO69916OHTvG0qVLWb9+PZmZmZw/f56RI0fy3nvvAVrY73fffRcPDw+Cg4NxdHQs9tlXdWpuj0BK+HUmZCZoU0Udyj7AmxCTztF/YghQCWcU5eD06dM8+eSTnDx5klq1avHZZ5/x1FNPER4ezrFjx8jKymLDhg0Ves3o6Gh2797NRx99xMSJE3n33Xc5cuQIgYGBzJs3j9GjRxMSEsKPP/7IoUOHcHZ2LtKmosrlc+XKFZ577jm2bt3KoUOHCA8PNwWrKy7/QFHMmjWLp59+mvDwcFavXs0jj/w7iePUqVNs2rSJsLAw5s2bh06n4/jx47zxxhts3bqVw4cP88knnwAwY8YMJk2axJEjRxg/frxJNGbNmsW0adM4evQoDRo0KNaOQ4cOsXz5co4ePcry5cu5fPkyV65c4fXXX2fv3r3s2rWLU6cq9mWisqm5PYID38GpDVpPoEFQmU+XZglnuqqEM9WWm725W5ImTZrQs2dPAB566CHmz5+Pn58f7733HpmZmSQmJhIQEMDQoUMr7JpjxozB1taWlJQUkpOT6du3LwCTJk1izJiic3D//fffZbIpPDycfv364ePjA2gJbbZv386IESOKzT9QFFu2bCkw5pCammqKljpkyBAcHR1xdHSkbt26xMbGsnXrVsaMGYO3MQGVp6cWGmbPnj2sWbMGgAkTJvDss88CsGvXLlOE0wkTJvDcc0V/FwYMGGAKeufv78/FixeJj4+nb9++pmuMGTOGM2fOFHsvVZ2aKQTx5+CP58GvjxZGohyohDOKW6WwK1EIwZNPPklERARNmjRh7ty5ZGdnA2BnZ4fBYAAw7SsPrq6uZSqfnZ1drE3loSz5BwwGA3v37jUlwTGncM6E8uYxKI07t6KuVZWpea4hvU5LQG/rACO/BJuyPwJdrp5dq1TCGcWtcenSJfbs2QPAsmXL6NWrFwDe3t6kp6cXGLD09fVl//79ABUykFm7dm3q1KnDjh07AC3EdH7vwN3d3RSSOr/RL8om83LmdOnShX/++Yf4+Hj0ej0//fSTqe6yMHDgQBYsWGDavlmojP79+7Ny5UoSEhIASExMBKBHjx6mnAY//vgjvXv3BqBnz54F9peF0NBQ/vnnH5KSksjLyzP1LKorNU8Itr0NVw7CsPlQq2G5qjjwx0XSk1TCGcWt0aZNGxYuXEi7du1ISkpi2rRpPProo7Rv355BgwYRGhpqKvvMM8/w+eef07FjR+Lj4yvk+t9++y1z5swhKCiIQ4cO8cor2lrPyZMn88QTT9ChQwccHR2Ltcm8nHkWswYNGvDOO+9wxx13EBwcTOfOnQsMxpaW+fPnExERQVBQEP7+/nzxxRcllg8ICOCll16ib9++BAcHM3v2bAAWLFjAkiVLTIPH+WMHn3zyCQsXLiQwMJCYmJiSqr6BRo0a8eKLL9KlSxd69uyJr69vtc6ZILQw1dWHkJAQGRFRznBEUbtg6RDoOF5bOFYOUuKy+GnePpp39GHgwwHls0NhVU6ePEm7du2saoP5zBRF9SQ9PR03Nzfy8vIYOXIkU6dONeV0tjZFfceFEPullEVmgaw5PYKsZFj7OHj6weB3y13NrlVnEbaCHqNaVpxtCoWi2jF37lw6dOhA+/bt8fPzY8SIEdY2qdzUnMHi3fMh9Qo8vBkc3cpVhUo4o6gofH19LdYbePPNN1m5cmWBfWPGjOGll16yyPVulepmbz4ffPCBtU2oMGqOaygvBy7tgeb9ynVdfZ6Bn18PQxokD77SVeUaqMZUBdeQQmFJlGuoOOwcyy0CoCWcSY7NpNf9rZQIKBSK2wrVopUClXBGoVDczighKAWmhDNjVMIZhUJx+6GE4CbkJ5zpMKApHnVVwhmFQnH7oYSgBAwGyfafVcIZRcWTH/se4Pjx4/Tv3582bdrQokULXn31VVM4iaVLl+Lj40OHDh3w9/cvMUhbZePr62ta3NajRw8rW6O4FWrO9NFycGr3VeIupXHXVH+VcOY25dpbb5FzsmIjRzq2a0v9F18sVdmsrCyGDRvG559/zsCBA8nMzOS+++7jk08+4emnnwZg7NixfPrpp1y/fp2AgACGDRtWbOhma7F7925rm6C4BVSPoBiyM1TCGYXlWbZsGT179mTgwIEAuLi48Omnn/L+++/fULZu3bq0aNGCixcvFllXRkYGU6dOpUuXLnTs2JFffvkF0HoVo0aNYvDgwbRq1coUfRPgjz/+oFOnTgQHBzNgwABAi9EzYsQIgoKC6NatG0eOHAEgISGBgQMHEhAQwCOPPIL51PP8Hs62bdvo168fo0ePpm3btowfP95U7vfff6dt27Z07tyZmTNnmqKQKqyPes0thvANKuFMTaC0b+6W4vjx43Tu3LnAvhYtWpCVlUVycnKB/ZGRkURGRtKyZdGr2t9880369+/P4sWLSU5OpkuXLtx5552AFrDt4MGDODo60qZNG2bMmIGTkxOPPvoo27dvx8/PzxSk7dVXX6Vjx46sW7eOrVu3MnHiRA4dOsS8efPo1asXr7zyCr/99huLFi0q0o6DBw9y/PhxGjZsSM+ePdm1axchISE8/vjjpms9+OCDt/jkFBWJEoIiUAlnFFWJ5cuXs3PnThwdHfnyyy9NMfALs3nzZtavX29a8ZqdnW3K7lVUTP2kpCT69OmDn58f8G/8/p07d5qiafbv35+EhARSU1PZvn27Ka7/kCFDqFOnTpF2dOnShcaNGwPQoUMHoqKicHNzo3nz5qZrPfjgg3z11Ve3/GwUFYMSgkJIKdmxXCWcUVQO/v7+bN++vcC+yMhIvLy88PDwAP4dI7gZUkpWr15NmzZtCuzft29fpcbUrwnx+2831BhBIc4fiCPmTDLdhrdQCWcUFmf8+PHs3LmTLVu2ANrg8cyZM5k3b16Z6xo0aBALFiww+eQPHjxYYvlu3bqxfft2Lly4APwbv793796m+Pzbtm3D29ubWrVq0adPH5YtWwbAxo0bSUpKKrVtbdq0ITIy0pRnefny5WW6N4VlUUJghi5HSzjj3cQN/17ly1WgUJQFZ2dn1q9fz5tvvknr1q3x9vamZ8+ejB8/vsx1vfzyy+h0OoKCgggICODll18usbyPjw9fffUVo0aNIjg4mLFjxwJaVM39+/cTFBTE888/z7fffgtoYwfbt28nICCANWvW0LRp0zLd52effcbgwYPp3Lkz7u7u1Tp+/+1GzQk6Vwr2rY8k4vcoRj7TiYYtPSxyDYX1qcpB59atW8fs2bP5+++/adbs9lq7kh+/X0rJ9OnTadWqlWmKrKJiUUHnyklKXBYHN1+iVWg9JQIKqzFixAgiIyNvOxEA+Prrr+nQoQMBAQGkpKTw+OOPW9skhRE1WGxEJZxRVBeWLFliSreYT8+ePVm4sHxZ9yqLp59+WvUAqihKCIBLx7WEM91HtlAJZxRVnilTpjBlyhRrm6G4jajxriF9noEdK85Su64zwf2bWNschUKhqHRqvBAc2WpMODNGJZxRKBQ1kxrd8uUnnPFVCWcUCkUNpkYLwZ6159HrDfRUCWcUCkUNpsYKwdXzKZzee40Od6qEM4rbm8mTJ7Nq1SqrXX/btm0WC1Nd1nuLioqiffv2FrGlPPTr14/8dVH33HPPDYEGKwuLzhoSQgwGPgFsgW+klO8UOv4EMB3QA+nAY1LKE5a0CbSEMzuWn8HVw5HOg2+/+dqK0rNjxRniL6dXaJ3eTdzofX/rCq2zOrNt2zbc3NxU8pqb8Pvvv1vt2hbrEQghbIGFwN2AP/CgEMK/ULFlUspAKWUH4D3gI0vZY87JXVeIu5RGj/taqIQzCqvx3XffERQURHBwMBMmTCAqKor+/fsTFBTEgAEDTJFDJ0+ezLRp0+jWrRvNmzdn27ZtTJ06lXbt2jF58mRTfW5ubjz99NMEBAQwYMAA4uLibrjm/v376du3L507d2bQoEFcvXqVlJQU2rRpw+nTpwEtMmhJmdA2b95M9+7d6dSpE2PGjCE9XRNSX19fXn31VTp16kRgYCCnTp0iKiqKL774gv/973906NCBHTt28Ouvv9K1a1c6duzInXfeSWxsLKCFtpg6dSr9+vWjefPmzJ8/33TN119/nTZt2tCrVy8efPBBU4TVm91b/v7g4GCCg4NvutZCr9czZ84cQkNDCQoK4ssvvwRKzrMQHh5Ojx49CA4OpkuXLqSlpZGdnc2UKVMIDAykY8eO/P3334AWS+qBBx6gXbt2jBw5kqysLNO18zO+RUVF0a5dOx599FECAgIYOHCgqVx4eDhBQUF06NCBOXPmVFzvRkppkR+gO7DJbPsF4IUSyj8IbLxZvZ07d5a3QlZ6rvzmv9vl6vcjpMFguKW6FNWTEydOWNsEeezYMdmqVSsZFxcnpZQyISFB3nvvvXLp0qVSSikXLVokhw8fLqWUctKkSXLs2LHSYDDIdevWSXd3d3nkyBGp1+tlp06d5MGDB6WUUgLyhx9+kFJKOW/ePDl9+nTT+StXrpS5ubmye/fu8vr161JKKX/++Wc5ZcoUKaWUmzdvlt26dZM//fSTHDRoULF2x8XFyd69e8v09HQppZTvvPOOnDdvnpRSymbNmsn58+dLKaVcuHChfPjhh6WUUr766qvy/fffN9WRmJho+t/7+uuv5ezZs03lunfvLrOzs2VcXJz09PSUubm5MiwsTAYHB8usrCyZmpoqW7ZsaaqvNPcWGBgo//nnHymllM8884wMCAgo9v6+/PJL+frrr0sppczOzpadO3eWkZGR8u+//5a1atWSly9flnq9Xnbr1k3u2LFD5uTkSD8/PxkWFiallDIlJUXqdDr5wQcfmK5/8uRJ2aRJE5mVlSU//PBD0/7Dhw9LW1tbGR4ebnp+cXFx8sKFC9LW1tb0uY4ZM0Z+//33UkopAwIC5O7du6WUUj733HPF3ktR33EgQhbTrlrydbgRcNlsOxroWriQEGI6MBtwAPoXVZEQ4jHgMaBMga6KIsyYcKbPAyrhjMJ6bN26lTFjxuDtrc1W8/T0ZM+ePaZ4/xMmTCiQSWzo0KEIIQgMDKRevXoEBgYCEBAQQFRUFB06dMDGxsYUOO6hhx5i1KhRBa55+vRpjh07xl133QVob78NGjQA4K677mLlypVMnz6dw4cPF2v33r17OXHiBD179gQgNzeX7t27m47nX7Nz586meylMdHQ0Y8eO5erVq+Tm5ppyFICW58DR0RFHR0fq1q1LbGwsu3btYvjw4Tg5OeHk5MTQoUNvqLO4e0tOTiY5OZk+ffqYnuvGjRuLvb/Nmzdz5MgR07hDSkoKZ8+excHBocg8C7Vr16ZBgwaEhoYCUKtWLUDL6TBjxgwA2rZtS7NmzThz5gzbt29n5syZAAQFBREUFFSkHX5+fnTo0MH0LKOiokhOTiYtLc30vMeNG8eGDRuKvZeyYHW/iJRyIbBQCDEO+D9gUhFlvgK+Ai3oXHmvlRCTzrF/Ygjo0wjvxirhjKL6kB/j38bGpkC8fxsbm2Lj/Rd+0ZFSEhAQwJ49e24oazAYOHnyJC4uLiQlJZkavMJIKbnrrrv46aefSrSzpDwEM2bMYPbs2QwbNoxt27Yxd+7cG86/WR1F2VXUvZV18FVKyYIFCxg0aFCB/du2bbNqTgdzF5IlsOSsoRjAfKluY+O+4vgZGGEpY6R5wpmhKuGMwrr079+flStXkpCQAGi5AHr06MHPP/8MwI8//kjv3r3LVKfBYDC9yS5btoxevXoVON6mTRvi4uJMjaVOp+P48eMA/O9//6Ndu3YsW7aMKVOmoNPpirxGt27d2LVrF+fOnQO0PMlnzpwp0S53d3fS0tJM2ykpKTRq1AjAFOK6JHr27Mmvv/5KdnY26enpRb4FF3dvHh4eeHh4sHPnTgBTnoXiGDRoEJ9//rnp/s+cOUNGRkax5du0acPVq1cJDw8HIC0tjby8vAI5Hc6cOcOlS5do06ZNgZwOx44dM+WDLg0eHh64u7uzb98+ANN3pSKwZI8gHGglhPBDE4AHgHHmBYQQraSUZ42bQ4CzWIhz+68TcyaZvuPaqIQzCqsTEBDASy+9RN++fbG1taVjx44sWLCAKVOm8P777+Pj48OSJUvKVKerqythYWG88cYb1K1b94bkLw4ODqxatYqZM2eSkpJCXl4e//nPf7Czs+Obb74hLCwMd3d3+vTpwxtvvFFkchwfHx+WLl3Kgw8+SE5ODgBvvPEGrVsXP0tq6NChjB49ml9++YUFCxYwd+5cxowZQ506dejfv78pMU5xhIaGMmzYMIKCgkxuscK5DIq7t4CAAJYsWcLUqVMRQjBw4MASr/XII48QFRVFp06dkFLi4+PDunXrii3v4ODA8uXLmTFjBllZWTg7O7NlyxaefPJJpk2bRmBgIHZ2dixduhRHR0emTZvGlClTaNeuHe3atbshX/XNWLRoEY8++ig2Njb07du3wnI6WDQfgRDiHuBjtOmji6WUbwohXkMbtFgvhPgEuBPQAUnAU1LK4yXVWd58BBePJXB8RwyDHw/ExkaNDdRkqnI+glvBzc3NNIPndiM/l0FmZiZ9+vThq6++olOnTtY2q9LJfw4A77zzDlevXr0hEi2UPR+BRccIpJS/A78X2veK2d+zLHl9c5q196JZe6/KupxCoahAHnvsMU6cOEF2djaTJk2qkSIA8Ntvv/H222+Tl5dHs2bNWLp0aYXUa/XBYoVCUTFUdG+ga9euJvdPPt9//71pxlJlku9Xryg2bdrEc889V2Cfn58fa9eurdDrVDRjx441zQyrSJQQKGokUko1ffgm5A9K3o4MGjTohplBtwvlcffX2FhDipqLk5MTCQkJ5fqHUSiqMlJKEhIScHJyKtN5qkegqHE0btyY6OjoIkMwKBTVHScnp2LXgRSHEgJFjcPe3r7AalaFoqajXEMKhUJRw1FCoFAoFDUcJQQKhUJRw7HoymJLIISIAy6W83RvIL4CzbEm6l6qHrfLfYC6l6rKrdxLMymlT1EHqp0Q3ApCiIjillhXN9S9VD1ul/sAdS9VFUvdi3INKRQKRQ1HCYFCoVDUcGqaEHxlbQMqEHUvVY/b5T5A3UtVxSL3UqPGCBQKhUJxIzWtR6BQKBSKQighUCgUihpOjRECIcRgIcRpIcQ5IcTz1ranvAghFgshrgshjlnblltBCNFECPG3EOKEEOK4EKLSkhRVNEIIJyFEmBDisPFebszxWM0QQtgKIQ4KIW5MEFyNEEJECSGOCiEOCSHKntqwiiCE8BBCrBJCnBJCnBRCdK/Q+mvCGIEQwhY4A9wFRKPlU35QSnnCqoaVAyFEHyAd+E5K2d7a9pQXIUQDoIGU8oAQwh3YD4yopp+JAFyllOlCCHtgJzBLSrnXyqaVGyHEbCAEqCWlvNfa9pQXIUQUECKlrNYLyoQQ3wI7pJTfCCEcABcpZXJF1V9TegRdgHNSykgpZS7wMzDcyjaVCynldiDR2nbcKlLKq1LKA8a/04CTQCPrWlU+pEZ+ejB740+1fcMSQjQGhgDfWNsWBQghagN9gEUAUsrcihQBqDlC0Ai4bLYdTTVtdG5HhBC+QEeg2qbEMrpSDgHXgT+llNX2XoCPgWcBg5XtqAgksFkIsV8I8Zi1jSknfkAcsMTorvtGCOFakReoKUKgqKIIIdyA1cB/pJSp1ranvEgp9VLKDkBjoIsQolq67YQQ9wLXpZT7rW1LBdFLStkJuBuYbnStVjfsgE7A51LKjkAGUKHjnDVFCGKAJmbbjY37FFbE6E9fDfwopVxjbXsqAmOX/W9gsJVNKS89gWFG3/rPQH8hxA/WNan8SCljjL+vA2vR3MTVjWgg2qyXuQpNGCqMmiIE4UArIYSfcaDlAWC9lW2q0RgHWBcBJ6WUH1nbnltBCOEjhPAw/u2MNinhlFWNKidSyheklI2llL5o/ydbpZQPWdmsciGEcDVORMDoShkIVLvZdlLKa8BlIUQb464BQIVOqqgRqSqllHlCiKeATYAtsFhKedzKZpULIcRPQD/AWwgRDbwqpVxkXavKRU9gAnDU6FsHeFFK+bv1TCo3DYBvjbPTbIAVUspqPe3yNqEesFZ758AOWCal/MO6JpWbGcCPxhfZSGBKRVZeI6aPKhQKhaJ4aoprSKFQKBTFoIRAoVAoajhKCBQKhaKGo4RAoVAoajhKCBQKhaKGo4RAUWMRQqQbf/sKIcZVcN0vFtreXZH1KxQViRIChQJ8gTIJgRDiZmtwCgiBlLJHGW1SKCoNJQQKBbwD9DbGrH/aGEDufSFEuBDiiBDicQAhRD8hxA4hxHqMKzuFEOuMAc2O5wc1E0K8Azgb6/vRuC+/9yGMdR8zxskfa1b3NrOY8z8aV18rFBanRqwsVihuwvPAM/lx940NeoqUMlQI4QjsEkJsNpbtBLSXUl4wbk+VUiYaQ0uECyFWSymfF0I8ZQxCV5hRQAcgGPA2nrPdeKwjEABcAXahrb7eWdE3q1AURvUIFIobGQhMNIa+2Ad4Aa2Mx8LMRABgphDiMLAXLbBhK0qmF/CTMVppLPAPEGpWd7SU0gAcQnNZKRQWR/UIFIobEcAMKeWmAjuF6IcWAth8+06gu5QyUwixDXC6hevmmP2tR/1/KioJ1SNQKCANcDfb3gRMM4bJRgjRuphEILWBJKMItAW6mR3T5Z9fiB3AWOM4hA9a5qmwCrkLhaKcqDcOhQKOAHqji2cp8AmaW+aAccA2DhhRxHl/AE8IIU4Cp9HcQ/l8BRwRQhyQUo43278W6A4cRsue9ayU8ppRSBQKq6CijyoUCkUNR7mGFAqFooajhEChUChqOEoIFAqFooajhEChUChqOEoIFAqFooajhEChUChqOEoIFAqFoobz//tDGY3Ai8SWAAAAAElFTkSuQmCC",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "# Benchmarking different encoding methods\n",
    "x=[2*i for i in range(len(acc_list[0]))]\n",
    "for i in range(len(encoding_list)):\n",
    "    plt.plot(x,acc_list[i])\n",
    "plt.legend(encoding_list)\n",
    "plt.title(\"Benchmarking different encoding methods\")\n",
    "plt.xlabel(\"Iteration\")\n",
    "plt.ylabel(\"Test accuracy\")\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Quantum Classification on Built-In MNIST and Iris Datasets\n",
    "\n",
    "Paddle Quantum provides datasets commonly used in quantum classification tasks, and users can use the `paddle_quantum.dataset` module to get the encoding circuits or encoded states. There are four built-in datasets in Paddle Quantum at present, including MNIST, FashionMNIST, Iris and BreastCancer. We can easily accomplishing quantum classification using these quantum datasets.\n",
    "\n",
    "The first case is Iris. It has three types of labels and 50 samples of each type. There are only four features in Iris data, and it is very easy to fulfill its classification."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 23,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "C:\\Users\\yeruilin\\Anaconda3\\envs\\paddle_quantum_env\\lib\\site-packages\\paddle\\fluid\\dygraph\\math_op_patch.py:237: UserWarning: The dtype of left and right variables are not the same, left dtype is paddle.float64, but right dtype is paddle.int32, the right dtype will convert to paddle.float64\n",
      "  warnings.warn(\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "epoch: 0 iter: 0 loss: 0.3113 train acc: 0.0000 test acc: 0.0000\n",
      "epoch: 0 iter: 5 loss: 0.4818 train acc: 0.0000 test acc: 0.3500\n",
      "epoch: 0 iter: 10 loss: 0.2171 train acc: 1.0000 test acc: 1.0000\n",
      "epoch: 0 iter: 15 loss: 0.1688 train acc: 1.0000 test acc: 1.0000\n",
      "epoch: 1 iter: 0 loss: 0.1350 train acc: 1.0000 test acc: 1.0000\n",
      "epoch: 1 iter: 5 loss: 0.1110 train acc: 1.0000 test acc: 1.0000\n",
      "epoch: 1 iter: 10 loss: 0.0879 train acc: 1.0000 test acc: 1.0000\n",
      "epoch: 1 iter: 15 loss: 0.0490 train acc: 1.0000 test acc: 1.0000\n",
      "epoch: 2 iter: 0 loss: 0.0733 train acc: 1.0000 test acc: 1.0000\n",
      "epoch: 2 iter: 5 loss: 0.0740 train acc: 1.0000 test acc: 1.0000\n",
      "epoch: 2 iter: 10 loss: 0.0660 train acc: 1.0000 test acc: 1.0000\n",
      "epoch: 2 iter: 15 loss: 0.0394 train acc: 1.0000 test acc: 1.0000\n",
      "epoch: 3 iter: 0 loss: 0.0654 train acc: 1.0000 test acc: 1.0000\n",
      "epoch: 3 iter: 5 loss: 0.0557 train acc: 1.0000 test acc: 1.0000\n",
      "epoch: 3 iter: 10 loss: 0.0602 train acc: 1.0000 test acc: 1.0000\n",
      "epoch: 3 iter: 15 loss: 0.0397 train acc: 1.0000 test acc: 1.0000\n"
     ]
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEWCAYAAABrDZDcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAkeklEQVR4nO3debxcdX3/8dc7G0nIwnLDloUACWCwbA0ISJXVAqWERysKiku1ov4KWhFbtH1Qipaq1NYNq6gISgQRhaYWxCVhEVkSENDADdyEJYngvSEL3ATI9vn98T0Th+Euk3DnnjNz3s/H4z7unGXOfGbu3PnMdznno4jAzMzKa0jeAZiZWb6cCMzMSs6JwMys5JwIzMxKzonAzKzknAjMzErOiaBJSLpY0jUNPP5CScdktyXpO5JWSbqvAY/VLWnvgT5uUTTj85N0m6S/zTuObSFpqqSQNCxbvkXSe/KOq5k4ERSIpHdIWpB9kDyTvaGPHozHjogDIuK2bPFo4ERgUkQcvjXHqSdhRcSYiFiytTFmr89TktZKuknSTjXbL8het9WS5kkaVbP99ZJulbRCUsNOoNnW52cDIyJOjoir846jmTgRFISk84EvApcCuwJTgK8Bs3IIZ0/gyYhYO5AHrXxj28b7HgB8A3gX6fVZR3p9Ktv3Bz4DvAVoA/4V2FxzmA3A9cD7tzUOs5YUEf7J+QcYD3QDZ/Sxz8XANVXLPwSeBdYAdwAHVG07BXgEeAFYDlyQrW8DfgKsBlYCdwJDsm1PAieQPiRfAjZlMX2D9KG7c9XxDwW6gOF1xBnA3wGPA09UrZvWV6w9HPdS4PtVy/sA64Gx2fI0YC0wro7Xe1p66/e5z9QszmFV624D/rbqGLdnr/8K4Ac1z7ny/K4CLgf+L3uO9wL7VO37FmBRdpyvZcf8215iOhy4O/v7PQN8FRhR87gfyl7r1dnjKts2FPhCFusTwLnVz6/6uWXL7wMeBVYBtwJ79vFaHQH8OnvMh4Bjal6zTwN3Zc//Z0Bb1fajq+67FHhv1f/Ed7P32VPAP/PH9+pQ4D+y57Ike3/1+FyA9wK/yvZflT33k6sefy/S/88LwC+y1+ya3p5rq/64RVAMRwIjgRu34j63ANOBXYAHgNlV274NfDAixgKvB+Zm6z8OLAMmkL5Vf4r0D7RFRHyb9GFyd6Qujg+S/rHeVrXbu4DrImJDnbGeDrwBmNHDtt5irXUA6UOmEudiUiLYN1vVmf3cIGlknXG9Fp8mfajtCEwCvtLHvmeSWig7Ah3AvwFIagNuAD4J7ExKCEf1cZxNwMdICf1I4Hjg/9XscypwGHAg6W/259n6DwAnAweTEvnpvT2IpFmk98Zfkd4rdwLX9rLvRFKS+wywE3AB8CNJE6p2ewfwN6T36ohsHyTtSXoffyV7nIOBB7P7fIWUDPYG3gy8OztG5bmcChwCzATe2ttzybyB9Nq2AZ8Hvi1J2bbvA/eRXv+LSe/t0nEiKIadgRURsbHeO0TElRHxQkS8THoDHyRpfLZ5AzBD0riIWBURD1St35307W5DRNwZ2deiflwNnA0gaShwFvC9emMF/j0iVkbEiz1s6y3WWmNI35qrrQHGZrevB64gfRu+qZIMJF0j6bytiLVeG0hdaHtExEsR8as+9r0xIu7L/r6zSR94kFpDCyPix9m2L5NaeT2KiPsj4p6I2BgRT5Jaa2+u2e2zEbE6Ip4G5lU91tuAL0XEsohYBXy2j3g/RPqbPZrFdSlwcPbBXets4OaIuDkiNkfEz4EF2XOr+E5EPJb9/a+viukdwC8i4trs/fhcRDyYvcfOBD6ZvcefJLVmKh/SbwO+GBFLI2Il8O99PBeApyLimxGxifRe3h3YVdIUUtK8KCLWZ3/DOf0cqyU5ERTDc0BbvX3okoZK+qykxZKeJ3XrQPrGA/DXpH/EpyTdLunIbP1lpG+kP5O0RNKFdcb3P6QP671Ig8hrImJrZhMt7WNbb7HW6gbG1awbB7wgaT9SF8N/AOeRur1ukjSa9M25t1bGa/EPgID7shlX7+tj3+oP93WkpAawB1WvTZaUl/V2EEn7SvqJpGezv/ul/PFvvlWPRd9/kz2BL2WD7qtJr6eAib3se0Zl32z/o0kftv3FNBlY3MMx24DhpC6hiqeqHr/2uVTv15Mtjx8R67KbY7LjrKxaB32/Li3LiaAY7gZepo/meo13kAaRTyA1n6dm6wUQEfMjYhapKX4T6VsY2berj0fE3sBpwPmSju/vwSLipewYZ5O+lW1NawBqup9qjt1jrD1YCBxUWcimZ24HPAYMI/UbKyI2A+8hdaP8Bng0IhZuZbyQxhsARlet260q7mcj4gMRsQfwQeBrkqZt5WM8Q+pWAtK03erlHvw30A5Mj4hxpO4b9bF/r49F+hDuzVJSd90OVT+jIuLXvez7vZp9t4+Ivloc1ffdp4f1K/hji6tiCmkMqfJcJtds2xbPADtlXxgq+npdWpYTQQFExBrgIuBySadLGi1puKSTJX2+h7uMJSWO50gfVJdWNkgaIemdksZnffjPk82ekXSqpGnZB84a0odl7cya3nyXNPB2GlufCHrUV6w9mA38paQ/k7Q9cAnw44h4gfTh+Djpw3g86dvkz0njB92V/uDs/IiRpH5qJI2UtF1PDxYRXaQPnrOzFtj7qPrQknSGpMoH6ypSsqv3taz4P+BPsr/5MNKg52597D+W9Bp1Z7OkPrwVj3U98FFJEyXtAPxjH/t+HfhkNlMLSeMlndHLvteQ/i5/nr1OIyUdU/Xa9GU2cIKkt0kaJmlnSQdnXTjXA/8maWzWJXV+9liV5/IRSZMk7QjU27J9hYh4itSNdXH2XjwS+MttOVazcyIoiIj4AunN/s+kmRJLSTM7buph9++SmsPLSTNu7qnZ/i7gyaz74EPAO7P100kzI7pJrZCvRcS8OuO7i/RB90D2DzRQeou19vEXZttnkwaFx5INlGYfHKcCO5C6GpaTuif+lDQw+pnsMHsCL5JaF2S3F/UR2weAT5AS7gGk2S0VhwH3Suom9St/NLby3IGIWAGcQRrAfI40mL6AlOR7cgGpNfgC8E3gB1vxcN8kDW4/TGop3QxsJH0ZqI3rRuBzwHXZ3+V3pIHmnp7DUlLr9FP88X37Cer4bMnGMU4hTWJYSRoorrT6ziO1ypaQZv18H7iy6rncSpo88ADw4/4eqw/vJHUfPkd6n/yA3l//llWZWmbWL0lzSVM4v5V3LK1I0hDSGME7603Qr+GxTga+HhE9DQCXlqQfAO0R8S95xzKY3CKwukg6jPTtemu+hVo/si6VHbIuqkqff20LbyAeZ5SkU7IumInAv7B105VbkqTDJO0jaYikk0itm5tyDmvQORFYvyRdTepS+vusT94GzpGk7qwVpP7p03uZZvtaiXQuwyqyQXTSuFTZ7UY6T6abNH33wxHxm1wjyoG7hszMSs4tAjOzktvmi4Dlpa2tLaZOnZp3GGZmTeX+++9fERETetrWdIlg6tSpLFiwIO8wzMyaiqRep327a8jMrOScCMzMSs6JwMys5JwIzMxKzonAzKzkGpYIJF0pqVPS73rZLklfltQh6WFJhzYqFjMz610jWwRXASf1sf1k0tUwpwPnkK61bmZmg6xh5xFExB2Spvaxyyzgu1lVpnuyC2/tHhHPNCqmovvFI3/g4WWr8w7DzArq+NftykGTdxjw4+Z5QtlEXlkWblm27lWJQNI5pFYDU6ZsazGiYosILrjhIVav24DqrTllZqWyy7iRLZcI6hYRV5AKkzNz5syWvErec2vXs3rdBi46dQbvO3qvvMMxsxLJc9bQcl5ZH3QSf6xJWjodnd0A7LPLmH72NDMbWHkmgjnAu7PZQ0cAa8o8PrC4KyWCaU4EZjbIGtY1JOla4BigTdIyUkWk4QAR8XVSzdRTgA5gHfA3jYqlGXR0djNq+FB2Hzcy71DMrGQaOWvorH62B/B3jXr8ZrO4ay377LI9Q4Z4pNjMBpfPLC6IxZ3d7DPB3UJmNvicCApg3fqNLF/9ohOBmeXCiaAAlnStBTxQbGb5cCIogMqMIbcIzCwPTgQFsLizmyGCqW2j8w7FzErIiaAAOrq6mbLTaLYbNjTvUMyshJwICmBx51qPD5hZbpwIcrZpc/DEirUeHzCz3DgR5GzpynWs37TZicDMcuNEkLMtM4bcNWRmOXEiyFnlqqPT3CIws5w4EeRscVc3bWO2Y/zo4XmHYmYl5USQs8Vda9lnwvZ5h2FmJeZEkKOIoKOz21NHzSxXTgQ5em7teta8uMEzhswsV04EOXJ5SjMrAieCHLk8pZkVgRNBjlye0syKwIkgRy5PaWZF4ESQI5enNLMicCLISaU8pc8oNrO8ORHkpFKe0jOGzCxvTgQ5cXlKMysKJ4KcuDylmRWFE0FOXJ7SzIrCiSAnLk9pZkXhRJADl6c0syJxIsjBlvKUbhGYWQE4EeTAM4bMrEicCHLg8pRmViROBDlweUozK5KGJgJJJ0laJKlD0oU9bJ8iaZ6k30h6WNIpjYynKDo6u12e0swKo2GJQNJQ4HLgZGAGcJakGTW7/TNwfUQcApwJfK1R8RRFRLC4y1NHzaw4GtkiOBzoiIglEbEeuA6YVbNPAOOy2+OB3zcwnkJweUozK5pGJoKJwNKq5WXZumoXA2dLWgbcDJzX04EknSNpgaQFXV1djYh10GwZKHaLwMwKIu/B4rOAqyJiEnAK8D1Jr4opIq6IiJkRMXPChAmDHuRA2jJ11InAzAqikYlgOTC5anlStq7a+4HrASLibmAk0NbAmHLn8pRmVjSNTATzgemS9pI0gjQYPKdmn6eB4wEkvY6UCJq776cfLk9pZkXTsEQQERuBc4FbgUdJs4MWSrpE0mnZbh8HPiDpIeBa4L0REY2KqQhcntLMimZYIw8eETeTBoGr111UdfsR4I2NjKFIKuUpz5wwuf+dzcwGSd6DxaXi8pRmVkROBIOoMmPIU0fNrEicCAZRpTzlnju7PKWZFYcTwSByeUozKyIngkHk8pRmVkROBIPE5SnNrKicCAaJy1OaWVE5EQwSl6c0s6JyIhgkLk9pZkXlRDBIXJ7SzIrKiWCQuDylmRWVE8EgcHlKMysyJ4JB4PKUZlZk/SaCrAi9vQYuT2lmRVZPi+BxSZdJmtHwaFqUy1OaWZHVkwgOAh4DviXpnqyQ/LgGx9VSOjq7GT3C5SnNrJj6TQQR8UJEfDMijgL+EfgX4BlJV0ua1vAIW8DirrXsPcHlKc2smOoaI5B0mqQbgS8CXwD2Bv6Xmupj1jOXpzSzIqunVOXjwDzgsoj4ddX6GyS9qTFhtQ6XpzSzoqsnERwYEd09bYiIjwxwPC3H5SnNrOjqGSy+XNIOlQVJO0q6snEhtRaXpzSzoqsnERwYEasrCxGxCjikYRG1GJenNLOiqycRDJG0Y2VB0k7U16VkpPKUe+68vctTmllh1fOB/gXgbkk/BAS8Ffi3hkbVQhZ3rvXF5sys0PpNBBHxXUn3A8dmq/4qIh5pbFitoVKe8pj9JuQdiplZr+rq4omIhZK6gJEAkqZExNMNjawFuDylmTWDek4oO03S48ATwO3Ak8AtDY6rJbg8pZk1g3oGiz8NHAE8FhF7AccD9zQ0qhbh8pRm1gzqSQQbIuI50uyhIRExD5jZ4LhagstTmlkzqGeMYLWkMcAdwGxJncDaxobVGjo6u5m2i2cMmVmx1dMimAWsAz4G/BRYDPxlPQeXdJKkRZI6JF3Yyz5vk/SIpIWSvl9v4EVXKU/p8QEzK7o+WwRZdbKfRMSxwGbg6noPnN33cuBEYBkwX9Kc6qmnkqYDnwTeGBGrJO2yDc+hkFye0syaRZ8tgojYBGyWNH4bjn040BERSyJiPXAdqXVR7QPA5dllK4iIzm14nEJyeUozaxb1jBF0A7+V9HOqxgbquPLoRGBp1fIy4A01++wLIOkuYChwcUT8tPZAks4BzgGYMmVKHSHnz+UpzaxZ1JMIfpz9NOrxpwPHAJOAOyT9SfVF7gAi4grgCoCZM2dGg2IZUC5PaWbNop5LTNQ9LlBjOVBdjWVStq7aMuDeiNgAPCHpMVJimL+Nj1kYLk9pZs2injOLn5C0pPanjmPPB6ZL2kvSCOBMYE7NPjeRWgNIaiN1FdVz7MJb3NntE8nMrCnU0zVUffLYSOAMYKf+7hQRGyWdC9xK6v+/Mrtm0SXAgoiYk217i6RHgE3AJ7KT15qay1OaWTOpp2uo9oP5i9nVSC+q4743U1PgPiIuqrodwPnZT8tweUozayb9JgJJh1YtDiG1EFyYpg8uT2lmzaTewjQVG0lXIX1bY8JpDS5PaWbNpJ6uoWP728deyeUpzayZ1DNr6FJJO1Qt7yjpMw2Nqsm5PKWZNZN6Ljp3cvUJXtnlIE5pWERNbuOmzTyxYq0His2sadSTCIZK2q6yIGkUsF0f+5faslUvpvKUPofAzJpEPYPFs4FfSvpOtvw3bMVVSMvG5SnNrNnUM1j8OUkPASdkqz4dEbc2Nqzm5fKUZtZs6jmPYC/gtspVQSWNkjQ1Ip5sdHDNyOUpzazZ1DNG8ENSUZqKTdk664HLU5pZs6knEQzLCssAkN0e0biQmpfLU5pZM6onEXRJOq2yIGkWsKJxITWvSnlKX1rCzJpJPbOGPgTMlvRVQKSqY+9uaFRNqjJQ7BaBmTWTemYNLQaOkDQmW+5ueFRNyuUpzawZ1XUVUUl/ARwAjJRSxa2IuKSBcTUll6c0s2ZUz7WGvg68HTiP1DV0BrBng+NqSi5PaWbNqJ7B4qMi4t3Aqoj4V+BIUklJq+HylGbWjOpJBC9mv9dJ2gPYAOzeuJCaU6U8pQeKzazZ1DNG8JPsMtSXAQ8AAXyzkUE1o0p5Sk8dNbNmU8+soU9nN38k6SfAyIhY09iwmo9nDJlZs9qq2sMR8TLwcoNiaWouT2lmzaqeMQKrg8tTmlmzciIYIC5PaWbNqp7LUB/aw+o1wFMRsXHgQ2o+lfKUx+w/Ie9QzMy2Wj1jBF8DDgUeJp1Q9npgITBe0ocj4mcNjK8puDylmTWzerqGfg8cEhEzI+JPgUOAJcCJwOcbGVyzqMwY8tRRM2tG9SSCfSNiYWUhIh4B9o+IJY0Lq7lsuepomxOBmTWferqGFkr6b+C6bPntwCOStiOdZVx6Lk9pZs2snhbBe4EO4O+znyXZug3AsY0Jq7m4PKWZNbN6zix+EfhC9lOr9LUJKuUpTz3Ql18ys+ZUz/TRNwIXky49vWX/iNi7cWE1jxXdLk9pZs2tnq6hbwP/CRwNHFb10y9JJ0laJKlD0oV97PfXkkLSzHqOWyRbrjHkqaNm1qTqGSxeExG3bO2BJQ0FLidNM10GzJc0J5t1VL3fWOCjwL1b+xhF4KmjZtbs6mkRzJN0maQjJR1a+anjfocDHRGxJCLWk2Ydzephv08DnwNeqj/s4qiUp9zN5SnNrEnV0yJ4Q/a7utsmgOP6ud9EYGnV8rKqYwFbLl8xOSL+T9InejuQpHOAcwCmTJlSR8iDx+UpzazZ1TNrqCFTRCUNIY09vLeOGK4ArgCYOXNmNCKebbW4s5vDpu6YdxhmZtus10Qg6eyIuEbS+T1tj4j/7OfYy4HJVcuTsnUVY0nXLbpNEsBuwBxJp0XEgnqCz1ulPOWZEyb3v7OZWUH11SKonCE1todt9Xwrnw9Ml7QXKQGcCbxjywFSlbO2yrKk24ALmiUJgMtTmllr6DURRMQ3spu/iIi7qrdl5xb0KSI2SjoXuBUYClwZEQslXQIsiIg5ryHuQnB5SjNrBfUMFn+FdBnq/ta9SkTcDNxcs+6iXvY9po5YCmVxZzdDh8jlKc2sqfU1RnAkcBQwoWacYBzpG37pdXR1M2Wn0S5PaWZNra8WwQhgTLZP9TjB88BbGxlUs3B5SjNrBX2NEdwO3C7pqoh4CrZM+RwTEc8PVoBF5fKUZtYq6jmz+N8ljZO0PfA7Ui2CXk/+KounVq5zeUozawn1JIIZWQvgdOAWYC/gXY0Mqhnc+VgXAIdP3SnnSMzMXpt6EsFwScNJiWBORGygvvMIWtrcRV3s3bY9U9s8RmBmza2eRPAN4EnSCWZ3SNqTNGBcWuvWb+SeJc9x7P675B2KmdlrVs+1hr4MfLlq1VOSSl2i8q6O51i/cTPHORGYWQvot0UgaVdJ35Z0S7Y8A3hPwyMrsLntnYzZbhiHeXzAzFpAPV1DV5EuE7FHtvwYqYh9KUUE89o7OXpaGyOG1fPymZkVW6+fZJIq3UZtEXE9sBnSNYSATYMQWyE98szzPPv8Sxz3OncLmVlr6Osr7X3Z77WSdiabKSTpCGBNowMrqnntnQAcs59PJDOz1tDXYHGl5Nb5wBxgH0l3ARMo8SUm5rZ3cuCk8ewy1qUpzaw19JUIqi82dyPpKqICXgZOAB5ucGyFs3Lten6zdDUfOW563qGYmQ2YvhLBUNJF52qL8Zb2msu3P9ZJBJ42amYtpa9E8ExEXDJokTSBue1dtI3Zjj+ZOD7vUMzMBkxfg8W1LYFS27hpM7cv6uSY/SYwZIhfGjNrHX0lguMHLYom8MDTq3n+pY3uFjKzltNrIoiIlYMZSNHNbe9k2BBx9PS2vEMxMxtQPjW2TvPaOzls6k6MGzk871DMzAaUE0Edlq9+kUV/eMHdQmbWkpwI6jA3O5vYl502s1bkRFCHee2d7LnzaBeqN7OW5ETQjxfXb+KujhUcu98uSJ42amatx4mgH3cvWcHLLkJjZi3MiaAfc9s7GT1iKG/Y20VozKw1ORH0IRWh6eKN09rYbtjQvMMxM2sIJ4I+PPaHbpavftHdQmbW0pwI+rBl2uh+TgRm1rqcCPowr72TGbuPY7fxLkJjZq2roYlA0kmSFknqkHRhD9vPl/SIpIcl/VLSno2MZ2usWbeB+59e5W4hM2t5DUsEkoYClwMnAzOAsyTNqNntN8DMiDgQuAH4fKPi2Vq3P97Fps3hs4nNrOU1skVwONAREUsiYj1wHTCreoeImBcR67LFe4BJDYxnq8xr72Sn7Udw8OQd8g7FzKyhGpkIJgJLq5aXZet6837glp42SDpH0gJJC7q6ugYwxJ5t2hzctqiTN+87gaEuQmNmLa4Qg8WSzgZmApf1tD0iroiImRExc8KECQ2P58Glq1m1boPHB8ysFPqqWfxaLQcmVy1Pyta9gqQTgH8C3hwRLzcwnrrNbf8DQ4eIN+3b+KRjZpa3RrYI5gPTJe0laQRwJjCnegdJhwDfAE6LiM4GxrJV5rZ38ad77sj4US5CY2atr2GJICI2AucCtwKPAtdHxEJJl0g6LdvtMmAM8ENJD0qa08vhBs0za17k0Weed7eQmZVGI7uGiIibgZtr1l1UdfuERj7+tpjXngajnQjMrCwKMVhcJHPbO5m4wyim7zIm71DMzAaFE0GVlzakIjTH7e8iNGZWHk4EVe59YiUvbtjkbiEzKxUngirz2jsZOXwIR+6zc96hmJkNGieCTEQwt72To/ZpY+RwF6Exs/JwIsgs7lrL0yvX+SJzZlY6TgSZeVkRGo8PmFnZOBFk5rZ3sv9uY5m4w6i8QzEzG1ROBMDzL21g/pMr3S1kZqXkRADc+dgKNm4OdwuZWSk5EZC6hcaPGs4hLkJjZiVU+kSweXNw+2OpCM2woaV/OcyshEr/yffw8jWs6F7vbiEzK63SJ4K57Z0MEbzZRWjMrKRKnwjmtXdyyJQd2XH7EXmHYmaWi1Ings7nX+K3y9e4W8jMSq3UieC2RakIzbH7ORGYWXmVOhHMbe9k9/Ejed3uY/MOxcwsN6VNBOs3buZXHSs41kVozKzkSpsI5j+5ku6XN3Kcu4XMrORKmwjmtncyYtgQjprmIjRmVm6lTgRH7r0zo0cMyzsUM7NclTIRPLFiLU+sWOtpo2ZmlDQRzHURGjOzLUqZCOa1dzJtlzFM3ml03qGYmeWudImg++WN3PvEc24NmJllSpcIfvX4CjZsCp9NbGaWKV0imNfeydiRw5g5dce8QzEzK4RSJYKIYN6iTt40fQLDXYTGzAwoWSJY+Pvn6XzhZY8PmJlVKVUimNveiQTH7OciNGZmFQ1NBJJOkrRIUoekC3vYvp2kH2Tb75U0tZHxzG3v5KBJO7DzmO0a+TBmZk2lYYlA0lDgcuBkYAZwlqQZNbu9H1gVEdOA/wI+16h4nut+mYeWrXa3kJlZjUa2CA4HOiJiSUSsB64DZtXsMwu4Ort9A3C8GnRN6NsWdRHhs4nNzGo1MhFMBJZWLS/L1vW4T0RsBNYAr7ocqKRzJC2QtKCrq2ubghk3ajgnztiVA/YYt033NzNrVU1x6c2IuAK4AmDmzJmxLcc4ccaunDhj1wGNy8ysFTSyRbAcmFy1PClb1+M+koYB44HnGhiTmZnVaGQimA9Ml7SXpBHAmcCcmn3mAO/Jbr8VmBsR2/SN38zMtk3DuoYiYqOkc4FbgaHAlRGxUNIlwIKImAN8G/iepA5gJSlZmJnZIGroGEFE3AzcXLPuoqrbLwFnNDIGMzPrW6nOLDYzs1dzIjAzKzknAjOzknMiMDMrOTXbbE1JXcBT23j3NmDFAIbTCEWPsejxgWMcCEWPD4ofY9Hi2zMierz0ctMlgtdC0oKImJl3HH0peoxFjw8c40AoenxQ/BiLHl81dw2ZmZWcE4GZWcmVLRFckXcAdSh6jEWPDxzjQCh6fFD8GIse3xalGiMwM7NXK1uLwMzMajgRmJmVXGkSgaSTJC2S1CHpwrzjqSZpsqR5kh6RtFDSR/OOqTeShkr6jaSf5B1LTyTtIOkGSe2SHpV0ZN4xVZP0sexv/DtJ10oaWYCYrpTUKel3Vet2kvRzSY9nv3csYIyXZX/nhyXdKGmHIsVXte3jkkJSWx6x1aMUiUDSUOBy4GRgBnCWpBn5RvUKG4GPR8QM4Ajg7woWX7WPAo/mHUQfvgT8NCL2Bw6iQLFKmgh8BJgZEa8nXZ69CJdevwo4qWbdhcAvI2I68MtsOU9X8eoYfw68PiIOBB4DPjnYQVW5ilfHh6TJwFuApwc7oK1RikQAHA50RMSSiFgPXAfMyjmmLSLimYh4ILv9AunDq7a+c+4kTQL+AvhW3rH0RNJ44E2kOhdExPqIWJ1rUK82DBiVVeQbDfw+53iIiDtI9UCqzQKuzm5fDZw+mDHV6inGiPhZVusc4B5SFcRc9PIaAvwX8A9AoWfllCURTASWVi0vo4AftACSpgKHAPfmHEpPvkh6U2/OOY7e7AV0Ad/Juq++JWn7vIOqiIjlwH+Qvh0+A6yJiJ/lG1Wvdo2IZ7LbzwJFL/j9PuCWvIOoJmkWsDwiHso7lv6UJRE0BUljgB8Bfx8Rz+cdTzVJpwKdEXF/3rH0YRhwKPDfEXEIsJb8uzS2yPrZZ5ES1h7A9pLOzjeq/mXlYwv7jVbSP5G6V2fnHUuFpNHAp4CL+tu3CMqSCJYDk6uWJ2XrCkPScFISmB0RP847nh68EThN0pOkrrXjJF2Tb0ivsgxYFhGV1tQNpMRQFCcAT0REV0RsAH4MHJVzTL35g6TdAbLfnTnH0yNJ7wVOBd5ZsHrn+5AS/kPZ/8wk4AFJu+UaVS/KkgjmA9Ml7SVpBGmAbk7OMW0hSaR+7Ucj4j/zjqcnEfHJiJgUEVNJr9/ciCjUt9mIeBZYKmm/bNXxwCM5hlTraeAISaOzv/nxFGgwu8Yc4D3Z7fcA/5NjLD2SdBKpq/K0iFiXdzzVIuK3EbFLREzN/meWAYdm79HCKUUiyAaUzgVuJf3jXR8RC/ON6hXeCLyL9C37weznlLyDalLnAbMlPQwcDFyabzh/lLVUbgAeAH5L+v/L/TIEkq4F7gb2k7RM0vuBzwInSnqc1JL5bAFj/CowFvh59j/z9YLF1zR8iQkzs5IrRYvAzMx650RgZlZyTgRmZiXnRGBmVnJOBGZmJedEYKUlqTv7PVXSOwb42J+qWf71QB7fbCA5EZjBVGCrEkF20bi+vCIRRERRzyA2cyIwI50s9WfZSUkfy2ouXCZpfnat+w8CSDpG0p2S5pCdsSzpJkn3ZzUGzsnWfZZ0hdEHJc3O1lVaH8qO/TtJv5X09qpj31ZVS2F2dvaxWcP1963GrAwuBC6IiFMBsg/0NRFxmKTtgLskVa4SeijpGvhPZMvvi4iVkkYB8yX9KCIulHRuRBzcw2P9FemM54OAtuw+d2TbDgEOIF2a+i7SGee/Gugna1bLLQKzV3sL8G5JD5IuB74zMD3bdl9VEgD4iKSHSNfDn1y1X2+OBq6NiE0R8QfgduCwqmMvi4jNwIOkLiuzhnOLwOzVBJwXEbe+YqV0DOnS1tXLJwBHRsQ6SbcBr6X05MtVtzfh/08bJG4RmMELpIuXVdwKfDi7NDiS9u2lwM14YFWWBPYnlRmt2FC5f407gbdn4xATSBXV7huQZ2G2jfyNwwweBjZlXTxXkeoeTyVdP16kqmen93C/nwIfkvQosIjUPVRxBfCwpAci4p1V628EjgQeIhV7+YeIeDZLJGa58NVHzcxKzl1DZmYl50RgZlZyTgRmZiXnRGBmVnJOBGZmJedEYGZWck4EZmYl9/8B+mTStrRgmeUAAAAASUVORK5CYII=",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "# Using Iris\n",
    "test_rate = 0.2\n",
    "num_qubit = 4\n",
    "\n",
    "# acquire Iris data as quantum states\n",
    "iris =Iris (encoding='angle_encoding', num_qubits=num_qubit, test_rate=test_rate,classes=[0, 1], return_state=True)\n",
    "\n",
    "quantum_train_x, train_y = iris.train_x, iris.train_y\n",
    "quantum_test_x, test_y = iris.test_x, iris.test_y\n",
    "testing_data_num = len(test_y)\n",
    "training_data_num = len(train_y)\n",
    "\n",
    "acc = QClassifier2(\n",
    "        quantum_train_x, # training x\n",
    "        train_y,         # training y\n",
    "        quantum_test_x,  # testing x\n",
    "        test_y,          # testing y\n",
    "        N = num_qubit,   # Number of qubits required\n",
    "        DEPTH = 1,       # Circuit depth\n",
    "        EPOCH = 4,       # Number of training epochs, the total iteration number \"EPOCH * (Ntrain / BATCH)\" is chosen to be about 200\n",
    "        LR = 0.1,        # Set the learning rate\n",
    "        BATCH = 4,       # Batch size during training\n",
    "      )\n",
    "plt.plot(acc)\n",
    "plt.title(\"Classify Iris 0&1 using angle encoding\")\n",
    "plt.xlabel(\"Iteration\")\n",
    "plt.ylabel(\"Testing accuracy\")\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The second case is MNIST. It is a handwritten digit dataset and has 10 classes. Each figure has $28\\times28$ pixels, and downscaling methods such as ``resize`` and ``PCA`` should be used to transform it into the target dimension."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "epoch: 0 iter: 0 loss: 0.3237 train acc: 0.3250 test acc: 0.5450\n",
      "epoch: 0 iter: 5 loss: 0.2124 train acc: 0.7500 test acc: 0.6500\n",
      "epoch: 0 iter: 10 loss: 0.2294 train acc: 0.6500 test acc: 0.6850\n",
      "epoch: 1 iter: 0 loss: 0.1970 train acc: 0.7250 test acc: 0.7850\n",
      "epoch: 1 iter: 5 loss: 0.1521 train acc: 0.8500 test acc: 0.8150\n",
      "epoch: 1 iter: 10 loss: 0.1726 train acc: 0.7750 test acc: 0.8900\n",
      "epoch: 2 iter: 0 loss: 0.1742 train acc: 0.7250 test acc: 0.8650\n",
      "epoch: 2 iter: 5 loss: 0.1167 train acc: 0.9000 test acc: 0.8900\n",
      "epoch: 2 iter: 10 loss: 0.1654 train acc: 0.8000 test acc: 0.8950\n",
      "epoch: 3 iter: 0 loss: 0.1609 train acc: 0.8000 test acc: 0.8850\n",
      "epoch: 3 iter: 5 loss: 0.1148 train acc: 0.9250 test acc: 0.8850\n",
      "epoch: 3 iter: 10 loss: 0.1649 train acc: 0.8000 test acc: 0.8750\n",
      "epoch: 4 iter: 0 loss: 0.1629 train acc: 0.8250 test acc: 0.8750\n",
      "epoch: 4 iter: 5 loss: 0.1112 train acc: 0.9000 test acc: 0.8700\n",
      "epoch: 4 iter: 10 loss: 0.1630 train acc: 0.8500 test acc: 0.8850\n"
     ]
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEWCAYAAAB8LwAVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAA3i0lEQVR4nO3dd3xV9f3H8debEAhhQwIIhCEgiAKCAQcunEitWie2tWqH9dc6qtZWa4e1y7a2dmgdtRatVqUKFq17D1AThiAoeyRhhYQ9Qsbn98c50Uu4SS7JvbkZn+fjkUfu2Z97c3M+5/v9nvP9ysxwzjnnqmqV7ACcc841Tp4gnHPOReUJwjnnXFSeIJxzzkXlCcI551xUniCcc85F5QmiAUi6TdKjCdz/Qkknha8l6Z+SNkv6MFHHdLWTdJ+knyQ7jvqQdJKk/Ijpz75rcdr/Kkmnxmt/DSnRn01j4AkiTiR9WVKupB2S1kl6QdJxDXFsMzvMzN4MJ48DTgP6mtm4A9lPmMhM0nVV5l8Xzr8tnD4pnP5blfXelXR5+PpySe9GLDtO0kxJWyUVS3pP0lhJPwo/sx2S9kgqj5heGCXGjHDbIklbJM2SNL7KOkdKmh3uY4mkM6LsJ0XSLyWtlbRd0lxJXQ7k86qNmV1lZr+I5z6TLfK7lugLn6amyv9hs+AJIg4k3QD8Cfg10BPoB/wNOCcJ4fQHVpnZzjpuvwT4WpV5l4XzI+0ELpU0oLYdSuoEPAf8FegG9AF+DpSY2a/NrIOZdQCuAmZVTpvZYVF2twP4OpAJdAV+CzwrqXXEOncDLwAdgTOA/Ko7CY9/LHAM0Am4FNhT23txriXxBFFPkjoDtwPfNbNpZrbTzErN7Fkzu6mabf4jaX14Nf22pMMilk2StCi8qi2Q9P1wfoak58Kr5mJJ70hqFS5bJelUSd8AHgSOCa+e75e0S1L3iP2PkVQoKbWat5QDpFfGFP5OC+dH2gJMAX4Ww8d0CICZPW5m5Wa228xeNrP5MWy7DzPbY2aLzawCEFBOkCi6RaxWCqy2wEoz26ckIqkr8D3gW2ZWud7HZhY1QUh6U9I3I6Y/Kx2FVXp3SdooaZukBZIOD5dNkfTL8PVJkvIl3Riuu07SFRH77C7p2XAfOWHp5t2qsUSsX9N3aIqkv4Wl2B1hiauXpD8pqHr8VNLoiPVXSbol/N5tVlBFmVbNcSu/axOBHwEXh8f4KHJ5xPr7lDIkXSppdVgCvLXKvltJulnS8nD5VEmRf9eqsZwlaV74PzFT0sgqcX5f0vzwM3oy8j1JOifcdlt4vInh/N6SZoT/Y8skfStim3bhZ7tZ0iJgbLTPJuJ9T5X0SPi/vFBSdsS6YxSUWreHf8snK78rjYkniPo7huAEOv0AtnkBGAL0AOYAj0Us+wfwbTPrCBwOvB7Ov5HgSjiToJTyI2CfflLM7B/sexX+beBN4KKI1S4FnjCz0hri+xeflyIuC6ej+RVwvqShNewLgtJHuaSHJZ0ZnqDrRdJ8giv+GcCDZrYxYnEO8DtJY6rZfARQBlwQnmSXSPpuHUM5HTiBIAl2Jvisi6pZt1e4Th/gG8A9EZ/FPQSlsl4En/lltRy3pu8QYRw/BjKAEmBWuF4G8BTwxyrrf4WgtDUofC8/rungZvYiQYn5yfC7NqqWeJE0HLiX4DvYG+gO9I1Y5RrgXODEcPlmgs8l2r5GAw8B3w73cz8wQ1LbiNUuAiYCA4GRwOXhtuOAR4CbgC4Ef79V4TZPEPyf9QYuAH4t6eRw2c8IPp9BBJ9VbX+js8P9dSH4nt4dHr8NwfliCsGFzePAl2rZV1J4gqi/7sAmMyuLdQMze8jMtptZCXAbMEpBSQSCq9/hkjqZ2WYzmxMx/yCgf1hCecdi60jrYeCrENS7A5dQ/Qm/0qPAJQpKGZPD6WjvYz1wH0EJqlpmto2gbcSAvwOF4VVazxjir26fIwmqhr4MRLZ1TAYmhPOfrUwS4VXv7HC1vgQn6kMITh4XALdJOq0OoZQSVGUNA2Rmn5jZuhrWvT38+z1PUF02NPy7nA/8zMx2mdkigr9btWr5DgFMN7PZYaloOrDHzB4xs3LgSWB0lV3ebWZ5ZlZMkPgvOYDPIFYXAM+Z2dth3D8BKiKWXwXcamb5Ee/rAu1bfVjpSuB+M/sgLJU+TJAIj45Y5y9mtjZ8T88CR4TzvwE8ZGavmFmFmRWY2aeSsoDxwA/Dkuo8ghJ55cXSRcCvzKzYzPKAv9Tyft81s+fDz/xfQGUSPRpoHcZXambTgEZ5Q4kniPorAjKq+RLvR0Hj6B1hsXYbn1+5ZIS/zwcmAaslvSXpmHD+74FlwMuSVki6Ocb4/kuQcAYSNF5vNbMav4xmtiY81q+BpeE/Q3V+C5whqcYryPDEebmZ9SUoGfUmaLeps/Cf+HHg5ojjXwf83sxeILi6fCFMEuP5vDS2O/x9e1jdNZ/gSm9SHWJ4neDK8B5go6QHFLS5RFNU5UJiF9CBoFTYGoj8nKv9zGP4DgFsiHi9O8p0hyq7jTzeaoK/T7z1jjxO2E4WWdrqD0wPq4y2AJ8QVCFGu5DoD9xYuW64flaVuNdHvK78rAnXW15NfMVmtj1i3mqCEt9+8YfLalL1+GnheaI3UFDlAq+m/7Gk8QRRf7MIrlzOjXH9LxM0Xp9KcBU7IJwvADPLMbNzCKoOngGmhvO3m9mNZnYwQdH1Bkmn1Haw8ApyKkEp4lJqLz1UeoSgWuuRWvZfRHCij/luHTP7lKB4fXis29QiFTg4fN06nMbMngNuAF4maNi+O1ynsu0j8h+0ptLYTiA9YrpX5EIz+4uZHQkMJyiVRG17qkEhQZVXZHVLVg3r1/gdqqPI4/UD1sawTbTPrKbPal3kcSSlE5TAK+UBZ5pZl4ifNDMriHKcPIKr+ch108MLhtrkEVQTVbUW6CapY8S8fkDl8feJP1xWF+uAPpIi/141/b2TxhNEPZnZVuCnBPXJ50pKl5Qa1rX/LsomHQkSShHBP9KvKxdIaiPpK5I6h20E2wiL4GGD3ODwS7WV4MqqYr+9R/cIQf3r2cSeIJ4kqF+fGsO6fyS4I+jQaAslDVPQONs3nM4iqMJ4P8ZYIvd1tIJbZtuEjYY/JLjC/CBc5T/ATyWNUtCIv4Tg6q1d5T7MbDnwDnCrpLaSDiWoSnuumsPOA84L/7aDCaooKuMZK+mosDpuJ0G7SKx/l8p4yoFpBNVc6ZKGsf+dZJGq/Q7Vw3cl9VXQKHwrwd+/NhuAAeHnXGkeMDn8H8gmqFaq9BRwVuXfj6BqMnLb+4BfSeoPIClTUnV3Av4duCr87CWpvaQvVDm5V+cfwBWSTlHQMN5H0rCwpDwT+I2kNAWN3t/g8yrWqcAtkrqG3+VrYjhWNLMI/n+vltQ6fI8HdEt6Q/EEEQdm9geCK9UfE1wN5gFXE5QAqnqEoGhaACxi/5PkpcCqsOrgKoLGQwgaJF8lqLeeBfzNzN6IMb73CE5ac8ystmJx5Ta7zexVM9sdw7rbgN+x751EkbYDRwEfSNpJ8J4/JiihHKi2BNU5RQSf4STgC2ZWecV7J0Hj5fTwuA+Ex3kY+F9EPf0lBNUURcD/gJ+Y2WvVHPMuYC/BCfFh9m0Q7kRwstpM8HctIqgOPFBXE5QG1hMk8ccJkkA0tX2H6uLfBCWtFQTVL7HcUfOf8HeRpMq2sp8QXJ1vJriV+N+VK4d3k303nLcuXCfyFuQ/EzTmvixpO8H7Oiragc0sF/gWQalwM0GV6OUxxExYxXoFwd91K/AWwXcBgu/FAILSxHSCdqFXw2U/J/jcVxJ8VrFebFU9/l7gPILks4WgdP8c1f+9k0axtXO6pk7S68C/zezBZMfiaifpt0AvM6vtTpl4HGsV8M2IE6FrYJI+AO4zs38mO5ZIXoJoASSNBcYQW7WBS4KwGm5kWF0yjuDq8kBunXZNiKQTFTyb0lrSZQS34b6Y7LiqiunOG9d0SXqYoAH9uip3Z7jGpSNBtVJvgqqsPxDcgeaap6EEbRrtCar1Lqjh9uik8Som55xzUXkVk3POuaiaTRVTRkaGDRgwINlhOOdckzJ79uxNZpYZbVmzSRADBgwgNzc32WE451yTIqnaW9+9isk551xUniCcc85FldAEIWmipMUK+lXfr3M5Sf0lvaagz/Y3K7tiCJddJmlp+JPwh4Wcc87tK2EJQkEXxvcAZxJ0YnaJgv7gI90JPBJ23Xw78Jtw224Efa8fRdBHyc8UhzEEnHPOxS6RJYhxwDIzWxH2PfIE+w/BOZzPu2B+I2L5GcArYb/rm4FXCAb+cM4510ASmSD6sG8f5/l83q96pY8IOq2CYESljgqGx4xlWyRdKSlXUm5hYWHcAnfOOZf8RurvAydKmkswzGABQTe4MTGzB8ws28yyMzOj3sbrnHOujhL5HEQB+w6C0ZfPB94AIOyi+TwASR2A881si6QC4KQq276ZwFida/TKK4wN2/awpngXecW72Li9hGG9OjJuYDc6pqUmOzzXDCUyQeQAQxQMdVlAMCDLlyNXkJRBMMRfBXALQT/+AC8RDBZe2TB9erjcuWbLzNiyqzRIAJt3kVe8O/wd/BRs2U1p+f59p6W0EiP7dmb8oAyOHdSdMf27kpaakoR34JqbhCUIMyuTdDXByT6FYJDwhZJuB3LNbAZBKeE3kgx4m2AwEcysWNIvCJIMBGMHFycqVucayu695fuc9PM27/6sRJC/eTc7Ssr2Wb9reipZ3dI5rE9nJh5+EFnd2pHVNZ2sbulkdGjDgoKtzFxWxHvLN3HvW8u5+41ltGndiuz+XRk/OINjBnVnZJ/OtE5Jdm2ya4qaTW+u2dnZ5l1ttAyri3by4Dsr+ebxA+nfvX2yw6nR1t2l/PW1pcxes5m84t1s2rHvoGFpqa3I6ppOv27BSb9v13ZkdQum+3Ztd0BVR9v3lPLhymJmLi9i5vIiPlm3DYAObVtz1MBuHDs4KGEM7dmRVq3qM3y1a04kzTaz7KjLPEG4puabD+fw6icbSUttxfdPH8oV4weS0ghPeK8s2sCPn1lA4fYSjhrYPUwCQQLI6pZOVtegFLDv2PXxU7SjhPdXFPPe8k3MWl7Eyk07Aejevg1HD+rOsYO6M35QBv27pycsBtf4eYJwzcbcNZv50t9mcsX4Aawp2sVrn25kVFYXfnf+SIb2imW8+sTbtKOE22Ys5Ln56xjWqyO/u2AkI/t2SXZYFGzZzazlRcxcton3lm9iw7agNNOnSzuOCRPGsYMy6NU5LcmRugNVXmF1vkjyBOGajUv/8QEL127jnR9MIL1NCjM+WsvPn13E9j2lfHfCYL5z0mDatE5OfbuZ8d95a/n5swvZWVLONScP5tsnDkpaPDUxM1Zs2hlURy3bxKwVRWzZVQrAQZ3TEhJzRoe2HHNwd29Ij5PS8gpe+2QDT+bkkZaawr1fPbJO+/EE4ZqFD1cWc9H9s7h10qF864SDP5tftKOE259bxH/nrWVoz4789oKRHJHVpUFjW7tlN7dOX8AbiwsZ3S8o0Qzp2ThKNLGoqDAWrdvGrLDtoiLO5wUD1hTvYn7+VsorjLatW5E9oCvHhndejfCG9JgtL9zB1Jw8np6Tz6Yde+nVKY1LxvXj2lMG16mq0BOEa/LMjMkPvM/KTTt566YJtGuz/9Xna59s4NbpH7Nx+x6+cdxAbjhtaNT14qmiwnjswzX89oVPKa8wbjpjKJcdO6BRtok0BpEN6e8t28Sn64Nh0ju2bc1RB3fjmEEZjB/cnUN6eEN6pF17y3h+wXqezFlDzqrNtG4lTjm0B5PH9uOEQzLr9X2rKUE0mwGDXPM2c3kRH6ws5udnH1btSf+UQ3sydmA37njhU/7+zkpeWriBO84fwbGDMhIS08pNO/nh0/P5cGUx4wd35zdfGkm/7ukJOVZz0TEtlVMO7ckph/YEgtLfrBVFn1V1vfrJRiBoSD8mbBMZPzho4G9pDelmxoKCrTyZk8eMeWvZXlLGwRntufnMYZw3pg89Oia+rchLEK7RMzPOu3cmG7bu4Y2bTqJt69pLBbOWF3HztPmsLtrFJeP6ccukYXSK09PGZeUVPPjuSu56ZQltWrfiJ18YzoXZfVvcCSwRCrbsDtpElhft15B+7KDuHDs4SBo9OzXfhvStu0p5Zl4BT+Tk8cm6baSltmLSiIOYPLYfYwd0jfv3zKuYXJP2xqcbuWJKDr85bwSXjOsX83a795Zz16tLePCdFWR2bMuvzh3BqcN71iuWRWu38cOn57OgYCunD+/JL849vFmfrJLJzFheuJNZyzfx3rIiZq0oYuvuoCF9UGZ7xofPdfTq3C7ux24l6NUpjcyObRsk8VdUGO+vLOLJnDxe+Hg9e8sqGNGnMxePzeLsI3rH7eImGk8QrskyM75497ts213GazeeSGodGjI/ytvCD5+ez6frt3P2qN787IvD6d6h7QHto6SsnLtfX8a9by6nS3oqPz/7cCaN6OWlhgZU2ZA+M0wYH64sZndpzH171klaaiv6dk0na58HGD9/nqW+J+4N2/bw1Ox8pubmsbpoF53SWnPu6D5clJ3F4X06x+ld1MwThGuyXvx4PVc9Ops7LxzFBUf2rX2Dauwtq+C+t5bz19eX0qFta247+zDOHtU7phP87NWb+eHT81m2cQfnjenDT74wnK7t29Q5Fhcfe8sqWFCwlW1hqSKeyiqMdVt3k1e8K+wKJegXa/uefbtC6dwu9fMHILum0zdMIlld29Gna7uo1aFl5RW8sbiQJ3PW8MbiQsorjKMP7sbksf2YeHivBr/91xOEa5IqKowz//wOpRUVvPy9E+JyG+SSDdv5wVPzmZe3hZOH9eCX5x5O7y7Rqyh2lpRx58uLmTJzFQd1SuNX541gwtAe9Y7BNV1b9+lMMaJTxbAvrb3lFZ+tK0HPjmmfPz3fNZ09ZeVMn1PAxu0lZHZsy4VH9uWi7CwGZCSvyxhPEK5JmvHRWq59fC5/uWQ0Z4/qHbf9llcYU2au4s6XFpPSStwyaRiXjO23z22V7ywt5JZpC8jfvJuvHdOfH0wcRoe2ftOfq15FhbFxewl5m3expmj/HnnXb9uDgJOH9eDisf2YMDSzUTz74QnCNTll5RWc/qe3SW3ViheuOz4h98SvKdrFLdPn896yIo4a2I07zh9Jt/Q2/Or5RUzNzefgjPbccf5Ixg3sFvdju5anpKycvWUVjW7sDn8OwjU5/523lhWFO7nvq0cm7IGpft3TefQbRzE1N49f/u8TJv7pbTqmpbJ5117+76RBXHfKEO8OwsVN29YpMd2i3Zh4gnCNTml5BX9+bSmH9+nEGYfV77bU2kji4rH9OGloD26bsZD12/Yw5YqxDXYHiXONmScI1+g8NTufNcW7+OflYxvsNtKendLq3NmZc81V8ltInItQUlbOX19byuh+XThpaGayw3GuRfME4RqVJz7MY+3WPdx42lB/CM25JPME4RqN3XvLufuNZRw1sBvjB3dPdjjOtXgJTRCSJkpaLGmZpJujLO8n6Q1JcyXNlzQpnD9A0m5J88Kf+xIZp2scHn1/NYXbS7jxdC89ONcYJKyRWlIKcA9wGpAP5EiaYWaLIlb7MTDVzO6VNBx4HhgQLltuZkckKj7XuOwsKePet5Zz/JAMf+7AuUYikSWIccAyM1thZnuBJ4BzqqxjQKfwdWdgbQLjcY3YlJmrKN65lxtPH5rsUJxzoUQmiD5AXsR0fjgv0m3AVyXlE5QerolYNjCsenpL0vEJjNMl2bY9pTzw9gpOGdajwYcKdc5VL9mN1JcAU8ysLzAJ+JekVsA6oJ+ZjQZuAP4tqVPVjSVdKSlXUm5hYWGDBu7i5x/vrGTr7lKuP+2QZIfinIuQyARRAGRFTPcN50X6BjAVwMxmAWlAhpmVmFlROH82sBzY7+xhZg+YWbaZZWdm+j3zTdHmnXv5x7srOfPwXv70snONTCITRA4wRNJASW2AycCMKuusAU4BkHQoQYIolJQZNnIj6WBgCLAigbG6JHngnRXs3FvmpQfnGqGE3cVkZmWSrgZeAlKAh8xsoaTbgVwzmwHcCPxd0vUEDdaXm5lJOgG4XVIpUAFcZWbFiYrVJUfh9hKmvLeKs0f15pCeHZMdjnOuioT2xWRmzxM0PkfO+2nE60XA+CjbPQ08ncjYXPLd99ZySsrKue6UIckOxTkXRbIbqV0LtX7rHh59fzXnj+nLwZkdkh2Ocy4KTxAuKe55YxnlFca1XnpwrtHyBOEaXP7mXTyRs4aLxmaR1S092eE456rhCcI1uLtfX4Ykrjl5cLJDcc7VwBOEa1CrNu3kP7Pz+fK4fhzUuV2yw3HO1cAThGtQf3ltKakp4jsTBiU7FOdcLTxBuAazbON2ps8r4LJjBtCjY1qyw3HO1cIThGswd726lPTUFL59opcenGsKPEG4BvHJum38b/46vn7cQLq1b5PscJxzMfAE4RrEH19ZQse01nzzuIOTHYpzLkaeIFzCzc/fwiuLNvCt4w+mc3pqssNxzsXIE4RLuD+8vISu6alcMX5AskNxzh0ATxAuoWavLuatJYV8+8RBdEzz0oNzTYknCJcwZsYfXl5CRoc2fO2Y/skOxzl3gDxBuITYtbeM656Yx8zlRXx3wmDS2yS0Z3nnXAL4f62LuxWFO/i/R+ewdON2bjpjKJcdMyDZITnn6sAThIurFz9ez03/+YjU1q145OtHcdyQjGSH5JyrI08QLi7Kyiu48+Ul3PfWckb17czfvnokfbp4Z3zONWWeIFy9bdpRwrWPz2Xm8iK+clQ/fvrF4bRtnZLssJxz9eQJwtXLnDWb+c6jc9i8ay93XjiKC47sm+yQnHNxktC7mCRNlLRY0jJJN0dZ3k/SG5LmSpovaVLEslvC7RZLOiORcboDZ2b8a9YqLr5/FqmtxbTvHOvJwblmJmElCEkpwD3AaUA+kCNphpktiljtx8BUM7tX0nDgeWBA+HoycBjQG3hV0iFmVp6oeF3sdu8t59bpC5g2t4CTh/XgrouO8C40nGuGElnFNA5YZmYrACQ9AZwDRCYIAzqFrzsDa8PX5wBPmFkJsFLSsnB/sxIYr4vBqk07uerR2SzesJ0bTjuEqycMplUrJTss51wCJDJB9AHyIqbzgaOqrHMb8LKka4D2wKkR275fZds+VQ8g6UrgSoB+/frFJWhXvVcXbeD6qfNIaSWmXDGOEw/JTHZIzrkESvaT1JcAU8ysLzAJ+JekmGMyswfMLNvMsjMz/WSVKOUVxp0vLeabj+QyoHt7nr36OE8OzrUAiSxBFABZEdN9w3mRvgFMBDCzWZLSgIwYt3UNoHjnXq57Yi7vLN3E5LFZ3Hb2YaSl+i2szrUEiSxB5ABDJA2U1Iag0XlGlXXWAKcASDoUSAMKw/UmS2oraSAwBPgwgbG6KD7K28IX//ouH6ws5rfnj+CO80d6cnCuBUlYCcLMyiRdDbwEpAAPmdlCSbcDuWY2A7gR+Luk6wkarC83MwMWSppK0KBdBnzX72BqOGbG4x/mcduMhWR2bMvTVx3LiL6dkx2Wc66BKTgf17CClNIUTs7Z2dmWm5ub7DCavD2l5fz4mY95anY+JxySyZ8vPoKuPoa0c82WpNlmlh1tWSwliKWSngb+WeUZBtfMrCnaxVWPzmbRum1ce8oQrjtlCCl+C6tzLVYsCWIUQfvBg+EdRg8RPKOwLaGRuQb19pJCrnl8LmbGQ5dnc/KwnskOyTmXZLU2UpvZdjP7u5kdC/wQ+BmwTtLDkgYnPEKXcHtKy7n633Po1SmN56453pODcw6IoQQRdpnxBeAKYADwB+Ax4HiCrjEOSWB8rgG8+PF6tu0p476vDqdf9/Rkh+OcayRiaoMA3gB+b2YzI+Y/JemExITlGtLU3DyyurXj6IO7JzsU51wjEkuCGGlmO6ItMLNr4xyPa2BrinYxc3kRN5x2iPep5JzbRywPyt0jqUvlhKSukh5KXEiuIT01Ow8J76rbObefWBLESDPbUjlhZpuB0QmLyDWY8grjP7PzOX5IJr19eFDnXBWxJIhWkrpWTkjqho9E1yy8u2wT67bu4eLsrNpXds61OLGc6P8AzJL0H0DABcCvEhqVaxBTc/Lomp7KqcN7JDsU51wjVGuCMLNHJM0GJoSzzvMnqpu+4p17eXnRer56dH/atvYO+Jxz+4upqijsZK+QoLdVJPUzszUJjcwl1DNzCygtNy7y6iXnXDVqbYOQdLakpcBK4C1gFfBCguNyCWRmTM3NY2Tfzhx6UKfaN3DOtUixNFL/AjgaWGJmAwnGb3i/5k1cY7agYCufrt/upQfnXI1iSRClZlZEcDdTKzN7A4jaNaxrGp7MyaNt61Z8cVTvZIfinGvEYmmD2CKpA/A28JikjcDOxIblEmX33nJmzFvLpBEH0bldarLDcc41YrGUIM4BdgHXAy8Cy4EvJjIolzgvLlzH9pIyLsz2J6edczWrsQQR9uT6nJlNACqAhxskKpcwU3Py6dctnaMHesd8zrma1ViCCIcarZDkAxI3A6uLdjJrRREXHtnXO+ZzztUqljaIHcACSa8Q0fYQS0+ukiYCfwZSgAfN7I4qy+/i8wfw0oEeZtYlXFYOLAiXrTGzs2OI1dXgqdn5Qcd8Xr3knItBLAliWvhzQMLqqXuA04B8IEfSjMinsM3s+oj1r2HfTgB3m9kRB3pcF115hfHU7HxOGJLJQZ29Yz7nXO1i6Wqjru0O44BlZrYCQNITBA3e1XXTcQnBcKYuAd5ZWsi6rXv4yVnDkx2Kc66JiGXI0ZWAVZ1vZgfXsmkfIC9iOh84qppj9AcGAq9HzE6TlAuUAXeY2TNRtrsSuBKgX79+tYTTsk3NzaNb+zaceqiPN+2ci00sVUyRD8WlARcC3eIcx2TgqbBRvFJ/MyuQdDDwuqQFZrY8ciMzewB4ACA7O3u/JOYCRTtKeGXRBi49egBtWsdyZ7NzzsXwHISZFUX8FJjZn4AvxLDvAiCyL4e+4bxoJgOPVzluQfh7BfAmPkhRnT0zby2l5cbFY71rDedc7GKpYhoTMdmKoEQRS8kjBxgiaSBBYpgMfDnK/ocBXYFZEfO6ArvMrERSBjAe+F0Mx3RVmBlTc/IY1bczQ3t1THY4zrkmJNYBgyqVEfTqelFtG5lZmaSrgZcIbnN9KOw2/HYg18xmhKtOBp4ws8gqokOB+yVVECSlO3wMirqZn7+VxRu286svHZ7sUJxzTUwsdzFNqG2dGrZ9Hni+yryfVpm+Lcp2M4ERdT2u+9yTuXmkpXrHfM65AxfLeBC/ltQlYrqrpF8mNCoXF7v3lvPsvLVMOvwgOqV5x3zOuQMTyy0tZ5rZlsoJM9sMTEpYRC5uXvi4smM+b5x2zh24WBJEiqS2lROS2gFta1jfNRJTc/Po3z2dow+O913JzrmWIJZG6seA1yT9M5y+Au/VtdFbXbST91cUc9MZQ5G8Yz7n3IGLpZH6t5I+Ak4NZ/3CzF5KbFiuvv6Tm08rwfljvGM+51zdxPIcxEDgTTN7MZxuJ2mAma1KdHCubio75jvxkEx6dU5LdjjOuSYqljaI/xAMFlSpPJznGqm3lxSyftseLvLGaedcPcSSIFqb2d7KifB1m8SF5OqrsmO+U7xjPudcPcSSIAolfTZYj6RzgE2JC8nVR9GOEl79ZANfGt3HO+ZzztVLLHcxXQU8JuluQARdeH8toVG5Ops+t4DScvPqJedcvcVyF9Ny4GhJHcLpHQmPytWJmTE1N49RWV28Yz7nXL3FUoJA0heAwwgG8QHAzG5PYFyuDj7K38qSDTv49Ze8GyvnXP3F0hfTfcDFwDUEVUwXAv0THJergydzgo75zhp1ULJDcc41A7G0Yh5rZl8DNpvZz4FjgEMSG5Y7ULv3lvPsR2uZNMI75nPOxUcsCWJ3+HuXpN5AKeCXqI3M8wvWsaOkjIu9cdo5FyextEE8F3b3/XtgDmDA3xMZlDtwU3PzGNA9nXEDvWM+51x8xHIX0y/Cl09Leg5IM7OtiQ3LHYhVm3bywUrvmM85F18x3cVUycxKgJIExeLqaGpunnfM55yLO3/UtokrK6/g6Tn5nDS0h3fM55yLq4QmCEkTJS2WtEzSzVGW3yVpXvizRNKWiGWXSVoa/lyWyDibsreXFrJhWwkXZXvpwTkXX7F09z0myuytwGozK6thuxTgHuA0IB/IkTTDzBZVrmNm10esfw0wOnzdDfgZkE3QKD473HZzTO+qBZmak0/39m04eZh3zOeci69YShB/A94HHiC4e2kWQXffiyWdXsN244BlZrYi7AH2CeCcGta/BHg8fH0G8IqZFYdJ4RVgYgyxtiibvGM+51wCxXJWWQuMNrNsMzuS4Cp/BUHJ4Hc1bNeHoGO/SvnhvP1I6g8MBF4/kG0lXSkpV1JuYWFhDG+leXlmbgFlFcbFY/3ZB+dc/MWSIA4xs4WVE2EV0TAzWxHHOCYDT5lZ+YFsZGYPhIkrOzMzM47hNH5mxpM5eYzu14UhPb1jPudc/MWSIBZKulfSieHP34BFktoSPFVdnQIg8tK2bzgvmsl8Xr10oNu2SPPytrB04w7v1ts5lzCxJIjLgWXA98KfFeG8UmBCDdvlAEMkDZTUhiAJzKi6kqRhQFeCto1KLwGnS+oqqStwejjPhabm5tEuNYWzRnqvJ865xIjlSerdwB/Cn6qqHRvCzMokXU1wYk8BHjKzhZJuB3LNrDJZTAaeMDOL2LZY0i8IkgzA7WZWHNM7agF27S3j2Y/WMWnEQXT0jvmccwkSy22u44HbCLr4/mx9Mzu4tm3N7Hng+Srzflpl+rZqtn0IeKi2Y7REzy9YH3TM543TzrkEiqWrjX8A1wOzgQNqRHaJMTUnj4EZ7Rk7oGuyQ3HONWOxJIitZvZCwiNxMVlRuIMPVxXzg4neMZ9zLrFiSRBvSPo9MI2IjvrMbE7ConJRlVcYf3ltqXfM55xrELEkiKPC39kR8ww4Of7huOqUlJVz/ZPzeH7Beq45eTA9O3nHfM65xIrlLqaabmV1DWD7nlK+/a/ZzFxexK2TDuVbJ9R6f4BzztVbtQlC0lfN7FFJN0RbbmZ/TFxYrlLh9hIu/+eHLF6/nT9eNIrzvGrJOddAaipBtA9/R+vHwaLMc3G2pmgXlz70ARu27eHvl2UzYWiPZIfknGtBqk0QZnZ/+PJVM3svcln4bIRLoIVrt3LZQzmUVVTw728dzZh+fkurc65hxdLVxl9jnOfiZNbyIibf/z6pKeKpq47x5OCcS4qa2iCOAY4FMqu0Q3Qi6DrDJcCLH6/j2sfn0a97Oo98fRy9u7RLdkjOuRaqpjaINkCHcJ3IdohtwAWJDKqleuyD1fzkmY8ZldWFhy4bS9f2bZIdknOuBaupDeIt4C1JU8xsNYCkVkAHM9vWUAG2BGbGX15bxl2vLmHC0Ezu+coY0tvE8oiKc84lTixtEL+R1ElSe+BjgrEgbkpwXC1GeYXx0/8u5K5Xl3DemD488LVsTw7OuUYhlgQxPCwxnAu8QDA06KWJDKqlKCkr59rH5/Kv91dz5QkHc+cFo0hN8bGlnXONQyyXqqmSUgkSxN1mVirJn4Oop8ino380aRhXnjAo2SE559w+YkkQ9wOrgI+AtyX1J2iodnVUuL2EK6Z8yCfrtvOHC0dx/pH+dLRzrvGJpS+mvwB/iZi1WpL3z1RHkU9HP/i1bCYM86ejnXONU60V3pJ6SvqHpBfC6eHAZQmPrBlauHYr5983ky27Snnsm0d7cnDONWqxtIhOIRhXunc4vQT4XoLiabYqn45u3Sp4OvrI/v50tHOucas2QUiqrH7KMLOpQAWAmZUR49CjkiZKWixpmaSbq1nnIkmLJC2U9O+I+eWS5oU/M2J+R43Qix+v47J/fkjPzmk8/X/HMqRntP4PnXOucampDeJDYAywU1J3wh5cJR0NbK1tx5JSgHuA04B8IEfSDDNbFLHOEOAWYLyZbZYUWeey28yOOMD30+j8+4M1/PiZBf50tHOuyakpQVQOeHwDMAMYJOk9IJPYutoYBywzsxUAkp4AzgEWRazzLeAeM9sMYGYbDyz8xsvM+Ovry/jjK0s4aWgmf/Ono51zTUxNZ6zITvqmA88TJI0S4FRgfi377gPkRUzn8/nwpZUOAQgTTwpwm5m9GC5Lk5QLlAF3mNkztRyvUXl+wXr++MoSzhvdh99eMNIfgHPONTk1JYgUgs76VGV+epyPPwQ4CehL8JzFCDPbAvQ3swJJBwOvS1pgZssjN5Z0JXAlQL9+/eIYVv09mZtHny7tuPPCUbRqVfUjdM65xq+mBLHOzG6vx74LgKyI6b7hvEj5wAdmVgqslLSEIGHkmFkBgJmtkPQmMBrYJ0GY2QPAAwDZ2dmN5unuDdv28O7SQr5z0mBPDs65Jqumeo/6ntlygCGSBkpqA0wmaMuI9AxB6QFJGQRVTiskdZXUNmL+ePZtu2jU/juvgAqDL43pk+xQnHOuzmoqQZxSnx2bWZmkqwmeoUgBHjKzhZJuB3LNbEa47HRJiwhunb3JzIokHQvcL6mCIIndEXn3U2M3bU4BR2R1YVBmh2SH4pxzdVbTeBDF9d25mT1P0LgdOe+nEa+N4C6pG6qsMxMYUd/jJ8Oitdv4dP12bj/nsGSH4pxz9eK31sTZtDn5pKaIs0b2rn1l55xrxDxBxFFZeQXPzFvLhKE96OYPxDnnmjhPEHH0zrJNbNpRwnljvPtu51zT5wkijqbNKaBLeioThmUmOxTnnKs3TxBxsm1PKS8vXM8XR/ambeuUZIfjnHP15gkiTl5csJ6SsgrO82cfnHPNhCeIOHl6Tj4DM9pzRFaXZIfinHNx4QkiDvKKd/HBymLOG90HybvWcM41D54g4uCZuUEXU+eO9uol51zz4QminsyMaXMLOGpgN7K6xbOjW+ecSy5PEPU0N28LKzft5Hx/9sE518x4gqin6XMKaNu6FWeO6JXsUJxzLq48QdRDSVk5z85fyxmH9aJjWmqyw3HOubjyBFEPb3xayJZdpT7ug3OuWfIEUQ/T5uST0aEtxw/OSHYozjkXd54g6qh4517eWLyRc4/oTesU/xidc82Pn9nq6Ln5ayktN++51TnXbHmCqKNpcwoY1qsjw3t3SnYozjmXEJ4g6mB54Q7m5W3xZx+cc82aJ4g6mD6ngFaCc47wYUWdc81XQhOEpImSFktaJunmata5SNIiSQsl/Tti/mWSloY/lyUyzgNRUWFMn1vA8UMy6dEpLdnhOOdcwrRO1I4lpQD3AKcB+UCOpBlmtihinSHALcB4M9ssqUc4vxvwMyAbMGB2uO3mRMUbqw9WFlOwZTc/mDg02aE451xCJbIEMQ5YZmYrzGwv8ARwTpV1vgXcU3niN7ON4fwzgFfMrDhc9gowMYGxxmzanHzat0nh9OHetYZzrnlLZILoA+RFTOeH8yIdAhwi6T1J70uaeADbIulKSbmScgsLC+MYenS795bzwsfrmTTiINq18WFFnXPNW7IbqVsDQ4CTgEuAv0vqEuvGZvaAmWWbWXZmZmZiIozw8qL17Cgp82cfnHMtQiITRAGQFTHdN5wXKR+YYWalZrYSWEKQMGLZtsFNm1NAny7tOGpgt2SH4pxzCZfIBJEDDJE0UFIbYDIwo8o6zxCUHpCUQVDltAJ4CThdUldJXYHTw3lJs3HbHt5ZWsiXRvehVSsfVtQ51/wl7C4mMyuTdDXBiT0FeMjMFkq6Hcg1sxl8nggWAeXATWZWBCDpFwRJBuB2MytOVKyx+O+8tVQY3nOrc67FkJklO4a4yM7Ottzc3ITtf+Kf3qZtagr//e74hB3DOecamqTZZpYdbVmyG6mbhEVrt/Hp+u2c76UH51wL4gkiBtPn5pOaIs4a6V1rOOdaDk8QtSgrr+CZeWuZMLQH3dq3SXY4zjnXYDxB1OLdZZso3F7izz4451ocTxC1mDangC7pqUwYlvgH8ZxzrjHxBFGD7XtKeWnher44sjdtW3vXGs65lsUTRA1e+Hg9JWUV/uyDc65F8gRRg2lz8hmY0Z7RWV2SHYpzzjU4TxDVyN+8i/dXFHPe6D5I3rWGc67l8QRRjWfmBn0Dnjvaq5eccy2TJ4gozIxpcwo4amA3srqlJzsc55xLCk8QUczL28KKTTs53599cM61YJ4gopg2p4C2rVtx5ggfVtQ513J5gqhib1kFz85fyxmH9aJjWmqyw3HOuaTxBFHFG4s3smVXqT/74Jxr8TxBVDFtTj4ZHdpy/OCMZIfinHNJ5Qkiwuade3n9042ce0RvWqf4R+Oca9n8LBjhuflrKS0377nVOefwBLGPp+cUMKxXR4b37pTsUJxzLukSmiAkTZS0WNIySTdHWX65pEJJ88Kfb0YsK4+YPyORcQKsKNzBvLwt/uyDc86FWidqx5JSgHuA04B8IEfSDDNbVGXVJ83s6ii72G1mRyQqvqqmzy2gleCcI3xYUeecg8SWIMYBy8xshZntBZ4Azkng8eqsoiLoWuO4IZn06JSW7HCcc65RSGSC6APkRUznh/OqOl/SfElPScqKmJ8mKVfS+5LOjXYASVeG6+QWFhbWOdAPVxVTsGU35/uzD84595lkN1I/Cwwws5HAK8DDEcv6m1k28GXgT5IGVd3YzB4ws2wzy87MrPuQoNPm5NO+TQqnD/euNZxzrlIiE0QBEFki6BvO+4yZFZlZSTj5IHBkxLKC8PcK4E1gdCKC3L23nOcXrGfSiINo18aHFXXOuUqJTBA5wBBJAyW1ASYD+9yNJOmgiMmzgU/C+V0ltQ1fZwDjgaqN23GxbU8pE4b14MLsrNpXds65FiRhdzGZWZmkq4GXgBTgITNbKOl2INfMZgDXSjobKAOKgcvDzQ8F7pdUQZDE7ohy91Nc9OyUxl8vSUjhxDnnmjSZWbJjiIvs7GzLzc1NdhjOOdekSJodtvfuJ9mN1M455xopTxDOOeei8gThnHMuKk8QzjnnovIE4ZxzLipPEM4556LyBOGccy6qZvMchKRCYHU9dpEBbIpTOInWlGKFphVvU4oVmla8TSlWaFrx1ifW/mYWtTO7ZpMg6ktSbnUPizQ2TSlWaFrxNqVYoWnF25RihaYVb6Ji9Som55xzUXmCcM45F5UniM89kOwADkBTihWaVrxNKVZoWvE2pVihacWbkFi9DcI551xUXoJwzjkXlScI55xzUbX4BCFpoqTFkpZJujnZ8dREUpakNyQtkrRQ0nXJjqk2klIkzZX0XLJjqY2kLpKekvSppE8kHZPsmKoj6frwO/CxpMclpSU7pkiSHpK0UdLHEfO6SXpF0tLwd9dkxlipmlh/H34P5kuaLqlLEkPcR7R4I5bdKMnCkTjrrUUnCEkpwD3AmcBw4BJJw5MbVY3KgBvNbDhwNPDdRh4vwHWEQ8k2AX8GXjSzYcAoGmnckvoA1wLZZnY4wYiNk5Mb1X6mABOrzLsZeM3MhgCvhdONwRT2j/UV4HAzGwksAW5p6KBqMIX940VSFnA6sCZeB2rRCQIYBywzsxVmthd4AjgnyTFVy8zWmdmc8PV2ghNYn+RGVT1JfYEvAA8mO5baSOoMnAD8A8DM9prZlqQGVbPWQDtJrYF0YG2S49mHmb1NMIxwpHOAh8PXDwPnNmRM1YkWq5m9bGZl4eT7QN8GD6wa1Xy2AHcBPwDidudRS08QfYC8iOl8GvEJN5KkAcBo4IMkh1KTPxF8YSuSHEcsBgKFwD/DKrEHJbVPdlDRmFkBcCfBleI6YKuZvZzcqGLS08zWha/XAz2TGcwB+DrwQrKDqImkc4ACM/sonvtt6QmiSZLUAXga+J6ZbUt2PNFIOgvYaGazkx1LjFoDY4B7zWw0sJPGUwWyj7Du/hyCpNYbaC/pq8mN6sBYcH99o7/HXtKtBFW7jyU7lupISgd+BPw03vtu6QmiAMiKmO4bzmu0JKUSJIfHzGxasuOpwXjgbEmrCKruTpb0aHJDqlE+kG9mlSWypwgSRmN0KrDSzArNrBSYBhyb5JhisUHSQQDh741JjqdGki4HzgK+Yo37gbFBBBcLH4X/b32BOZJ61XfHLT1B5ABDJA2U1IagoW9GkmOqliQR1JF/YmZ/THY8NTGzW8ysr5kNIPhcXzezRnuVa2brgTxJQ8NZpwCLkhhSTdYAR0tKD78Tp9BIG9SrmAFcFr6+DPhvEmOpkaSJBNWjZ5vZrmTHUxMzW2BmPcxsQPj/lg+MCb/T9dKiE0TYCHU18BLBP9hUM1uY3KhqNB64lOBqfF74MynZQTUj1wCPSZoPHAH8OrnhRBeWcp4C5gALCP6PG1W3EJIeB2YBQyXlS/oGcAdwmqSlBKWgO5IZY6VqYr0b6Ai8Ev6f3ZfUICNUE29ijtW4S07OOeeSpUWXIJxzzlXPE4RzzrmoPEE455yLyhOEc865qDxBOOeci8oThHNRSNoR/h4g6ctx3vePqkzPjOf+nYsXTxDO1WwAcEAJIuxAryb7JAgzawpPQbsWyBOEczW7Azg+fFjq+nB8i99LygnHCvg2gKSTJL0jaQbhE9iSnpE0Oxy34cpw3h0EvbDOk/RYOK+ytKJw3x9LWiDp4oh9vxkxVsVj4RPUziVUbVc6zrV0NwPfN7OzAMIT/VYzGyupLfCepMqeVMcQjCGwMpz+upkVS2oH5Eh62sxulnS1mR0R5VjnETzBPQrICLd5O1w2GjiMoFvv9wieqn833m/WuUhegnDuwJwOfE3SPIKu1rsDQ8JlH0YkB4BrJX1EMJ5AVsR61TkOeNzMys1sA/AWMDZi3/lmVgHMI6j6ci6hvATh3IERcI2ZvbTPTOkkgi7CI6dPBY4xs12S3gTqMyxoScTrcvx/1zUAL0E4V7PtBJ22VXoJ+L+w23UkHVLNwEKdgc1hchhGMERspdLK7at4B7g4bOfIJBjh7sO4vAvn6sCvQpyr2XygPKwqmkIwbvUAgv72RTAK3blRtnsRuErSJ8BigmqmSg8A8yXNMbOvRMyfDhwDfEQwmM4PzGx9mGCca3Dem6tzzrmovIrJOedcVJ4gnHPOReUJwjnnXFSeIJxzzkXlCcI551xUniCcc85F5QnCOedcVP8PgKHKVQZdnRsAAAAASUVORK5CYII=",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "# using MNIST\n",
    "\n",
    "# main parameters\n",
    "training_data_num = 500\n",
    "testing_data_num = 200\n",
    "qubit_num = 4\n",
    "\n",
    "# MNIST data with amplitude encoding, resized to 4*4\n",
    "train_dataset = MNIST(mode='train', encoding='amplitude_encoding', num_qubits=qubit_num, classes=[3, 6],\n",
    "                      data_num=training_data_num, need_cropping=True,\n",
    "                      downscaling_method='resize', target_dimension=16, return_state=True)\n",
    "\n",
    "val_dataset = MNIST(mode='test', encoding='amplitude_encoding', num_qubits=qubit_num, classes=[3, 6],\n",
    "                    data_num=testing_data_num, need_cropping=True,\n",
    "                    downscaling_method='resize', target_dimension=16,return_state=True)\n",
    "\n",
    "quantum_train_x, train_y = train_dataset.quantum_image_states, train_dataset.labels\n",
    "quantum_test_x, test_y = val_dataset.quantum_image_states, val_dataset.labels\n",
    "\n",
    "acc = QClassifier2(\n",
    "        quantum_train_x, # Training x\n",
    "        train_y,         # Training y\n",
    "        quantum_test_x,  # Testing x\n",
    "        test_y,          # Testing y\n",
    "        N = qubit_num,   # Number of qubits required\n",
    "        DEPTH = 3,       # Circuit depth\n",
    "        EPOCH = 5,       # Number of training epochs, the total iteration number \"EPOCH * (Ntrain / BATCH)\" is chosen to be about 200\n",
    "        LR = 0.1,        # Set the learning rate\n",
    "        BATCH = 40,      # Batch size during training\n",
    "      )\n",
    "\n",
    "plt.plot(acc)\n",
    "plt.title(\"Classify MNIST 3&6 using amplitude encoding\")\n",
    "plt.xlabel(\"Iteration\")\n",
    "plt.ylabel(\"Testing accuracy\")\n",
    "plt.show()"
   ]
  },
Q
Quleaf 已提交
1398 1399 1400 1401 1402 1403 1404 1405 1406
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "_______\n",
    "\n",
    "## References\n",
    "\n",
    "\n",
Q
Quleaf 已提交
1407 1408 1409 1410
    "[1] Mitarai, Kosuke, et al. Quantum circuit learning. [Physical Review A 98.3 (2018): 032309.](https://arxiv.org/abs/1803.00745)\n",
    "\n",
    "[2] Farhi, Edward, and Hartmut Neven. Classification with quantum neural networks on near term processors. [arXiv preprint arXiv:1802.06002 (2018).](https://arxiv.org/abs/1802.06002)\n",
    "\n",
Q
Quleaf 已提交
1411 1412 1413
    "[3] Schuld, Maria, et al. Circuit-centric quantum classifiers. [Physical Review A 101.3 (2020): 032308.](https://arxiv.org/abs/1804.00633)\n",
    "\n",
    "[4] Schuld, Maria. Supervised quantum machine learning models are kernel methods. [arXiv preprint arXiv:2101.11020 (2021).](https://arxiv.org/pdf/2101.11020)"
Q
Quleaf 已提交
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
Q
Quleaf 已提交
1433
   "version": "3.8.12"
Q
Quleaf 已提交
1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
  },
  "toc": {
   "base_numbering": 1,
   "nav_menu": {},
   "number_sections": true,
   "sideBar": true,
   "skip_h1_title": false,
   "title_cell": "Table of Contents",
   "title_sidebar": "Contents",
   "toc_cell": false,
   "toc_position": {},
   "toc_section_display": true,
   "toc_window_display": true
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}