提交 166e0cbd 编写于 作者: Q Quleaf

slight update

上级 a08df5ab
......@@ -5,8 +5,7 @@ English | [简体中文](README_CN.md)
- [Features](#features)
- [Install](#install)
- [Install PaddlePaddle](#install-paddlepaddle)
- [Download and install Paddle Quantum](#download-and-install-paddle-quantum)
- [Or use requirements.txt to install dependencies](#or-use-requirements-to-install-dependencies)
- [Install Paddle Quantum](#install-paddle-quantum)
- [Use OpenFermion to read .xyz molecule configuration file](#use-openfermion-to-read-xyz-molecule-configuration-file)
- [Run programs](#run-programs)
- [Introduction and developments](#introduction-and-developments)
......@@ -44,24 +43,23 @@ Paddle Quantum aims at establishing a bridge between artificial intelligence (AI
### Install PaddlePaddle
Please refer to [PaddlePaddle](https://www.paddlepaddle.org.cn/install/quick)'s official installation and configuration page. This project requires PaddlePaddle 1.8.5.
This dependency will be automatically satisfied when users install Paddle Quantum. Please refer to [PaddlePaddle](https://www.paddlepaddle.org.cn/install/quick)'s official installation and configuration page. This project requires PaddlePaddle 1.8.5.
### Download and install Paddle Quantum
### Install Paddle Quantum
We recommend the following way of installing Paddle Quantum with `pip`,
```bash
git clone http://github.com/PaddlePaddle/quantum
pip install paddle-quantum
```
or download all the files and finish the installation locally,
```bash
git clone http://github.com/PaddlePaddle/quantum
cd quantum
pip install -e .
```
### Or use requirements to install dependencies
```bash
python -m pip install --upgrade -r requirements.txt
```
### Use OpenFermion to read .xyz molecule configuration file
......@@ -89,7 +87,7 @@ python main.py
### Quick start
[Paddle Quantum Quick Start Manual]((https://github.com/PaddlePaddle/Quantum/tree/master/introduction)) is probably the best place to get started with Paddle Quantum. Currently, we support online reading and running the Jupyter Notebook locally. The manual includes the following contents:
[Paddle Quantum Quick Start Manual](https://github.com/PaddlePaddle/Quantum/tree/master/introduction) is probably the best place to get started with Paddle Quantum. Currently, we support online reading and running the Jupyter Notebook locally. The manual includes the following contents:
- Detailed installation tutorials for Paddle Quantum
- Introduction to the basics of quantum computing and QNN
......@@ -112,11 +110,11 @@ We provide tutorials covering combinatorial optimization, quantum chemistry, qua
9. [Gibbs State Preparation](https://github.com/PaddlePaddle/Quantum/blob/master/tutorial/Gibbs)
10. [Variational Quantum Singular Value Decomposition (VQSVD)](https://github.com/PaddlePaddle/Quantum/blob/master/tutorial/VQSVD)
In addition, Paddle Quantum supports QNN training on GPU. For users who want to get into more details, please check out the tutorial [Use Paddle Quantum on GPU](https://github.com/PaddlePaddle/Quantum/tree/master/tutorial/GPU).
In addition, Paddle Quantum supports QNN training on GPU. For users who want to get into more details, please check out the tutorial [Use Paddle Quantum on GPU](https://github.com/PaddlePaddle/Quantum/blob/master/introduction/PaddleQuantum_GPU_EN.ipynb).
### API documentation
For those who are looking for explanation on the python class and functions provided in Paddle Quantum, we refer to our API documentation page.
For those who are looking for explanation on the python class and functions provided in Paddle Quantum, we refer to our [API documentation page](https://qml.baidu.com/api/introduction.html).
> We, in particular, denote that the current docstring specified in source code **is written in simplified Chinese**, this will be updated in later versions.
......@@ -131,7 +129,7 @@ We also highly encourage developers to use Paddle Quantum as a research tool to
> @misc{Paddlequantum,
> title = {{Paddle Quantum}},
> year = {2020},
> url = {https://github.com/paddlepaddle/Quantum}, }
> url = {https://github.com/PaddlePaddle/Quantum}, }
So far, we have done several projects with the help of Paddle Quantum as a powerful QML development platform.
......@@ -169,9 +167,9 @@ Paddle Quantum uses [Apache-2.0 license](LICENSE).
## References
[1] [Quantum Computing - Wikipedia](https://en.wikipedia.org/wiki/Quantum_computing.)
[1] [Quantum Computing - Wikipedia](https://en.wikipedia.org/wiki/Quantum_computing)
[2] Nielsen, M. A. & Chuang, I. L. Quantum computation and quantum information. (Cambridge university press, 2010).
[2] Nielsen, M. A. & Chuang, I. L. Quantum computation and quantum information. (2010).
[3] Phillip Kaye, Laflamme, R. & Mosca, M. An Introduction to Quantum Computing. (2007).
......
......@@ -5,8 +5,7 @@
- [特色](#特色)
- [安装步骤](#安装步骤)
- [安装 PaddlePaddle](#安装-paddlepaddle)
- [下载 Paddle Quantum 并安装](#下载-paddle-quantum-并安装)
- [或使用 requirements.txt 安装依赖包](#或使用-requirementstxt-安装依赖包)
- [安装 Paddle Quantum](#安装-paddle-quantum)
- [使用 openfermion 读取 xyz 描述文件](#使用-openfermion-读取-xyz-描述文件)
- [运行](#运行)
- [入门与开发](#入门与开发)
......@@ -44,24 +43,23 @@ Paddle Quantum(量桨)是基于百度飞桨开发的量子机器学习工具
### 安装 PaddlePaddle
请参考 [PaddlePaddle](https://www.paddlepaddle.org.cn/install/quick) 安装配置页面。此项目需求 PaddlePaddle 1.8.5。
当用户安装 Paddle Quantum 时会自动下载安装这个关键依赖包。关于 PaddlePaddle 更全面的安装信息请参考 [PaddlePaddle](https://www.paddlepaddle.org.cn/install/quick) 安装配置页面。此项目需求 PaddlePaddle 1.8.5。
### 下载 Paddle Quantum 并安装
### 安装 Paddle Quantum
我们推荐通过 `pip` 完成安装,
```bash
git clone http://github.com/PaddlePaddle/quantum
pip install paddle-quantum
```
用户也可以选择下载全部文件后进行本地安装,
```bash
git clone http://github.com/PaddlePaddle/quantum
cd quantum
pip install -e .
```
### 或使用 requirements.txt 安装依赖包
```bash
python -m pip install --upgrade -r requirements.txt
```
### 使用 openfermion 读取 xyz 描述文件
......@@ -118,11 +116,11 @@ Paddle Quantum(量桨)建立起了人工智能与量子计算的桥梁,为
- [吉布斯态的制备 (Gibbs State Preparation)](./tutorial/Gibbs)
- [变分量子奇异值分解 (VQSVD)](./tutorial/VQSVD)
此外,Paddle Quantum 也支持在 GPU 上进行量子机器学习的训练,具体的方法请参考案例:[在 GPU 上使用 Paddle Quantum](./tutorial/GPU)
此外,Paddle Quantum 也支持在 GPU 上进行量子机器学习的训练,具体的方法请参考案例:[在 GPU 上使用 Paddle Quantum](./introduction/PaddleQuantum_GPU_CN.ipynb)
### API 文档
我们为 Paddle Quantum 提供了独立的 [API 文档页面](https://paddle-quantum.readthedocs.io/zh_CN/latest/),包含了供用户使用的所有函数和类的详细说明与用法。
我们为 Paddle Quantum 提供了独立的 [API 文档页面](https://qml.baidu.com/api/introduction.html),包含了供用户使用的所有函数和类的详细说明与用法。
### 开发
......@@ -177,7 +175,7 @@ Paddle Quantum 使用 [Apache-2.0 license](LICENSE) 许可证。
[1] [量子计算 - 百度百科](https://baike.baidu.com/item/%E9%87%8F%E5%AD%90%E8%AE%A1%E7%AE%97/11035661)
[2] Nielsen, M. A. & Chuang, I. L. Quantum computation and quantum information. (Cambridge university press, 2010).
[2] Nielsen, M. A. & Chuang, I. L. Quantum computation and quantum information. (2010).
[3] Phillip Kaye, Laflamme, R. & Mosca, M. An Introduction to Quantum Computing. (2007).
......
......@@ -1174,7 +1174,7 @@
"在这一节,我们学习如何用飞桨动态图机制找到一个多元函数的极小值\n",
"\n",
"$$\n",
"\\min_{\\boldsymbol{\\theta}}\\mathcal{L}(\\theta_1, \\theta_2, \\theta_3)\n",
"\\mathcal{L}(\\theta_1, \\theta_2, \\theta_3)\n",
"= (\\theta_1)^2 + (\\theta_2)^2 + (\\theta_3)^2 + 10 \\tag{25}\n",
"$$\n",
"\n",
......@@ -1293,7 +1293,7 @@
"然后,我们定义损失函数为:\n",
"\n",
"$$\n",
"\\min_{\\boldsymbol{\\theta}}\\mathcal{L}(\\theta_1, \\theta_2, \\theta_3) \n",
"\\mathcal{L}(\\theta_1, \\theta_2, \\theta_3) \n",
"= \\langle{\\phi} \\lvert H \\lvert {\\phi}\\rangle \n",
"= \\langle{0} \\lvert U^{\\dagger}H U \\lvert {0}\\rangle. \\tag{29}\n",
"$$\n",
......@@ -1737,7 +1737,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.10"
"version": "3.7.8"
},
"toc": {
"base_numbering": 1,
......
......@@ -965,7 +965,7 @@
"In this section, we will learn how to use the PaddlePaddle dynamic computational graph to find the minimum value of a multivariable function, for example,\n",
"\n",
"$$\n",
"\\min_{\\boldsymbol{\\theta}}\\mathcal{L}(\\theta_1, \\theta_2, \\theta_3)\n",
"\\mathcal{L}(\\theta_1, \\theta_2, \\theta_3)\n",
"= (\\theta_1)^2 + (\\theta_2)^2 + (\\theta_3)^2 + 10.\n",
"\\tag{25}\n",
"$$\n",
......@@ -1095,7 +1095,7 @@
"Then, we define the loss function as\n",
"\n",
"$$\n",
"\\min_{\\boldsymbol{\\theta}}\\mathcal{L}(\\theta_1, \\theta_2, \\theta_3)\n",
"\\mathcal{L}(\\theta_1, \\theta_2, \\theta_3)\n",
"= \\langle\\phi| H |\\phi\\rangle\n",
"= \\langle0| U^{\\dagger}H U |0\\rangle.\n",
"\\tag{29}\n",
......@@ -1503,7 +1503,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.10"
"version": "3.7.8"
},
"toc": {
"base_numbering": 1,
......
......@@ -4577,7 +4577,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.10"
"version": "3.7.8"
},
"toc": {
"base_numbering": 1,
......
......@@ -4536,9 +4536,12 @@
"\n",
"## References\n",
"\n",
"[1] Mitarai, K., Negoro, M., Kitagawa, M. & Fujii, K. Quantum circuit learning. [Phys. Rev. A 98, 032309 (2018).](https://arxiv.org/abs/1803.00745)\n",
"\n",
"[2] Schuld, M., Bocharov, A., Svore, K. M. & Wiebe, N. Circuit-centric quantum classifiers. [Phys. Rev. A 101, 032308 (2020).](https://arxiv.org/abs/1804.00633)"
"[1] Mitarai, Kosuke, et al. Quantum circuit learning. [Physical Review A 98.3 (2018): 032309.](https://arxiv.org/abs/1803.00745)\n",
"\n",
"[2] Farhi, Edward, and Hartmut Neven. Classification with quantum neural networks on near term processors. [arXiv preprint arXiv:1802.06002 (2018).](https://arxiv.org/abs/1802.06002)\n",
"\n",
"[3] [Schuld, Maria, et al. Circuit-centric quantum classifiers. [Physical Review A 101.3 (2020): 032308.](https://arxiv.org/abs/1804.00633)\n"
]
}
],
......@@ -4558,7 +4561,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.10"
"version": "3.7.8"
},
"toc": {
"base_numbering": 1,
......
......@@ -413,7 +413,7 @@
"source": [
"### 配置训练模型 - 模型参数\n",
"\n",
"在进行量子神经网络的训练之前,我们还需要进行一些训练的超参数设置,主要是学习速率 (LR, learning rate)、迭代次数(ITR, iteration)和量子神经网络计算模块的深度 (D, Depth)。这里我们设定学习速率为0.5, 迭代次数为50次。读者不妨自行调整来直观感受下超参数调整对训练效果的影响。"
"在进行量子神经网络的训练之前,我们还需要进行一些训练的超参数设置,主要是学习速率(LR, learning rate)、迭代次数(ITR, iteration)和量子神经网络计算模块的深度(D, Depth)。这里我们设定学习速率为 0.5, 迭代次数为 50 次。读者不妨自行调整来直观感受下超参数调整对训练效果的影响。"
]
},
{
......@@ -1903,7 +1903,7 @@
"\n",
"## 参考文献\n",
"\n",
"[1] Cao, Yudong, et al. Quantum chemistry in the age of quantum computing. [Chemical reviews 119.19 (2019): 10856-10915.](https://pubs.acs.org/doi/10.1021/acs.chemrev.8b00803)\n",
"[1] Cao, Yudong, et al. Quantum Chemistry in the Age of Quantum Computing. [Chemical reviews 119.19 (2019): 10856-10915.](https://pubs.acs.org/doi/10.1021/acs.chemrev.8b00803)\n",
"\n",
"[2] McArdle, Sam, et al. Quantum computational chemistry. [Reviews of Modern Physics 92.1 (2020): 015003.](https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.92.015003)\n",
"\n",
......@@ -1938,7 +1938,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.3"
"version": "3.7.8"
},
"toc": {
"base_numbering": 1,
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册