QClassifier_EN.ipynb 79.7 KB
Notebook
Newer Older
Q
Quleaf 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Quantum Classifier\n",
    "\n",
    "<em> Copyright (c) 2021 Institute for Quantum Computing, Baidu Inc. All Rights Reserved. </em>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Overview\n",
    "\n",
    "In this tutorial, we will discuss the workflow of Variational Quantum Classifiers (VQC) and how to use quantum neural networks (QNN) to accomplish a **binary classification** task. The main representatives of this approach include the [Quantum Circuit Learning (QCL)](https://arxiv.org/abs/1803.00745) [1] by Mitarai et al. (2018), Farhi & Neven ( 2018) [2] and [Circuit-Centric Quantum Classifiers](https://arxiv.org/abs/1804.00633) [3] by Schuld et al. (2018). Here, we mainly talk about classification in the language of supervised learning. Unlike classical methods, quantum classifiers require pre-processing to encode classical data into quantum data, and then train the parameters in the quantum neural network. Finally, we benchmark the optimal classification performance through test data.\n",
    "\n",
    "### Background\n",
    "\n",
Q
Quleaf 已提交
22
    "In the language of supervised learning, we need to enter a data set composed of $N$ pairs of labeled data points $D = \\{(x^k,y^k)\\}_{k=1}^{N}$ , Where $x^k\\in \\mathbb{R}^{m}$ is the data point, and $y^k \\in\\{0,1\\}$ is the label associated with the data point $x^k$. **The classification process is essentially a decision-making process, which determines the label attribution of a given data point**. For the quantum classifier framework, the realization of the classifier $\\mathcal{F}$ is a combination of a quantum neural network (or parameterized quantum circuit) with parameters $\\theta$, measurement, and data processing. An excellent classifier $\\mathcal{F}_\\theta$ should correctly map the data points in each data set to the corresponding labels as accurate as possible $\\mathcal{F}_\\theta(x^k ) \\rightarrow y^k$. Therefore, we use the cumulative distance between the predicted label $\\tilde{y}^{k} = \\mathcal{F}_\\theta(x^k)$ and the actual label $y^k$ as the loss function $\\mathcal {L}(\\theta)$ to be optimized. For binary classification tasks, we can choose the following loss function,\n",
Q
Quleaf 已提交
23 24
    "\n",
    "$$\n",
Q
Quleaf 已提交
25
    "\\mathcal{L}(\\theta) = \\sum_{k=1}^N 1/N \\cdot |\\tilde{y}^{k}-y^k|^2. \\tag{1}\n",
Q
Quleaf 已提交
26 27 28 29 30 31
    "$$\n",
    "\n",
    "### Pipeline\n",
    "\n",
    "Here we give the whole pipeline to implement a quantum classifier under the framework of quantum circuit learning (QCL).\n",
    "\n",
Q
Quleaf 已提交
32 33 34 35 36 37
    "1. Encode the classical data $x^k$ to quantum data $\\lvert \\psi_{\\rm in}\\rangle^k$. In this tutorial, we use Angle Encoding, see [encoding methods](./DataEncoding_EN.ipynb) for details. Readers can also try other encoding methods, e.g., Amplitude Encoding, and see the performance.\n",
    "2. Construct the parameterized quantum circuit (PQC), corresponds to the unitary gate $U(\\theta)$.\n",
    "3. Apply the parameterized circuit $U(\\theta)$ with the parameter $\\theta$ on input states $\\lvert \\psi_{\\rm in} \\rangle^k$, thereby obtaining the output state $\\lvert \\psi_{\\rm out} \\rangle^k = U(\\theta)\\lvert \\psi_{\\rm in} \\rangle^k$.\n",
    "4. Measure the quantum state $\\lvert \\psi_{\\rm out}\\rangle^k$ processed by the quantum neural network to get the estimated label $\\tilde{y}^{k}$.\n",
    "5. Repeat steps 3-4 until all data points in the data set have been processed. Then calculate the loss function $\\mathcal{L}(\\theta)$.\n",
    "6. Continuously adjust the parameter $\\theta$ through optimization methods such as gradient descent to minimize the loss function. Record the optimal parameters after optimization $\\theta^* $, and then we obtain the optimal classifier $\\mathcal{F}_{\\theta^*}$.\n",
Q
Quleaf 已提交
38
    "\n",
Q
Quleaf 已提交
39 40
    "<img src=\"./figures/qclassifier-fig-pipeline.png\" width=\"700px\" /> \n",
    "<center> Figure 1: Flow chart of quantum classifier training </center>"
Q
Quleaf 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Paddle Quantum Implementation\n",
    "\n",
    "Here, we first import the required packages:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
Q
Quleaf 已提交
55
   "metadata": {},
Q
Quleaf 已提交
56 57
   "outputs": [],
   "source": [
Q
Quleaf 已提交
58
    "# Import numpy and paddle\n",
Q
Quleaf 已提交
59
    "import numpy as np\n",
Q
Quleaf 已提交
60
    "import paddle\n",
Q
Quleaf 已提交
61
    "\n",
Q
Quleaf 已提交
62
    "# To construct quantum circuit\n",
Q
Quleaf 已提交
63
    "from paddle_quantum.circuit import UAnsatz\n",
Q
Quleaf 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
    "# Some functions\n",
    "from numpy import pi as PI\n",
    "from paddle import matmul, transpose  # paddle matrix multiplication and transpose\n",
    "from paddle_quantum.utils import pauli_str_to_matrix,dagger  # N qubits Pauli matrix, complex conjugate\n",
    "\n",
    "# Plot figures, calculate the run time\n",
    "from matplotlib import pyplot as plt\n",
    "import time"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Parameters used for classification"
Q
Quleaf 已提交
79 80 81 82 83
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
Q
Quleaf 已提交
84
   "metadata": {},
Q
Quleaf 已提交
85 86
   "outputs": [],
   "source": [
Q
Quleaf 已提交
87 88 89 90 91 92 93 94 95 96 97
    "Ntrain = 200    # Specify the training set size\n",
    "Ntest = 100     # Specify the test set size\n",
    "gap = 0.5       # Set the width of the decision boundary\n",
    "N = 4           # Number of qubits required\n",
    "DEPTH = 1       # Circuit depth\n",
    "BATCH = 20      # Batch size during training\n",
    "EPOCH = int(200 * BATCH / Ntrain)\n",
    "                # Number of training epochs, the total iteration number \"EPOCH * (Ntrain / BATCH)\" is chosen to be about 200\n",
    "LR = 0.01       # Set the learning rate\n",
    "seed_paras = 19 # Set random seed to initialize various parameters\n",
    "seed_data = 2   # Fixed random seed required to generate the data set\n"
Q
Quleaf 已提交
98 99 100 101 102 103 104 105
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Data set generation\n",
    "\n",
Q
Quleaf 已提交
106
    "One of the key parts in supervised learning is what data set to use? In this tutorial, we follow the exact approach introduced in QCL paper to generate a simple binary data set $\\{(x^{k}, y^{k})\\}$ with circular decision boundary, where the data point $x^{k}\\in \\mathbb{R}^{2}$, and the label $y^{k} \\in \\{0,1\\}$. The figure below provides us a concrete example.\n",
Q
Quleaf 已提交
107
    "\n",
Q
Quleaf 已提交
108 109
    "<img src=\"./figures/qclassifier-fig-data.png\" width=\"400px\" /> \n",
    "<center> Figure 2: Generated data set and the corresponding decision boundary </center>\n",
Q
Quleaf 已提交
110 111 112 113
    "\n",
    "For the generation method and visualization, please see the following code:"
   ]
  },
Q
Quleaf 已提交
114 115 116 117 118 119 120
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Generate a binary classification data set"
   ]
  },
Q
Quleaf 已提交
121 122 123 124 125
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {
    "ExecuteTime": {
Q
Quleaf 已提交
126 127
     "end_time": "2021-03-09T04:03:35.707224Z",
     "start_time": "2021-03-09T04:03:35.691351Z"
Q
Quleaf 已提交
128 129 130 131 132 133 134 135 136 137 138 139 140 141
    }
   },
   "outputs": [],
   "source": [
    "# Generate a binary classification data set with circular decision boundary\n",
    "def circle_data_point_generator(Ntrain, Ntest, boundary_gap, seed_data):\n",
    "    \"\"\"\n",
    "    :param Ntrain: number of training samples\n",
    "    :param Ntest: number of test samples\n",
    "    :param boundary_gap: value in (0, 0.5), means the gap between two labels\n",
    "    :param seed_data: random seed\n",
    "    :return: 'Ntrain' samples for training and\n",
    "             'Ntest' samples for testing\n",
    "    \"\"\"\n",
Q
Quleaf 已提交
142 143
    "    # Generate \"Ntrain + Ntest\" pairs of data, x for 2-dim data points, y for labels.\n",
    "    # The first \"Ntrain\" pairs are used as training set, the last \"Ntest\" pairs are used as testing set\n",
Q
Quleaf 已提交
144 145
    "    train_x, train_y = [], []\n",
    "    num_samples, seed_para = 0, 0\n",
Q
Quleaf 已提交
146
    "    while num_samples < Ntrain + Ntest:\n",
Q
Quleaf 已提交
147
    "        np.random.seed((seed_data + 10) * 1000 + seed_para + num_samples)\n",
Q
Quleaf 已提交
148
    "        data_point = np.random.rand(2) * 2 - 1  # 2-dim vector in range [-1, 1]\n",
Q
Quleaf 已提交
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
    "\n",
    "        # If the modulus of the data point is less than (0.7 - gap), mark it as 0\n",
    "        if np.linalg.norm(data_point) < 0.7-boundary_gap / 2:\n",
    "            train_x.append(data_point)\n",
    "            train_y.append(0.)\n",
    "            num_samples += 1\n",
    "\n",
    "        # If the modulus of the data point is greater than (0.7 + gap), mark it as 1\n",
    "        elif np.linalg.norm(data_point) > 0.7 + boundary_gap / 2:\n",
    "            train_x.append(data_point)\n",
    "            train_y.append(1.)\n",
    "            num_samples += 1\n",
    "        else:\n",
    "            seed_para += 1\n",
    "\n",
    "    train_x = np.array(train_x).astype(\"float64\")\n",
    "    train_y = np.array([train_y]).astype(\"float64\").T\n",
    "\n",
    "    print(\"The dimensions of the training set x {} and y {}\".format(np.shape(train_x[0:Ntrain]), np.shape(train_y[0:Ntrain])))\n",
    "    print(\"The dimensions of the test set x {} and y {}\".format(np.shape(train_x[Ntrain:]), np.shape(train_y[Ntrain:])), \"\\n\")\n",
    "\n",
Q
Quleaf 已提交
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
    "    return train_x[0:Ntrain], train_y[0:Ntrain], train_x[Ntrain:], train_y[Ntrain:]\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Visualize the generated data set"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [],
   "source": [
Q
Quleaf 已提交
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
    "def data_point_plot(data, label):\n",
    "    \"\"\"\n",
    "    :param data: shape [M, 2], means M 2-D data points\n",
    "    :param label: value 0 or 1\n",
    "    :return: plot these data points\n",
    "    \"\"\"\n",
    "    dim_samples, dim_useless = np.shape(data)\n",
    "    plt.figure(1)\n",
    "    for i in range(dim_samples):\n",
    "        if label[i] == 0:\n",
    "            plt.plot(data[i][0], data[i][1], color=\"r\", marker=\"o\")\n",
    "        elif label[i] == 1:\n",
    "            plt.plot(data[i][0], data[i][1], color=\"b\", marker=\"o\")\n",
    "    plt.show()"
   ]
  },
Q
Quleaf 已提交
202 203 204 205 206 207 208
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "In this tutorial, we use a training set with 200 elements, a testing set with 100 elements. The boundary gap is 0.5."
   ]
  },
Q
Quleaf 已提交
209 210
  {
   "cell_type": "code",
Q
Quleaf 已提交
211
   "execution_count": 5,
Q
Quleaf 已提交
212 213
   "metadata": {
    "ExecuteTime": {
Q
Quleaf 已提交
214 215
     "end_time": "2021-03-09T04:03:37.244233Z",
     "start_time": "2021-03-09T04:03:35.719425Z"
Q
Quleaf 已提交
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The dimensions of the training set x (200, 2) and y (200, 1)\n",
      "The dimensions of the test set x (100, 2) and y (100, 1) \n",
      "\n",
      "Visualization of 200 data points in the training set: \n"
     ]
    },
    {
     "data": {
Q
Quleaf 已提交
231
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAD4CAYAAADhNOGaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAApn0lEQVR4nO2df6xexXnnP4+vYydu1Ma89mYdwNeQZZuQ3QrCVZSkUpqkJCHuClOVtiSG3qRUXm6b7kpRqxhZ6kZsrdL+Q6gSRCxKcLlXCQlVFLclYoGEXWk3kFx2AfNDxsYJYErCxQ6RIigJZvaPc974+PX5/XPOe74fafSeM+fX886ZM8/MPM/MmHMOIYQQw2VV1wIIIYToFikCIYQYOFIEQggxcKQIhBBi4EgRCCHEwFndtQBl2LBhg9uyZUvXYgghRK944IEHXnDObZyM76Ui2LJlC8vLy12LIYQQvcLMnoqLV9eQEEIMHCkCIYQYOFIEQggxcKQIhBBi4EgRCCHEwKlFEZjZzWb2vJk9knDczOxvzeyQmT1sZu+MHJs3s4NhmK9DHiHKsLQEW7bAqlXB79JS1xL5ic/p5JNsPsmSiXOucgDeB7wTeCTh+Fbgm4AB7wbuD+NPAw6Hv+vD7fVZz7vgggtcn1lcdG521jmz4HdxsWuJxOKic+vWOQcnwrp1ejeTNJVOdXwTPr1Dn2SJAiy7uDI6LrJMALakKIIvAh+L7B8ANgEfA76YdF5S6LMiiMsgZs4tLHQtWbP4rvxmZ09+J+MwO9u1ZH7RRDrVVWj69A59kiVKkiJoy0ZwOvBMZP9IGJcUfwpmtsPMls1seWVlpTFBm2bXLnjppZPjnIMbb6y/6ehL03RpCXbsgKeeCv7rU08F+z41lZ9+ulj8UHkqdjhStXSK+yZeeimIL4JP79AnWfLQG2Oxc26Pc27OOTe3ceMpI6R7Q9KH5FzxjJ+GT4VvXR96k2zeXCy+SXxR4JMsLYFZ/LEy6TT+n3UpF5/eoU+y5KEtRfAscGZk/4wwLil+akn6kKDe2oJPhW8fake7d8O6dSfHrVsXxLeJTwp8kl27ApkmMSueTtH/mUTRQrPKO6yifOOu9SU/5Sauv6hMIN1G8FucbCz+rjthLP4+gaF4fbh9Wtaz6rARdNVnHddvGNd/WFU+s/hnmNX4Z3Lia3/pJD7YMZpMq6byFBSXJel/VjWsLi46NxqduM9olH2fKjaKtGt9yE+T0KSxGPgy8Bzwc4J+/iuBq4CrwuMGfAF4EtgPzEWu/UPgUBg+med5VRVBlxb9tMw/fn4d8vlU+PrqQeEjTSlw3/JUmlKpUmiW+Z9V/pdP31keGlUEbYeqiiDp5c3MNK+9o7WVaPilX8qWr0jm6qrwTaoF+Vg78pGmChbf8pRP/zOP8k3Kv1Wu7QIpgghptZGmC83FRefWrDn5WWvWnPysumqFbWdA1fyr01Qa+panfPqfWcojTdYq13aBFEGErP7Jppt3WR9T35qbY/oqt280ocB9fDe+/M+swjrtnlWu7QIpgghxL6+O2lJd+FaLyItPBmpxMnXnKR+6O+JkKPs/0/5PVr6ucm3bSBFMsLgY2AS6aBHkla/rD60ovtV+xMn43q1Tlwx1fzvTZEyWIoghy1bQh8LXJ3woIETz+FC4tSlDU+6lXSBFEEOarWA0quURXtFGK6OPLRlRDB+6O9qWoUq+9umbkCKIIc6DB5x73eumrwDzrWYi+svQWgRJ+FTA5yVJEfRmrqEm2L4dbr4ZRqMTcaMRfOlLwbFpwqcpJ0S/8WH6hK5l8HkqkDJYoCT6xdzcnFteXu5ajF6xalWQYScxg9dea18e0W+WloJKxNNPB3MC7d7dfuWpSxmSJsubnYUf/KAdGcpgZg845+ZOiZciGAZ9zbhC+EhfK1ZJimDQXUNp+DoVcFm6bkoLMU1UmWbax7JFiiCGNvr/imSGOjLO9u2wZ0/QAjALfvfsmT5biBBtULZi5a1tIc6C7HtoeqnKpj0SinjwyNtHiPop4/Ezec3CQvF7dO3thNxH89O0j3KRzNB1xhFi2shTuYor9OuokHU9BiNJEchYHEPThtUihqa+GqWE8JWs73vcfRN1tzaL/w6LlgldO200aiw2s4vM7ICZHTKznTHHrzOzB8PwhJm9GDl2PHJsXx3yVKVpw2oRQ1NZo5SPBikhmqJIfs9aOjVuzE1SfbnocqveOm3ENROKBGCGYOWxs4E1wEPAuSnn/ylwc2T/p0Wf2XTXkHPNjhps2kYgu4IYEkXze1Z3a571Sqp00XY5IpmmbATAe4A7I/tXA1ennP9/gA9F9r1UBE1TJDMUzTiyK4ghUTS/l11DYFJB9LFy1aQiuBS4KbJ/BfD5hHNnCdY2nonEvQosA/cBl+R55jQogibp2iAlRJuUye9plaskRTH2EoITU9j3ZY6hMUmKoO1xBJcBtzvnjkfiZl1gvPg48Dkze2vchWa2w8yWzWx5ZWWlDVl7S5XBLkL0jTL5ffv2wDj72mvBb3Q8TdKYmxtuONHHfzwswbwZB1CROhTBs8CZkf0zwrg4LgO+HI1wzj0b/h4G7gXOj7vQObfHOTfnnJvbuHFjVZmngiQDmbcGKSEaoIn8nqQoyk7e2PYA0sLENROKBGA1cBg4ixPG4nfEnPc24AeE8xuFceuBteH2BuAgKYbmcVDXUHY/Zx+nyBWiLHXk9zz3KNsN5csAUpocUAZsBZ4g8B7aFcZdA1wcOeezwLUT170X2B8qj/3AlXmeJ0UQLJwjg7AQyRR1yMhTAJdxxPBpAGmjiqDtMHRFsLgYn1lkEBYioG6X0rL3dS5/K6KN7zpJEWjSuRR8HZSV1h8pg7AQxfvy0waZRcuBXbtgfr7Y5I15jNnj0cxF71EbcdrB99DWgDJfB2WlDXjxQT4huqZoX35Si2A0ql4OxJUla9YE9x53WyV19bZlI1CLIAGfl3ZMqh2MRppWWggo7lKa5HkE1cuBSXfU0Sgo4o8eDX6feirYTqKN6eKlCBLImo+kS5Iy7fXXdyOPEL5R1KU0aezAsWPx5xctB6LuqG98I/z85/mum51tp3InRZBAWo2ia9uBFpkRIp0y30jc2IEmBmfmVSKtjv2J6y/yPXRpI6hrXnIhhP80YStMs0fEubvWOSYI2QiKkVSjuOMOf20HQoh6aaL1nda1G22RAGzYAJdf3vzSllIEMYy7fq64Iti/9dYTTUWfbQdCiPpJm5eoTDdxknKBE/fasAE++cl4I3ITFU8pggmyFpfWhG5CCKi2EP2kcoGT73X0aLpBue6K5yAVQZoWz3IbrWuCq64NzkKIatTpYh53rzRqr3jGGQ58D1WMxVnGnzwDUaoab3werCaEyEed634UWRWtSlmBFq8PyFo8uo3FpbtewFoIUZ06v+Oke00yGgVG5bLG6kYXr+8TWcbeNubyl8FZiP5TZ1kRd681a4KCf2xQXlyEF15oZrzQ4BRBlrG3jcFaMjgL0X/qLCvi7nXzzUHBH+etVDtx/UW+hyZtBHWSZEuQjUCIYeDbAlFoPYITtPFytIKYEMPGxwpfo4oAuAg4ABwCdsYc/wSwAjwYhj+KHJsnWKLyIDCf53l9WJim6ZWGhBB+U6QMaKtimKQIVlftWjKzGeALwIeAI8D3zGyfc+6xiVNvc859auLa04D/BswBDnggvPbHVeXqGhmEhRg2ecuA8cC08TiC8cA0aG8iyTqMxe8CDjnnDjvnfgZ8BdiW89qPAHc5546Fhf9dBK2L3iODsBDDJm8ZkDUwrY3Bp3UogtOBZyL7R8K4SX7HzB42s9vN7MyC12JmO8xs2cyWV1ZWahC7WdpwQxVC+EveMiBrmcyy01gUoS330X8Etjjnfo2g1r+36A2cc3ucc3POubmNGzfWLmDdaM0AIYbN9u3B+sYzM8H+zEywP1kGpLUc2lopsQ5F8CxwZmT/jDDuFzjnjjrnXgl3bwIuyHttn0mbtVAIMd0sLcHevXD8eLB//HiwP1mbT2s5tGVrrEMRfA84x8zOMrM1wGXAvugJZrYpsnsx8Hi4fSfwYTNbb2brgQ+HcUII0Wvy1ubTeg/asjVW9hpyzr1qZp8iKMBngJudc4+a2TUErkr7gP9iZhcDrwLHCNxJcc4dM7P/TqBMAK5xziWsEiqEEP0hae6guPjt2+N7DHbvPtmjCJqxNQ5u0jkhhGiD1atPdAtFmZmBV1/Nf5+lpaAV8fTTQUtg9+76J52r3CIQQghxKnFKIC0+iaTWQp0MbtI5IYRog9nZYvFdIkUghBAN0KexRFIEYrqpa1im1hYVBenTWCIpghj0zU8JdQ3LbGt4p5g6+jKWSF5DE0xOAAVBc85XTS5SqGstQa0tKqYELVWZk7aGdIsWKDIsM60ZqKlkxZQjRTCBvnkPKdtXl3dYZlbXj6aSFVOOFMEE+uY9o0r/fF63jaxmYJ/cP4QogRTBBPrmPaNKX11et42sZmDd7h/yRhAZtJ5F4pYt8z00vVSl1hP2CLP49f7M6ntGm+uK+riQrfCKJrMICUtVqkUQQ19cvgZBHX11WdWrss3AMtU2eSOIDDrJInHawffQh8XrRU1UrR7lvT6pGZgWX0auNlo4otc0mUVIaBF0XqiXCVIEA6NKX12Vbp+0wr7sfdvshhK9pMkskqQI1DUk/CGpq6VKX10Vf+C0NnrZ+8obQWTQRRaRIhB+0NQ0DlVsDGmFfdn79mkCGtEJnWSRuGZC0QBcBBwADgE7Y45/GngMeBi4B5iNHDsOPBiGfXmep66hKaSp9nAVG0OaTPL+ET2EprqGzGwG+ALwUeBc4GNmdu7Eaf8PmHPO/RpwO/A3kWMvO+fOC8PFVeURPaWpId1VqldpbfS0+9bhBK6xBqJN4rRDkQC8B7gzsn81cHXK+ecD/zuy/9Oiz1SLYArxwYgaZ5Quaqiuo6Wg1oZoCBo0Fp8OPBPZPxLGJXEl8M3I/uvNbNnM7jOzS5IuMrMd4XnLKysrlQQWHtK1ETXJRgHFDNV1OIHX6UiuloXIQ5x2KBKAS4GbIvtXAJ9POPdy4D5gbSTu9PD3bOAHwFuznqkWwZTS9pDu6PNmZuppkdThBJ50DygmS56WhYbRDwqaGkdAzq4h4ELgceDfpNzrFuDSrGdKEQyQMgVWWlfPuHBOKnDLjuKpo4sr6R5m9Y6hUBfU4GhSEawGDgNnAWuAh4B3TJxzPvAkcM5E/Ppx6wDYABwEzs16phRBDylb81xcdG40OrUwyyqw4gq5NWuce93rsgv/pAI8z3+oy0aQpKSKKJSs1okPdhnRKo0pguDebAWeCAv7XWHcNcDF4fbdwI+YcBMF3gvsD5XHfuDKPM+TIugZZQvHuOvyFlhJhVyREJWxyH+oo7uljhZKVkGv6S4GR6OKoO0gRdAz6p6OIU+BlafbJy2sWnVyAd527TnP87IUzsJC/D0WFrr5T6JzkhSBRhaL5ik7RiBuneAoaaN4q64k9NprJ++3vXRdkhfV1q2B948ZXHFF+kjsO+6Iv/c4vmtPLeENUgSiecpOxzAzk3wsq8DavTsoLKsQdddse+m6uAFr8/Owd+8JBencyddMupi2veCO6C9xzQTfg7qGekZZG0Fa102efvesbqXZ2eTuk8muJx88bPLYPaIyq+tHTIC6hkRnlK15zs4mx+eptaZdPx4gdsMNMBrFnxet7ftQe87TDRWVWV0/Ii9x2sH3oBbBQGhzUZqua/t5yGoRFFlwRwwS5DUkeknVgizv9X0oMOMU1tg7qk2Z+5BWIhYpAjFdDLUw6vp/96X1JGJJUgQWHOsXc3Nzbnl5uWsxRFeMJ4iLTsy2bp08XppmaSnwXDp+/NRjs7OBzUV4jZk94Jybm4yXsVj0jzpn5xT5GCvfOCUAzY2nEK0gRSC6p+hUyW0P7ppm8qZ9nPKN4pymue4xUgSiW8qsVdz24C6fqbLeQJG0z6Nk61pnWrRPnOHA9yBj8RRRZtBTnwyWTRp3s9Ih69lF0r7IJH4asOYtyGtIeEnZGTC79p7JQ9MKK60gz/PsImmfNRNskXcnOiNJEchrSHTLli3xk8tNgxdK0/9t1apT5xuCYOTz5s3Zzy4q39JSYCt4+ung/j/9KRw9mv960TnyGhJ+Ms3TIDRt1E6zleR5dtG037795PWbr79+et/dwJAiEN3S5Rw+TS/s3rRRO60gz/PsImkfl1Y+zL8k6iGuv6hoAC4CDgCHgJ0xx9cCt4XH7we2RI5dHcYfAD6S53l12Aj60MUsGqSNhd3bMGonyVjns/tknBep0OCaxTMES1SezYk1i8+dOOePgRvD7cuA28Ltc8Pz1xKsefwkMJP1zKqKQPlatLawe5c1jjqevbjo3MxMelqJ3pCkCCobi83sPcBnnXMfCfevDlsafxU5587wnO+Y2Wrgh8BGYGf03Oh5ac+saiyeZvukyEmaofW115RJIH4qjyjjtBK9oUlj8enAM5H9I2Fc7DnOuVeBnwCjnNcCYGY7zGzZzJZXVlYqCayBqSKzD71KJmna9tAWWaOJhziAb0rpjbHYObfHOTfnnJvbuHFjpXtpYKrI9Jgpm0nKjJT2lTSlJ++gqaIORfAscGZk/4wwLvacsGvoV4CjOa+tnWn2WPQW32rJWR4vZTPJNE2Il6T0ZmaCtAK/3qkoT5zhoEgAVgOHCYy9Y2PxOybO+RNONhZ/Ndx+Bycbiw/TgrHYOXkNtUoZw6sPL2hh4YShdGYm2M+i7EhpH0l7b/K46CU0OcUEsBV4gsDrZ1cYdw1wcbj9euBrBG6i3wXOjly7K7zuAPDRPM/TFBOeklR4F51PyIdCpqwM07ZgfNF3OjOj2pXHNKoI2g5SBB6SVnAWrSX7UJiWlcEXJdZ0ayrpnaqF4DVJikBzDYl6SHO3hGKumFmunW1QRYbJOXl2725vtG1bq7clve9JhuRu2wM015BoljR3y6KGVx/curJkSDN+T87J0+aUC0nG6ssvr9egG/dO45BPdj+Iayb4HtQ15CF5Rurm7a7wpXuliKEUnBuNuu8KyeqyqTMdo+9Uo497AbIRiEapu/D2wWuoqKHUh37xPAvINFE4+6C8RSZSBKJ5fCi82yCr1t1lLTjvAjJNPXsI77/HJCkC2QhEfXTZN94mWbaKLvvFowPlkpiZSb9H0cF/4/OvuCLYv/XW6X7/U4gUgRBFyTKUdj1XyVghJ3H8ePKxolNkTNOUGh7R9kB8KQIhspj8KiGodY9Gp57b5lwlWaVFUqsgrbVQdIqMaZpSwxM60a1x/UW+B9kIRCPE9XFnGUG76hfPu7BOUQNu2uC/uP86TVNqeEKT4ynRgDIhUkgaiPWGN/i5QHve9RKKDm5Luu9oBC+/3J/06TFNjqfUgDIxDMp2riZ1ccQVctD9QKm86yUUNeAnDf6D+PSJHo+er6l8S9PFeEopAjE9VOlcLVqwd20Qbqq0SJqe+9ix+POPHdMC9jXTyTT5cf1FvgfZCEQsVTpXk64djaoNlCpjQ8hzTdsDuHyYCHDKib720SgIdZue0IAyMfVUMVxmTSlRxiBcprBeWDj1fyRd06ahWiOHG6Wt5JUiENNP1Vpr3QVrmXUYkpSZDzVvjRxujLYaXEmKQF5Dwn/yer60NQVzXoq6f6RN7dzmFNyiddqaeb0RryEzO83M7jKzg+Hv+phzzjOz75jZo2b2sJn9fuTYLWb2fTN7MAznVZFHTCFFDMBZ6xC3TVGDbprBumvjtGiUrmder+o1tBO4xzl3DnBPuD/JS8AfOOfeAVwEfM7M3hQ5/ufOufPC8GBFecS0UXTkqk/zHdW1DoOZ3DGnnE48hSJUVQTbgL3h9l7gkskTnHNPOOcOhtv/AjwPbKz4XNF38vr75/WX94Xo/9q1C+bn87dQ4koDM7jqqmA7Kb3anphG1E7njdk4w0HeALwY2bbofsL57wIeB1aF+7cQLFr/MHAdsDbl2h3AMrC8efPmei0ool2KuEj0yW2xDtePotNcyJtnKmjLDk9ZryHgbuCRmLBtsuAHfpxyn01hof/uiTgD1hK0KP4iSx4nr6H+U6Rw71NB15TSSrtvnxSliKXN6axKK4K0EBbsm1ykoE8475eB/wtcmnKv9wP/lOe5UgQ9p6i/f1/cFpuagC3tvpr0rfek6fK660FJiqCqjWAfMB9uzwPfmDzBzNYAXwf+3jl3+8SxTeGvEdgXHqkoj+gDRVwkik6a1iVNuX6k3bdrdxNRmTQzWFuzfFdVBNcCHzKzg8CF4T5mNmdmN4Xn/B7wPuATMW6iS2a2H9gPbAD+sqI8og/kdZGoY2L2Ng2pTbl+pN23SFrKoOwlabq8NV+JuGaC70FdQ1NAnu6eOkYKt21faKobK+2+Wc/sk51lgKS9nrpNQGhksegdScMtITk+St45+6cdpYP3JPWA1j1YXusRxKDWsuekDbCqMrW0r2MQmkLp4D1J4yDH4wuiq6K+4Q31P3+wikBrbveA3buDQn8S5/JZy2RIDVA69J6XXz6xffRo/WXVYBWB1tzuAdu3J3cB5anNdj1uvwnKNGOnMR0GRBtl1WAVgVrLPWF2Nj4+T22283H7NVO2GTtt6TAw2iirBmsslv2sJ/g2tXSXKNMOkjpfu4zFE6i13BNUmz2BmrGDpI2yarCKQOVLj/BpaukukdF3kLRRVg1WEUBy+SK3UuElasZOHXnLmqbrQqvrvV3/meySHtvjYLgVUeEJ4wzYl7mXRCo+lTWDNRYnIXucEKINuihrZCzOiexxQog28KmskSKYQPY4IUQb+FTWSBFMIHucEKINfCprpAgmkFupEKINfCpr5DUUw/btKviFEM3g46J7lVoEZnaamd1lZgfD3/UJ5x2PrE62LxJ/lpndb2aHzOy2cFlLIYToBUXHHPk663HVrqGdwD3OuXOAe8L9OF52zp0Xhosj8X8NXOec+3fAj4ErK8ojhBCtUKZQ93XW46qKYBuwN9zeS7AAfS7CBes/CIwXtC90vRBCdEmZQj3LZbSrWQ2qKoI3O+eeC7d/CLw54bzXm9mymd1nZpeEcSPgRefcq+H+EeD0pAeZ2Y7wHssrKysVxRZCiGqUGQeQ5jLaZbdRpiIws7vN7JGYsC16XrgwctIw5dlwNNvHgc+Z2VuLCuqc2+Ocm3POzW3cuLHo5UIIUStlxgGkuYx22W2UqQiccxc65/5DTPgG8CMz2wQQ/j6fcI9nw9/DwL3A+cBR4E1mNvZcOgN4tvI/EkKIFigzDiDNZbTLkcZVu4b2AfPh9jzwjckTzGy9ma0NtzcAvw48FrYgvg1cmna9EEL4SN5xAJP9/hA/k2iXI42rKoJrgQ+Z2UHgwnAfM5szs5vCc94OLJvZQwQF/7XOucfCY58BPm1mhwhsBn9XUR4hhGiEOENu1vTQRfr9Ox1p7JzrXbjgggtcURYXnZuddc4s+F1cLHyLXPep6zlCiO4Zf88QfNNBcR6Edeuyv+/xtZNhdjb9eU2VH8CyiylTOy/Uy4SiimBxMXhp0Rdh5tzCQqHbxN4nmhmyjgsh+kPc95y3QB8zqTyi5U8XJCmCQaxHkDTvtxncemv+4d1Z84drLQMhpoek7zmKWdAtVPQeXZUJg16PIMnq7lwx16wsq75P84sLIaqR57vNMuQm9ftv3erXcriDUARpL6tIIZ1l1fdpfnEhRDWyvts8htw4z6L5edi716/5hgahCHbvDl5CHEUK6Syrvk/ziwshqhH3PY/LkSJTRk96Ft1xh4fzDcUZDnwPZbyGFhbSrf4LC87NzATxMzPJhmR5DQkxHJr4nrs0IDNkr6ExSS91YSH+xRT1KqoDKRIhpoOkb7moS2mdJCmCQXgNZbF6NRw/fmr8zAy8+uqp8U0xHnwSbTauW6cV0oToG2nfMnT3nQ/aayiLOCWQFt8Uvs5VLoTIJjryeH4++Vv2aYnKMWoR4E+LYNWqoJE4SZavshCiW+JaAHF0/S2rRZDCjh3F4ptC7qdC9JO41nwcvn7LUgTADTfAwkLQAoDgd2EhiB/TxspBcj8VohpdrfCVZzxS2rfcldy/IM6C7Hso6zVUljxzDNXl6SOvISHK0eVcX0meQFGPoCQ52pQbeQ2VJ22+kN275ekjhA90Oa/P0hJcfnn8MZ/mI0qyEUgR5CDNiLt5c/xLHI3ghReal00IEZD0nULwPR47Fnyvu3c3U0nbsAGOHj01PqtAb9NJpBFjsZmdZmZ3mdnB8Hd9zDkfMLMHI+FfxwvYm9ktZvb9yLHzqsjTFGlG3KS+waNHu59ISoghkWaIPXq0+Xl9rr++nI3PByeRqsbincA9zrlzgHvC/ZNwzn3bOXeec+484IPAS8D/iJzy5+PjzrkHK8rTCGlG3LSXJf9/Idoj7juNo6mxOWXHB3jhJBJnOMgbgAPApnB7E3Ag4/wdwFJk/xbg0qLPbdtY7FyyEXdxMdlAFDd3SPQ+o1EQZBgWoh7SvkcfFoZJoi0nEZqYawh4MbJt0f2E878F/KfI/i2hMnkYuA5Ym+e5XSiCNEajZE+BKFkrHjXp4SBvJDEUsjx4xhNLDvEbKK0IgLuBR2LCtsmCH/hxyn02ASvA6ybiDFgL7AX+IuX6HcAysLx58+YWkiw/ed2/8mTQJiae0hKaYkjkWWJyqN9AUy2C3F1DwH8F9qQcfz/wT3me61uLwLl8Ne6k6WebbrJ2OduhEF0w2QW7apW+AeeSFUFVY/E+YD7cnge+kXLux4AvRyPMbFP4a8AlBC2NXjK5+EScgSiPF0ATngJaQlP0gTpH10a/xxdeSHYr1TcQUFURXAt8yMwOAheG+5jZnJndND7JzLYAZwL/c+L6JTPbD+wHNgB/WVEer8nyamjKU8AH9zQh0hhP2tbU8o36BjKIayb4HnzsGspLF15DshEI36mj+zKte9b3b6DXXkNdhT4rgq6Q15DwmarLN+Yp6BcXT/bwG438+A4011BJ2p5iQgjRLFXn28lzva8rAJadmqIMWo9ACOEtVUfX5nGI8HEFwKWleCUA7RqypQiEEJ1TdfnGNGPw2BsprsUA3XoOpSmhPs01JGqi84UphKiJsnk5jwt2Ekktiq1bT3gjJdGl51CaEmpzriEpAg9o2nWuTaTQppO877WrvJzUorjjjvQlJLteATBJCY1GLdst4izIvodp8xqalpG/vrvoiXIUea++5eW00fw+eM+1/c0g91F/qeo65wu+FQKiHoq8V1/y8thduok5vep2xW7TtTtJEahrqEPGzW2X4MHbt1GPmspiOinyXn0YwRvtnoqjSndQE11fVWwjdSFF0BFNZtbJ57TVZ+9DISDqp8h77XqRlaUlmJ9PtgsU9UaaxEcX1FqIayb4Hqahayir2VpH87Dt/kfZCKaTou81b1dHE10sadNP19E95UvXV1mQjcAv2shQXfTZayqL6aSNQrtqpSFrvY868n3f7WBSBJ7RRobqe+1F1I8virqJ/J/mIVRXy7Tvrd4kRSAbQUe00ZeqPnu/aXvMhU/jVZpwLEjK1zMz9c0nVHUEtLfEaQffwzS0CJxrvnbW99rLNNPFu6lSC687rzbRIlB+zwZ1DU03SR9qnR9wW90KvnRfNEkXfc1luwqbKGCbKrSHkHeq0IgiAH4XeBR4DZhLOe8igvWNDwE7I/FnAfeH8bcBa/I8V4rgZNqoCaU9o25lM4RaXRf2m7LKpymlpUK7fZpSBG8HfhW4N0kRADPAk8DZwBrgIeDc8NhXgcvC7RuBhTzPlSI4mTZql0nPGI3qLbj77pWRl648usq8KzkdTA9JiqCSsdg597hz7kDGae8CDjnnDjvnfgZ8BdgWLlj/QeD28Ly9BAvYi4K0MaI36V5Hj9Y7wGYoo5O7GHhV1tApp4Pppw2vodOBZyL7R8K4EfCic+7VifhYzGyHmS2b2fLKykpjwvaRNj7UovcqW3APpdDpyvukzHQGXY8WFs2TqQjM7G4zeyQmbGtDwDHOuT3OuTnn3NzGjRvbfLT3tPGhJj1jNIo/v2zBPaRCx4c5ZvIwtS6T4heszjrBOXdhxWc8C5wZ2T8jjDsKvMnMVoetgnG8KMj4g9y1K6iJb94cFJx1fqhJz4D4dWDLFtxt/BdRnO3b9Q6mmVoWrzeze4E/c86dsqK8ma0GngB+k6Cg/x7wcefco2b2NeAfnHNfMbMbgYedczdkPU+L1/vF0pIKbiH6QCOL15vZb5vZEeA9wD+b2Z1h/FvM7A6AsLb/KeBO4HHgq865R8NbfAb4tJkdIrAZ/F0VeUQ39KWLQwgRTy0tgrZRi0AIIYrTSItACCFE/5EiEEKIgSNFIIQQA0eKQAghBk4vjcVmtgIkrPabygbghZrFqQPJVRxfZZNcxfFVtmmUa9Y5d8qI3F4qgrKY2XKcxbxrJFdxfJVNchXHV9mGJJe6hoQQYuBIEQghxMAZmiLY07UACUiu4vgqm+Qqjq+yDUauQdkIhBBCnMrQWgRCCCEmkCIQQoiBM3WKwMx+18weNbPXzCzRxcrMLjKzA2Z2yMx2RuLPMrP7w/jbzGxNTXKdZmZ3mdnB8Hd9zDkfMLMHI+FfzeyS8NgtZvb9yLHz2pIrPO945Nn7IvGNpFde2czsPDP7TvjOHzaz348cqzXNkvJM5PjaMA0OhWmyJXLs6jD+gJl9pIocJeT6tJk9FqbPPWY2GzkW+15bkusTZrYSef4fRY7Nh+/9oJnN1ylXTtmui8j1hJm9GDnWSJqZ2c1m9ryZPZJw3Mzsb0OZHzazd0aOVUuvuIWM+xyAtwO/CtwLzCWcMwM8CZwNrAEeAs4Nj30VuCzcvhFYqEmuvwF2hts7gb/OOP804BiwLty/Bbi0gfTKJRfw04T4RtIrr2zAvwfOCbffAjwHvKnuNEvLM5Fz/hi4Mdy+DLgt3D43PH8tcFZ4n5kW5fpAJB8tjOVKe68tyfUJ4PMx154GHA5/14fb69uUbeL8PwVubiHN3ge8E3gk4fhW4JuAAe8G7q8rvaauReCce9w5dyDjtHcBh5xzh51zPwO+AmwzMwM+CNwenrcXuKQm0baF98t730uBbzrnXso4rypF5foFDadXLtmcc0845w6G2/8CPA80sZZpbJ5Jkfd24DfDNNoGfMU594pz7vvAofB+rcjlnPt2JB/dR7AaYNPkSa8kPgLc5Zw75pz7MXAXcFGHsn0M+HKNz4/FOfe/CCp/SWwD/t4F3EewwuMmakivqVMEOTkdeCayfySMGwEvumAxnWh8HbzZOfdcuP1D4M0Z51/GqZlvd9gkvM7M1rYs1+vNbNnM7ht3V9FsehWRDQAzexdBDe/JSHRdaZaUZ2LPCdPkJwRplOfaJuWKciVBrXJM3HttU67fCd/P7WY2XtK2yfQqdP+wG+0s4FuR6KbSLIskuSunV+aaxT5iZncD/zbm0C7n3DfalmdMmlzRHeecM7NEv91Qy/9HglXdxlxNUBiuIfAj/gxwTYtyzTrnnjWzs4Fvmdl+goKuEjWn2a3AvHPutTC6dJpNI2Z2OTAH/EYk+pT36px7Mv4OtfOPwJedc6+Y2X8maE19sKVn5+Uy4Hbn3PFIXJdp1gi9VATOuQsr3uJZ4MzI/hlh3FGC5tbqsEY3jq8sl5n9yMw2OeeeCwut51Nu9XvA151zP4/ce1wzfsXMvgT8WZtyOeeeDX8PW7BG9fnAP1AhveqSzcx+GfhngorAfZF7l06zGJLyTNw5RyxYq/tXCPJUnmublAszu5BAuf6Gc+6VcXzCe62jUMuUyzl3NLJ7E4FNaHzt+yeuvbcGmXLLFuEy4E+iEQ2mWRZJcldOr6F2DX0POMcCj5c1BC97nwssL98m6J8HmAfqamHsC++X576n9EmGBeG4X/4SINazoAm5zGz9uFvFzDYAvw481nB65ZVtDfB1gr7T2yeO1ZlmsXkmRd5LgW+FabQPuMwCr6KzgHOA71aQpZBcZnY+8EXgYufc85H42PfaolybIrsXE6xpDkFL+MOhfOuBD3Ny67hx2UL53kZgfP1OJK7JNMtiH/AHoffQu4GfhJWd6unVhPW7ywD8NkEf2SvAj4A7w/i3AHdEztsKPEGgyXdF4s8m+EgPAV8D1tYk1wi4BzgI3A2cFsbPATdFzttCoOFXTVz/LWA/QWG2CLyxLbmA94bPfij8vbLp9Cog2+XAz4EHI+G8JtIsLs8QdDVdHG6/PkyDQ2GanB25dld43QHgozXn+Sy57g6/hXH67Mt6ry3J9VfAo+Hzvw28LXLtH4bpeAj4ZJ1y5ZEt3P8scO3EdY2lGUHl77kwPx8hsOdcBVwVHjfgC6HM+4l4RVZNL00xIYQQA2eoXUNCCCFCpAiEEGLgSBEIIcTAkSIQQoiBI0UghBADR4pACCEGjhSBEEIMnP8PNRUZ2fYpuekAAAAASUVORK5CYII=",
Q
Quleaf 已提交
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Visualization of 100 data points in the test set: \n"
     ]
    },
    {
     "data": {
Q
Quleaf 已提交
250
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAD4CAYAAADhNOGaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAAh60lEQVR4nO3de8wd9X3n8ffHpia1UBvbeAkB/Bi2pAltuiQ86yQbaZsLCYSVMNmSxKmTddJEXtKQlTbaFUZIm4hda2n3D9SqUbsWSXDwswFKFeFuyLJct380pDxI3AwCGwgXlwTHTiJZUK7f/WPmxOPjc33O3OfzkkbnnJk55/zOzJz5/uZ3G0UEZmbWXcuqToCZmVXLgcDMrOMcCMzMOs6BwMys4xwIzMw67riqE7AUJ554Yqxfv77qZJiZNcp99933s4hY2z+/kYFg/fr1LC4uVp0MM7NGkfT0oPkuGjIz6zgHAjOzjnMgMDPrOAcCM7OOcyAwM+u4XAKBpG9JekHSw0OWS9KfS9on6UFJ784s2yJpbzptySM9ZjabhQVYvx6WLUseFxaqTpEVKa8rgmuB80cs/xhwZjptBf4SQNJq4GvAe4ANwNckrcopTWa2BAsLsHUrPP00RCSPW7c6GLRZLoEgIv4OODRilY3AdyJxD/BmSScD5wG3RcShiPg5cBujA0rtOSdlTXfFFfDii0fPe/HFZL61U1kdyk4Bns28fi6dN2z+MSRtJbmaYN26dcWkcka9nFTvT9TLSQFs3lxdusym8cwz08235mtMZXFE7IiI+YiYX7v2mB7StdCUnJSvWqpV9+0/LJ9V0/zXzKrYH3U7Bsq6ItgPnJZ5fWo6bz/wgb75d5eUptw1ISflq5Zq1X37LyzA4cPHzl+5ErZvLz89Ratif9TyGIiIXCZgPfDwkGX/BvgBIOC9wD+k81cDTwGr0ukpYPW47zrnnHOijubmIpLqtaOn5csjdu2qOnWJYWmcm8v3e3btSj5TSh7r8vurVtb2X4pduyJWrjw2bWvWtHf/TbI/8jqWe58z6PvKOgaAxRh0jh40c9oJ+C7wPPAqSTn/F4BLgEvS5QK+ATwBPATMZ977R8C+dPr8JN+XRyAo4kQ17I8Eyfw6/JmkwemT8vuOQduhLr+/amVs/6Wqc5Ca1bD/+7j9kdexPOrcUOYxUGggKHuaNRAUeaLatSu5AqjrH6qMP3ubTyizqvO2qXOQmsWo//u4/ZHX/hp1JdCaK4Kyp1kDQdF/xjr/ocrIrdf591etzldLdQ5Ssxj1u8btj7yO5WGfU/Yx4ECQUfSJqu5/qKLL7+v++6tW1/qTooNUVb97kuKfYekq44qgzG3hQJBR9Imqzrm+MnT99zdZUSfrKo+JWf7vRdYRVPGfcCDIKGOn1DXXV5au/347WpVXibP+3/NuNVTlf2JYIFCyrFnm5+dj1ltVLiwkHb2eeSbpKHPBBXDLLUdeb99ej3bdZm2wbFlyCu4nwRtvFP/9/f/3rv6/Jd0XEfP98xvTszhvmzfDj3+cHITbt8POnfkOslVGz8G69U40G6bq3srZ//uPf9zNIDBKZwNBVt5DQ5QxeqNHiLQm2b496Z2cNai3sjM3FRlUXlT3Ke+exXm3Ilpqeeg0ZYhumWNNM+74rkuFapvhOoLh1q9PctT95uaSy8hpLaU8tH/8EUhyTDt2DL6MrbrM1Sxvef8P7ViuIxhh0svWSS2lPHTa4qmqy1zN8taEQRvbyoGAJMe9Y0eS85CSx2E58UksJbBM+yfIO3iZVc2Zm+o4EKTybFWwlMAy7Z8g7+BlVrWiMjeugJ7AoIqDuk91HYZ6Fq4oM8u/05X/V0djSGWxrwhqwjl8s/zb+1d518AmXYm41ZCZtVZVreumbQVYFrcaMrPOqaoCuin3L+/JJRBIOl/SY5L2Sdo2YPnVku5Pp8cl/SKz7PXMst15pMfMDKprXde0prAz37xe0nKS21B+hOQ2lfdK2h0Rj/TWiYj/mFn/K8C7Mh/xUkScPWs6zMz69Yphyh5wbt26wZ3j6toUNo8rgg3Avoh4MiJeAa4HNo5Y/9Mk9ziutSIreppUiWTWdFUMONe0fj55BIJTgGczr59L5x1D0hxwOnBnZvabJC1KukfSRcO+RNLWdL3FAwcO5JDs4Yoc0M2DxZm1X9NaAc7cakjSxcD5EfHF9PVngfdExKUD1r0MODUivpKZd0pE7Jd0BkmA+HBEPDHqO4tuNVTkmCceT8XMqlJkq6H9wGmZ16em8wbZRF+xUETsTx+fBO7m6PqDUvWKbAadqCGfip6mVSKZWfvlEQjuBc6UdLqkFSQn+2Na/0h6O7AK+GFm3ipJx6fPTwTeDzzS/94yZItshsmjosfjqZhZ3cwcCCLiNeBS4FbgUeDGiNgj6UpJF2ZW3QRcH0eXRb0DWJT0AHAXcFW2tVGZBrX7zcqroqdplUhmVp2yGpbM3HwUICJuAW7pm/df+l5/fcD7/h54Zx5pmNWoopm5uXybnP36rx8JOmvWwJ/9WX0rkcysGv29k3sNSyD/84V7FqeGFc30KnHz2PC9HXvw4JF5L700++eaWfuU2TvZgSBVRpFN07qdm1l1ymxY4kCQKqPdr1sMmdmkymxY4kCQUXQPRLcYMrNJldmwxIGgRG4xZGaTKrN3ci6thmwyVQ2AZWbNtHlzOecHXxGUrIoBsMysHE0dUNJXBGZmOSiz3X/efEVgZpaDJjcPdyAwM8tBk5uHOxCYmeVg9erp5teJA4GZWcc5EJiZ5eDQoenm14kDgZlZDiYdOaCOTUwdCMzMcjDJyAF1vWe5A8GU6hjNzax6kwwJUdcmprkEAknnS3pM0j5J2wYs/5ykA5LuT6cvZpZtkbQ3nbbkkZ6i1DWam1k9jBs5oK5NTGcOBJKWA98APgacBXxa0lkDVr0hIs5Op2vS964Gvga8B9gAfE3SqlnTVJS6RnMza4a6jkCcxxXBBmBfRDwZEa8A1wMbJ3zvecBtEXEoIn4O3Aacn0OaClHXaG5mzVDXEYjzCASnAM9mXj+Xzuv3B5IelHSTpNOmfC+StkpalLR44MCBHJI9vbpGczNrhjKHlp5GWZXFfwusj4jfI8n175z2AyJiR0TMR8T82rVrc0/gJOoazc2sOeo4AnEegWA/cFrm9anpvF+JiIMR8XL68hrgnEnfWyd1jeZmZrPIIxDcC5wp6XRJK4BNwO7sCpJOzry8EHg0fX4r8FFJq9JK4o+m82qrjtHcasjtjK1BZr4fQUS8JulSkhP4cuBbEbFH0pXAYkTsBv6DpAuB14BDwOfS9x6S9F9JggnAlRHRgA7ZZiM0eWB66yRFRNVpmNr8/HwsLi5WnQyzwdavT07+/ebmkstIs4pIui8i5vvnu2exWd7cztgaxoHALG9uZ2wN40Bglje3M7aGcSAwy5vbGVvDOBCYFWFUO2M3LbWambn5qJlNwU1LrYZ8RWA2Tp45eA9hazXkQGA2St43oRjXtNTFRlYBBwKzUfLOwY9qWuo7H1lFHAismcrKOefdOWxU01IXG1lFHAisecrMOefdOWxU01L3SLaKOBBY85SZcy6ic9iwpqXukWwVcSCw5ikz51xE57BhxVrukWwVcT8Ca5516waP7llUznnz5vza+E/Sj+CKK5Kgtm5dEgTcv8AK5isCa4ZsLvrwYVix4ujlTck5jyvW8p2PLKOsNhEOBFZ//ZXDBw8mj2vWHCmu2bIlOZnWvf29K4RtQmW2icglEEg6X9JjkvZJ2jZg+VclPSLpQUl3SJrLLHtd0v3ptLv/vWYDc9GvvgonnJDknLdvh507m9H+vogKYXdCa6VSWxNHxEwTye0pnwDOAFYADwBn9a3zQWBl+vxLwA2ZZYen/c5zzjknrEOkiOQUf/QkJcvn5gYvn5urMtWD7doVsXLl0elcuTKZP+3n9H53//ZZyudZ7Yw77JeC5PbBx5xT87gi2ADsi4gnI+IV4HpgY1+wuSsierHtHuDUHL43V85U1di4XHSTilvyaIWULTOA5PyQ5U5orVBma+I8AsEpwLOZ18+l84b5AvCDzOs3SVqUdI+ki4a9SdLWdL3FAwcOzJTgfu7ZX3PjmlU2rf39rBXCg8oM+k0bBJ0Tqp1SWxMPukyYZgIuBq7JvP4s8BdD1v0MyRXB8Zl5p6SPZwA/Bv75uO/Mu2ioSSULndUrCpGSx2zRR17FLWWkNQ/DygyWevAO2n4QsWaNi5gqlvehxJCioTwCwfuAWzOvLwcuH7DeucCjwD8b8VnXAheP+868A0ERZXFWsqJPvtOko+igNCznstTvG/V5rm+oXJ6HdpGB4DjgSeB0jlQW/07fOu8iqVA+s2/+qt7VAXAisJe+iuZBk68IrLbKOJgGBZtebmYpZ4pxVxj+I1Qm73zFsEAwcx1BRLwGXArcmub4b4yIPZKulHRhutr/AE4A/rqvmeg7gEVJDwB3AVdFxCOzpmla7tlvuSmj4npQhfN11yXniaXUOYyrS6ljpXtHlNWEVEmQaJb5+flYXFzM9TMXFtyz33Kwfv3g4S/m5pKTdB31D3vRr85pb7lly45tFAZJ/H/jjek/T9J9ETF/zPcsJXFt5J79losmXl72rjDWrDl2Wd3T3nJlNYhzIDDryaMJZRGjlZZh82b42c9g167mpb3FyspXuGjIDAYXj6xc6ROhVS7PYuthRUMOBGbQzLJ9sym5jsBslCYNU2GWMwcC67ZevcCwK+O6DlPRz0NE2Ax8hzLrrnHNJpvSYmaSu56ZjeArAuuuUYO3NanFTKkD11sb+YrAumtY+b/UrApi12/YjHxFYN3VtOGrh2nL77DKOBBYdzWxF/Agk/wOVybbCA4E1l159wKu6mQ77nf4zks2hjuUmeWhzj2T3VnOUu5QZlakOrfccWWyjeFAYJaHOp9sXZlsYzgQmOWhzifbKirFXTndKLkEAknnS3pM0j5J2wYsP17SDenyH0lan1l2eTr/MUnn5ZEes9LVuQVS2UNju3K6cWauLJa0HHgc+AjwHHAv8OnsLScl/THwexFxiaRNwMcj4lOSzgK+C2wA3grcDrwtIl4f9Z2uLLZa8m3uEq6crq0iK4s3APsi4smIeAW4HtjYt85GYGf6/Cbgw5KUzr8+Il6OiKeAfennmTWPb3OXqHN9iQ2URyA4BXg28/q5dN7AddKb3f8SWDPhewGQtFXSoqTFAwcO5JBsswZoYll7netLbKDGVBZHxI6ImI+I+bVr11adHLPiNbWsvc71JTZQHoFgP3Ba5vWp6byB60g6DvhN4OCE77Wua2KuOA917pswSlPv29xheVQWH0dSWfxhkpP4vcAfRsSezDpfBt6ZqSz+txHxSUm/A/wvjlQW3wGc6cpi+5U699gt2rJlg2+YIyX1EGZTKqyyOC3zvxS4FXgUuDEi9ki6UtKF6WrfBNZI2gd8FdiWvncPcCPwCPB/gC+PCwLWMU3NFefBZe1WEo81ZPXW5Vxxl6+GrBAea8iaqcu5Ype1W0kcCKzeBrVA+bVfg8OHu1F57L4JVgIHAqu3/lzxmjXJ48GDzWpSaTaBqhrIORBY/WVzxSecAK+8cvTyulQed7WZq+Wiym4jDgTWLHUbvqB38pfgs59tXuevaTjQFarKBnIOBNYsdao8zmbh4NjWTXW5UslDU3s5N8igcfpGzc+TAwHO6DRKnYYvGJSF69eWgda63J+jJMuXTzc/T50PBM7oNMywJpVQfjSf5CTflmaudSuSa6HXh3SlHTY/T50PBM7oNFB/k0qoJpqPO8m3aaC1OhXJtdTc3HTz89T5QOCMTgtUFc0HFVNJyWPbOn/VqUiupS644Mjh01PWJu58IHBGpwWqiuaDiqmuuy65Kmlb5y/3ci7UwgLs3Hl0ewMJtmwpZxN3fqwhD+fSAr41ojVcWYewxxoawhmdFnCxhTVc1UXUnQ8E4OFcGs/R3Bqu6iJqBwJrB0dza7CqL2pnCgSSVku6TdLe9HHVgHXOlvRDSXskPSjpU5ll10p6StL96XT2LOkxK5V7IlpOqr6onamyWNKfAoci4ipJ24BVEXFZ3zpvAyIi9kp6K3Af8I6I+IWka4H/HRE3TfO9vjGNVc6tDKyBiqos3gjsTJ/vBC7qXyEiHo+IvenzfwReANbO+L1m1XJPRGuRWQPBSRHxfPr8J8BJo1aWtAFYATyRmb09LTK6WtLxM6bHrBxVN/Mwy9HYQCDpdkkPD5g2ZteLpIxpaDmTpJOB64DPR0TvZrOXA28H/iWwGrhsyNuRtFXSoqTFAwcOjP9lZkWqupmHWY7GBoKIODcifnfAdDPw0/QE3zvRvzDoMyT9BvB94IqIuCfz2c9H4mXg28CGEenYERHzETG/dq1LlqxiVTfzMMvRrEVDu4Et6fMtwM39K0haAXwP+E5/pXAmiIikfuHhGdNjVo6qm3lYq5XdIG3WVkNrgBuBdcDTwCcj4pCkeeCSiPiipM+Q5Pb3ZN76uYi4X9KdJBXHAu5P33N43Pe61ZCZtVWRDdKGtRrq/FhD4ywsJA1BnnkmKf7dvt2ZPjMrTpHjDnmsoSXwTWtawh2/rEGqaJDmQDCCm4q3gKO5NUwVDdIcCEZwU/EWcDS3hqmiQZoDwQhuKl5zkxT5tCmau4irE6pokOZAMIKbitfYpEU+bYnmLuLqlLIH03UgGMFNxWts0iKftkRzF3FZgdx81Jpp2bKjb/DaIyXZqKw2tAGe5veaDTGs+ehxVSTGbGbr1g1ubD2oyGfz5uad+PtN83vNpuSiIWumthT5TKprv9dK5UBgzdS1Cpyu/V4rlesIctCGImgzaz8PMdEnrybZbtVnZk3XyUCQ58nbrfrMrOk6GQjyPHm3qeOqmXVTJwNBnifvtnRcNbPu6mQgyPPk7VZ9ZtZ0MwUCSasl3SZpb/q4ash6r0u6P512Z+afLulHkvZJuiG9rWXh8jx5u1WfmTXdrFcE24A7IuJM4I709SAvRcTZ6XRhZv6fAFdHxG8BPwe+MGN6JpL3ybvsAaLMzPI06z2LHwM+EBHPpzeivzsifnvAeocj4oS+eQIOAG+JiNckvQ/4ekScN+5769aPwMysCYrqR3BSRDyfPv8JcNKQ9d4kaVHSPZIuSuetAX4REa+lr58DTpkxPWZmNqWxg85Juh14y4BFRzW2jIiQNOzyYi4i9ks6A7hT0kPAL6dJqKStwFaAdW6SY2aWm7GBICLOHbZM0k8lnZwpGnphyGfsTx+flHQ38C7gb4A3SzouvSo4Fdg/Ih07gB2QFA2NS7eZmU1m1qKh3cCW9PkW4Ob+FSStknR8+vxE4P3AI5FUTtwFXDzq/WZmVqxZA8FVwEck7QXOTV8jaV7SNek67wAWJT1AcuK/KiIeSZddBnxV0j6SOoNvzpgeMzOb0kyBICIORsSHI+LMiDg3Ig6l8xcj4ovp87+PiHdGxL9IH7+Zef+TEbEhIn4rIj4RES/P9nOqMckAdr7vuJnVle9QNqPeAHa9sYt6A9jBkf4Ek6xjZlaVzgwxUVSOfJIB7DxCqZnVWSeuCIrMkU8ygJ1HKDWzOuvEFUGROfJJBrDzCKVm7dWG+r9OBIIic+TjBrBbWIDDh499n0coNWu+ttyhsBOBoMgc+agB7HoHycGDR79nzRqPUGrWBm2p/+vEzev76wggyZEXfTJevz7JIfSbm0tGKTWzZlu2LLkS6CcloxHXTadvXl/VPQNcSWzWbm2p/+tEIIBq7hnQloPEzAab9iZXS61YLrpCujOBoAq+jaVZu01T2rDUiuUyKqQ7UUdQpYWFpOLomWeSK4Ht211JbNZFS60zzLOucVgdgQOBmVkJllqxnGeFdKcri9ukDZ1XzLpoqXWGZdQ1OhA0SFs6r5h10VLrDMuoa3QgaJC2dF4x66KlNmMvo/m76wgapGmdV8ysXgqpI5C0WtJtkvamj6sGrPNBSfdnpn+SdFG67FpJT2WWnT1LetrO/RLMrAizFg1tA+6IiDOBO9LXR4mIuyLi7Ig4G/gQ8CLwfzOr/Ofe8oi4f8b0tJr7JZhZEWYNBBuBnenzncBFY9a/GPhBRLw4Zj0boKqhMsys3WYNBCdFxPPp858AJ41ZfxPw3b552yU9KOlqScfPmJ7Wq2KoDDNrt7F3KJN0O/CWAYuOaqsSESFpaM2zpJOBdwK3ZmZfThJAVgA7gMuAK4e8fyuwFWCdC8XNzHIz9oogIs6NiN8dMN0M/DQ9wfdO9C+M+KhPAt+LiFczn/18JF4Gvg1sGJGOHRExHxHza9eunfT3mZktWVc6cM5aNLQb2JI+3wLcPGLdT9NXLJQJIiKpX3h4xvSYmU1s1Im+Sx04Zw0EVwEfkbQXODd9jaR5Sdf0VpK0HjgN+H9971+Q9BDwEHAi8N9mTI+N0JXcjdkkxp3ou9SB0x3KxuiNHvr007B8Obz+etJap2mjiFZ1lzazuho3qmcbO3B60LklyOYYIAkC0MxLxC7lbswmMeoOggsLSSAYpKi2KlVesfuKYIRhOYaeJt17uI25G7NZDPt/r1kDL710bMYJiruKLuuK3VcESzDu3sJNuvewh6cwS/Ry3k8/nWSEsno99wcFgeXLiwsCW7ZUe8XuQDDCUscJryMPT2F2bHFvxJFg0Oupf+jQ4Pe+8cZ0QWCSop5eenrFzv1Ky2xGROOmc845J8qwa1fEypURyeFy9LRyZbK8SXbtipibi5CSx6al32xWc3OD/89zc9OtM86gc8egc8aw71rKd04CWIwB59TKT+pLmcoKBBFHTp4QsXz5kZ1T1UnUJ3OzpZMGn3ClI+tMehIfZdJgMiw9RWU2HQhaII8DtGoOZFalSU/Qsx6nkwScUelZvryY/4YDQQvkccmaVfZJuQ2BzJqtrGNwmoBT5n/CgaAFJs1lTKKKk3LegcxsKcrIAE3z/yozQzYsELgfQYOM6wlZ1WdNyn0ZrEt6oxI880zSwrAOoxG4H0EL5NkEdFSvyqK4L4N1SZPuHeJA0CB53qGsipPyoEAmwQUXFPedZjaeA0HD5JXLGHd1UcS4J5s3Jz0os705I2DnzmaN29QGHonWjjKo4qDuU1cri/M2rJKqyIrkulQYd7kZaxtbb3V5f04DtxoqXlsOxiJP1nm2fFqqNp4Ip1GXYJyXru/PaQwLBC4aykmb7mZUZEVyHSqMuz4k97T7t+7FSG3cn6Vv80HRYdIJ+ASwB3gDmB+x3vnAY8A+YFtm/unAj9L5NwArJvneOl4RtCmXVeRvqUPurQ5XJVWaZv/WYX+N07b9WeQ2p4iiIeAdwG8Ddw8LBMBy4AngDGAF8ABwVrrsRmBT+vyvgC9N8r11DARtOhiL/vNXXYTWpqC9FNPs3yZsqyakcRpF/p5CAsGvPmR0IHgfcGvm9eXpJOBnwHGD1hs11TEQtO1grPpkXaQm5HKLNun+bUIGp237s8htPiwQlFFHcArwbOb1c+m8NcAvIuK1vvmN1Lbx/pvUGWZaefbHaKpJ928d6nTGadv+rGKbjw0Ekm6X9PCAaWNxyRqYjq2SFiUtHjhwoMyvnkjbDsa2a3Ogy1NTMjht2p9VbPPjxq0QEefO+B37gdMyr09N5x0E3izpuPSqoDd/WDp2ADsgGWtoxjQVYvPmZh+AZv16x3Pdxsxpsyq2+dhAkIN7gTMlnU5yot8E/GFSFqa7gIuB64EtwM0lpMfMpuAMTvnK3uYz1RFI+rik50gqer8v6dZ0/lsl3QKQ5vYvBW4FHgVujIg96UdcBnxV0j6SOoNvzpIeMzObnoehNjPrCA9DbWZmAzkQmJl1nAOBmVnHNbKOQNIBYMCNFidyIkmP5rpxuqZT13RBfdPmdE2vrmlbarrmImJt/8xGBoJZSFocVFlSNadrOnVNF9Q3bU7X9OqatrzT5aIhM7OOcyAwM+u4LgaCHVUnYAinazp1TRfUN21O1/TqmrZc09W5OgIzMztaF68IzMwsw4HAzKzjWhkIJH1C0h5Jb0ga2sRK0vmSHpO0T9K2zPzTJf0onX+DpBU5pWu1pNsk7U0fVw1Y54OS7s9M/yTponTZtZKeyiw7u6x0peu9nvnu3Zn5VW6vsyX9MN3fD0r6VGZZrttr2PGSWX58+vv3pdtjfWbZ5en8xySdN0s6lpCur0p6JN0+d0iayywbuE9LTNvnJB3IpOGLmWVb0n2/V9KWktN1dSZNj0v6RWZZYdtM0rckvSDp4SHLJenP03Q/KOndmWVL316DblvW9ImK7qU8Qbr+FNiWPt8G/MmY9VcDh4CV6etrgYsL2F4TpQs4PGR+ZdsLeBtwZvr8rcDzwJvz3l6jjpfMOn8M/FX6fBNwQ/r8rHT944HT089ZXmK6Ppg5hr7US9eofVpi2j4H/MWA964GnkwfV6XPV5WVrr71vwJ8q6Rt9q+BdwMPD1l+AfADklv9vhf4UR7bq5VXBBHxaEQ8Nma1DcC+iHgyIl4huSfCRkkCPgTclK63E7gop6RtTD9v0s+9GPhBRLyY0/cPM226fqXq7RURj0fE3vT5PwIvAMf0nMzBwONlRHpvAj6cbp+NwPUR8XJEPAXsSz+vlHRFxF2ZY+gekptAlWGSbTbMecBtEXEoIn4O3AacX1G6Pg18N6fvHiki/o4k8zfMRuA7kbiH5OZeJzPj9mplIJhQFfdSPikink+f/wQ4acz6mzj2ANyeXhJeLen4ktP1JiW3C72nV1xFjbaXpA0kObwnMrPz2l7DjpeB66Tb45ck22eS9xaZrqwvkOQoewbt07xMmrY/SPfRTZJ6dzOsxTZLi9FOB+7MzC5ym40zLO0zba8y7lBWCEm3A28ZsOiKiKjsTmej0pV9EREhaWjb3TTKv5Pkhj49l5OcEFeQtCO+DLiyxHTNRcR+SWcAd0p6iORkt2Q5b6/rgC0R8UY6e8nbq40kfQaYB34/M/uYfRoRTwz+hEL8LfDdiHhZ0r8nuaL6UInfP84m4KaIeD0zr+ptlrvGBoKoyb2Up0mXpJ9KOjkink9PXC+M+KhPAt+LiFczn93LHb8s6dvAfyozXRGxP318UtLdwLuAv6Hi7SXpN4Dvk2QC7sl89pK31wDDjpdB6zwn6TjgN0mOp0neW2S6kHQuSXD9/Yh4uTd/yD7N66Q2Nm0RcTDz8hqSeqHeez/Q9967y0pXxibgy9kZBW+zcYalfabt1eWioV/dS1lJK5dNwO5Ial5691KGfO+lvDv9vEk+95hyyfRk2CuXvwgY2LKgiHRJWtUrWpF0IvB+4JGqt1e6775HUm56U9+yPLfXwONlRHovBu5Mt89uYJOSVkWnA2cC/zBDWqZKl6R3Af8TuDAiXsjMH7hPc0rXpGk7OfPyQpLb2UJyJfzRNI2rgI9y9NVxoelK0/Z2korXH2bmFb3NxtkN/Lu09dB7gV+mGZ7ZtldRtd9VTsDHScrIXgZ+Ctyazn8rcEtmvQuAx0mi+RWZ+WeQ/FH3AX8NHJ9TutYAdwB7gduB1en8eeCazHrrSSL8sr733wk8RHJC2wWcUFa6gH+VfvcD6eMX6rC9gM8ArwL3Z6azi9heg44XkqKmC9Pnb0p//750e5yRee8V6fseAz6W8/E+Ll23p/+D3vbZPW6flpi2/w7sSdNwF/D2zHv/KN2W+4DPl5mu9PXXgav63lfoNiPJ/D2fHtPPkdTpXAJcki4X8I003Q+RaRU5y/byEBNmZh3X5aIhMzPDgcDMrPMcCMzMOs6BwMys4xwIzMw6zoHAzKzjHAjMzDru/wPTby8hcT1iEgAAAABJRU5ErkJggg==",
Q
Quleaf 已提交
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      " You may wish to adjust the parameter settings to generate your own data set!\n"
     ]
    }
   ],
   "source": [
    "# Set parameters\n",
Q
Quleaf 已提交
271 272 273 274
    "Ntrain = 200       # Specify the training set size\n",
    "Ntest = 100        # Specify the test set size\n",
    "boundary_gap = 0.5 # Set the width of the decision boundary\n",
    "seed_data = 2      # Fixed random seed\n",
Q
Quleaf 已提交
275 276 277 278
    "\n",
    "# Generate data set\n",
    "train_x, train_y, test_x, test_y = circle_data_point_generator(\n",
    "        Ntrain, Ntest, boundary_gap, seed_data)\n",
Q
Quleaf 已提交
279 280
    "\n",
    "# Visualization\n",
Q
Quleaf 已提交
281 282 283 284 285 286 287 288 289 290 291 292
    "print(\"Visualization of {} data points in the training set: \".format(Ntrain))\n",
    "data_point_plot(train_x, train_y)\n",
    "print(\"Visualization of {} data points in the test set: \".format(Ntest))\n",
    "data_point_plot(test_x, test_y)\n",
    "print(\"\\n You may wish to adjust the parameter settings to generate your own data set!\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Data preprocessing\n",
Q
Quleaf 已提交
293 294 295
    "Different from classical machine learning, quantum classifiers need to consider data preprocessing heavily. We need one more step to convert classical data into quantum information before running on a quantum computer. In this tutorial we use \"Angle Encoding\" to get quantum data.\n",
    "\n",
    "First, we determine the number of qubits that need to be used. Because our data $\\{x^{k} = (x^{k}_0, x^{k}_1)\\}$ is two-dimensional, according to the paper by Mitarai (2018) we need at least 2 qubits for encoding. Then prepare a group of initial quantum states $|00\\rangle$. Encode the classical information $\\{x^{k}\\}$ into a group of quantum gates $U(x^{k})$ and act them on the initial quantum states. Finally we get a group of quantum states $|\\psi_{\\rm in}\\rangle^k = U(x^{k})|00\\rangle$. In this way, we have completed the encoding from classical information into quantum information! Given $m$ qubits to encode a two-dimensional classical data point, the quantum gate is:\n",
Q
Quleaf 已提交
296 297
    "\n",
    "$$\n",
Q
Quleaf 已提交
298
    "U(x^{k}) = \\otimes_{j=0}^{m-1} R_j^z\\big[\\arccos(x^{k}_{j \\, \\text{mod} \\, 2}\\cdot x^{k}_{j \\, \\text{mod} \\, 2})\\big] R_j^y\\big[\\arcsin(x^{k}_{j \\, \\text{mod} \\, 2}) \\big],\n",
Q
Quleaf 已提交
299 300 301
    "\\tag{2}\n",
    "$$\n",
    "\n",
Q
Quleaf 已提交
302
    "**Note:** In this representation, we count the first qubit as $j = 0$. For more encoding methods, see [Robust data encodings for quantum classifiers](https://arxiv.org/pdf/2003.01695.pdf). We also provide several built-in [encoding methods](./DataEncoding_EN.ipynb) in Paddle Quantum. Here we also encourage readers to try new encoding methods by themselves!\n",
Q
Quleaf 已提交
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
    "\n",
    "Since this encoding method looks quite complicated, we might as well give a simple example. Suppose we are given a data point $x = (x_0, x_1)= (1,0)$. The label of this data point should be 1, corresponding to the **blue** point in the figure above. At the same time, the 2-qubit quantum gate $U(x)$ corresponding to the data point is,\n",
    "\n",
    "$$\n",
    "U(x) =\n",
    "\\bigg( R_0^z\\big[\\arccos(x_{0}\\cdot x_{0})\\big] R_0^y\\big[\\arcsin(x_{0}) \\big] \\bigg)\n",
    "\\otimes\n",
    "\\bigg( R_1^z\\big[\\arccos(x_{1}\\cdot x_{1})\\big] R_1^y\\big[\\arcsin(x_{1}) \\big] \\bigg),\n",
    "\\tag{3}\n",
    "$$\n",
    "\n",
    "Substituting in specific values, we get:\n",
    "\n",
    "$$\n",
    "U(x) =\n",
    "\\bigg( R_0^z\\big[0\\big] R_0^y\\big[\\pi/2 \\big] \\bigg)\n",
    "\\otimes\n",
    "\\bigg( R_1^z\\big[\\pi/2\\big] R_1^y\\big[0 \\big] \\bigg),\n",
    "\\tag{4}\n",
    "$$\n",
    "\n",
    "Recall the matrix form of rotation gates:\n",
    "\n",
    "$$\n",
    "R_x(\\theta) :=\n",
    "\\begin{bmatrix}\n",
    "\\cos \\frac{\\theta}{2} &-i\\sin \\frac{\\theta}{2} \\\\\n",
    "-i\\sin \\frac{\\theta}{2} &\\cos \\frac{\\theta}{2}\n",
    "\\end{bmatrix}\n",
    ",\\quad\n",
    "R_y(\\theta) :=\n",
    "\\begin{bmatrix}\n",
    "\\cos \\frac{\\theta}{2} &-\\sin \\frac{\\theta}{2} \\\\\n",
    "\\sin \\frac{\\theta}{2} &\\cos \\frac{\\theta}{2}\n",
    "\\end{bmatrix}\n",
    ",\\quad\n",
    "R_z(\\theta) :=\n",
    "\\begin{bmatrix}\n",
    "e^{-i\\frac{\\theta}{2}} & 0 \\\\\n",
    "0 & e^{i\\frac{\\theta}{2}}\n",
    "\\end{bmatrix}.\n",
    "\\tag{5}\n",
    "$$\n",
    "\n",
    "Then the matrix form of the two-qubit quantum gate $U(x)$ can be written as\n",
    "\n",
    "$$\n",
    "U(x) = \n",
    "\\bigg(\n",
    "\\begin{bmatrix}\n",
    "1 & 0 \\\\ \n",
    "0 & 1\n",
    "\\end{bmatrix}\n",
    "\\begin{bmatrix}\n",
    "\\cos \\frac{\\pi}{4} &-\\sin \\frac{\\pi}{4} \\\\ \n",
    "\\sin \\frac{\\pi}{4} &\\cos \\frac{\\pi}{4} \n",
    "\\end{bmatrix}\n",
    "\\bigg)\n",
    "\\otimes \n",
    "\\bigg(\n",
    "\\begin{bmatrix}\n",
    "e^{-i\\frac{\\pi}{4}} & 0 \\\\ \n",
    "0 & e^{i\\frac{\\pi}{4}}\n",
    "\\end{bmatrix}\n",
    "\\begin{bmatrix}\n",
    "1 &0 \\\\ \n",
    "0 &1\n",
    "\\end{bmatrix}\n",
Q
Quleaf 已提交
371
    "\\bigg) \\, .\n",
Q
Quleaf 已提交
372 373 374
    "\\tag{6}\n",
    "$$\n",
    "\n",
Q
Quleaf 已提交
375
    "After simplification, we can get the encoded quantum state $|\\psi_{\\rm in}\\rangle$ by acting the quantum gate on the initialized quantum state $|00\\rangle$,\n",
Q
Quleaf 已提交
376 377
    "\n",
    "$$\n",
Q
Quleaf 已提交
378
    "|\\psi_{\\rm in}\\rangle =\n",
Q
Quleaf 已提交
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
    "U(x)|00\\rangle = \\frac{1}{2}\n",
    "\\begin{bmatrix}\n",
    "1-i &0 &-1+i &0 \\\\\n",
    "0 &1+i &0 &-1-i \\\\\n",
    "1-i &0 &1-i &0 \\\\\n",
    "0 &1+i &0 &1+i\n",
    "\\end{bmatrix}\n",
    "\\begin{bmatrix}\n",
    "1 \\\\\n",
    "0 \\\\\n",
    "0 \\\\\n",
    "0\n",
    "\\end{bmatrix}\n",
    "= \\frac{1}{2}\n",
    "\\begin{bmatrix}\n",
    "1-i \\\\\n",
    "0 \\\\\n",
    "1-i \\\\\n",
    "0\n",
    "\\end{bmatrix}.\n",
    "\\tag{7}\n",
    "$$\n",
    "\n",
    "Then let us take a look at how to implement this encoding method in Paddle Quantum. Note that in the code, we use the following trick: \n",
    "\n",
    "$$\n",
    "(U_1 |0\\rangle)\\otimes (U_2 |0\\rangle) = (U_1 \\otimes U_2) |0\\rangle\\otimes|0\\rangle\n",
    "= (U_1 \\otimes U_2) |00\\rangle.\n",
    "\\tag{8}\n",
    "$$"
   ]
  },
  {
   "cell_type": "code",
Q
Quleaf 已提交
413
   "execution_count": 6,
Q
Quleaf 已提交
414 415
   "metadata": {
    "ExecuteTime": {
Q
Quleaf 已提交
416 417
     "end_time": "2021-03-09T04:03:37.354267Z",
     "start_time": "2021-03-09T04:03:37.258314Z"
Q
Quleaf 已提交
418 419
    }
   },
Q
Quleaf 已提交
420
   "outputs": [],
Q
Quleaf 已提交
421
   "source": [
Q
Quleaf 已提交
422 423
    "# Gate: rotate around Y-axis, Z-axis with angle theta\n",
    "def Ry(theta):\n",
Q
Quleaf 已提交
424 425 426 427
    "    \"\"\"\n",
    "    :param theta: parameter\n",
    "    :return: Y rotation matrix\n",
    "    \"\"\"\n",
Q
Quleaf 已提交
428 429
    "    return np.array([[np.cos(theta / 2), -np.sin(theta / 2)],\n",
    "                     [np.sin(theta / 2), np.cos(theta / 2)]])\n",
Q
Quleaf 已提交
430
    "\n",
Q
Quleaf 已提交
431
    "def Rz(theta):\n",
Q
Quleaf 已提交
432 433 434 435
    "    \"\"\"\n",
    "    :param theta: parameter\n",
    "    :return: Z rotation matrix\n",
    "    \"\"\"\n",
Q
Quleaf 已提交
436 437
    "    return np.array([[np.cos(theta / 2) - np.sin(theta / 2) * 1j, 0],\n",
    "                     [0, np.cos(theta / 2) + np.sin(theta / 2) * 1j]])\n",
Q
Quleaf 已提交
438 439 440 441 442 443 444 445
    "\n",
    "# Classical -> Quantum Data Encoder\n",
    "def datapoints_transform_to_state(data, n_qubits):\n",
    "    \"\"\"\n",
    "    :param data: shape [-1, 2]\n",
    "    :param n_qubits: the number of qubits to which\n",
    "    the data transformed\n",
    "    :return: shape [-1, 1, 2 ^ n_qubits]\n",
Q
Quleaf 已提交
446
    "        the first parameter -1 in this shape means can be arbitrary. In this tutorial, it equals to BATCH.\n",
Q
Quleaf 已提交
447 448 449 450 451 452
    "    \"\"\"\n",
    "    dim1, dim2 = data.shape\n",
    "    res = []\n",
    "    for sam in range(dim1):\n",
    "        res_state = 1.\n",
    "        zero_state = np.array([[1, 0]])\n",
Q
Quleaf 已提交
453
    "        # Angle Encoding\n",
Q
Quleaf 已提交
454
    "        for i in range(n_qubits):\n",
Q
Quleaf 已提交
455
    "            # For even number qubits, perform Rz(arccos(x0^2)) Ry(arcsin(x0))\n",
Q
Quleaf 已提交
456
    "            if i % 2 == 0:\n",
Q
Quleaf 已提交
457 458
    "                state_tmp=np.dot(zero_state, Ry(np.arcsin(data[sam][0])).T)\n",
    "                state_tmp=np.dot(state_tmp, Rz(np.arccos(data[sam][0] ** 2)).T)\n",
Q
Quleaf 已提交
459
    "                res_state=np.kron(res_state, state_tmp)\n",
Q
Quleaf 已提交
460
    "            # For odd number qubits, perform Rz(arccos(x1^2)) Ry(arcsin(x1))\n",
Q
Quleaf 已提交
461
    "            elif i% 2 == 1:\n",
Q
Quleaf 已提交
462 463
    "                state_tmp=np.dot(zero_state, Ry(np.arcsin(data[sam][1])).T)\n",
    "                state_tmp=np.dot(state_tmp, Rz(np.arccos(data[sam][1] ** 2)).T)\n",
Q
Quleaf 已提交
464 465 466 467
    "                res_state=np.kron(res_state, state_tmp)\n",
    "        res.append(res_state)\n",
    "\n",
    "    res = np.array(res)\n",
Q
Quleaf 已提交
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
    "    return res.astype(\"complex128\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "quantum data after angle encoding"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "As a test, we enter the classical information:\n",
      "(x_0, x_1) = (1, 0)\n",
      "The 2-qubit quantum state output after encoding is:\n",
      "[[[0.5-0.5j 0. +0.j  0.5-0.5j 0. +0.j ]]]\n"
     ]
    }
   ],
   "source": [
Q
Quleaf 已提交
495 496 497 498 499 500 501 502 503 504 505 506 507
    "print(\"As a test, we enter the classical information:\")\n",
    "print(\"(x_0, x_1) = (1, 0)\")\n",
    "print(\"The 2-qubit quantum state output after encoding is:\")\n",
    "print(datapoints_transform_to_state(np.array([[1, 0]]), n_qubits=2))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Building Quantum Neural Network \n",
    "After completing the encoding from classical data to quantum data, we can now input these quantum states into the quantum computer. Before that, we also need to design the quantum neural network.\n",
    "\n",
Q
Quleaf 已提交
508 509
    "<img src=\"./figures/qclassifier-fig-circuit.png\" width=\"600px\" /> \n",
    "<center> Figure 3: Parameterized Quantum Circuit </center>\n",
Q
Quleaf 已提交
510
    "\n",
Q
Quleaf 已提交
511 512
    "\n",
    "For convenience, we call the parameterized quantum neural network as $U(\\boldsymbol{\\theta})$. $U(\\boldsymbol{\\theta})$ is a key component of our classifier, and it needs a certain complex structure to fit our decision boundary. Similar to traditional neural networks, the structure of a quantum neural network is not unique. The structure shown above is just one case. You could design your own structure. Let’s take the previously mentioned data point $x = (x_0, x_1)= (1,0)$ as an example. After encoding, we have obtained a quantum state $|\\psi_{\\rm in}\\rangle$,\n",
Q
Quleaf 已提交
513 514
    "\n",
    "$$\n",
Q
Quleaf 已提交
515
    "|\\psi_{\\rm in}\\rangle =\n",
Q
Quleaf 已提交
516 517 518 519 520 521 522 523 524 525 526 527 528
    "\\frac{1}{2}\n",
    "\\begin{bmatrix}\n",
    "1-i \\\\\n",
    "0 \\\\\n",
    "1-i \\\\\n",
    "0\n",
    "\\end{bmatrix}.\n",
    "\\tag{9}\n",
    "$$\n",
    "\n",
    "Then we input this quantum state into our quantum neural network (QNN). That is, multiply a unitary matrix by a vector to get the processed quantum state $|\\varphi\\rangle$\n",
    "\n",
    "$$\n",
Q
Quleaf 已提交
529
    "|\\psi_{\\rm out}\\rangle = U(\\boldsymbol{\\theta})|\\psi_{\\rm in}\\rangle.\n",
Q
Quleaf 已提交
530 531 532 533 534 535
    "\\tag{10}\n",
    "$$\n",
    "\n",
    "If we set all the QNN parameters to be $\\theta = \\pi$, then we can write down the resulting state:\n",
    "\n",
    "$$\n",
Q
Quleaf 已提交
536 537
    "|\\psi_{\\rm out}\\rangle =\n",
    "U(\\boldsymbol{\\theta} =\\pi)|\\psi_{\\rm in}\\rangle =\n",
Q
Quleaf 已提交
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
    "\\begin{bmatrix}\n",
    "0 &0 &-1 &0 \\\\\n",
    "-1 &0 &0 &0 \\\\\n",
    "0 &1 &0 &0 \\\\\n",
    "0 &0 &0 &1\n",
    "\\end{bmatrix}\n",
    "\\cdot\n",
    "\\frac{1}{2}\n",
    "\\begin{bmatrix}\n",
    "1-i \\\\\n",
    "0 \\\\\n",
    "1-i \\\\\n",
    "0\n",
    "\\end{bmatrix}\n",
    "= \\frac{1}{2}\n",
    "\\begin{bmatrix}\n",
    "-1+i \\\\\n",
    "-1+i \\\\\n",
    "0 \\\\\n",
    "0\n",
    "\\end{bmatrix}.\n",
    "\\tag{11}\n",
    "$$"
   ]
  },
  {
   "cell_type": "code",
Q
Quleaf 已提交
565
   "execution_count": 8,
Q
Quleaf 已提交
566 567
   "metadata": {
    "ExecuteTime": {
Q
Quleaf 已提交
568 569
     "end_time": "2021-03-09T04:03:37.426687Z",
     "start_time": "2021-03-09T04:03:37.374976Z"
Q
Quleaf 已提交
570 571 572 573 574
    }
   },
   "outputs": [],
   "source": [
    "# Simulation of building a quantum neural network\n",
Q
Quleaf 已提交
575
    "def cir_Classifier(theta, n, depth):  \n",
Q
Quleaf 已提交
576
    "    \"\"\"\n",
Q
Quleaf 已提交
577
    "    :param theta: dim: [n, depth + 3], \"+3\" because we add an initial generalized rotation gate to each qubit\n",
Q
Quleaf 已提交
578 579 580 581 582 583 584
    "    :param n: number of qubits\n",
    "    :param depth: circuit depth\n",
    "    :return: U_theta\n",
    "    \"\"\"\n",
    "    # Initialize the network\n",
    "    cir = UAnsatz(n)\n",
    "    \n",
Q
Quleaf 已提交
585
    "    # Build a generalized rotation layer\n",
Q
Quleaf 已提交
586 587 588 589 590 591 592 593
    "    for i in range(n):\n",
    "        cir.rz(theta[i][0], i)\n",
    "        cir.ry(theta[i][1], i)\n",
    "        cir.rz(theta[i][2], i)\n",
    "\n",
    "    # The default depth is depth = 1\n",
    "    # Build the entangleed layer and Ry rotation layer\n",
    "    for d in range(3, depth + 3):\n",
Q
Quleaf 已提交
594 595
    "        # The entanglement layer\n",
    "        for i in range(n-1):\n",
Q
Quleaf 已提交
596
    "            cir.cnot([i, i + 1])\n",
Q
Quleaf 已提交
597 598
    "        cir.cnot([n-1, 0])\n",
    "        # Add Ry to each qubit\n",
Q
Quleaf 已提交
599 600 601
    "        for i in range(n):\n",
    "            cir.ry(theta[i][d], i)\n",
    "\n",
Q
Quleaf 已提交
602
    "    return cir\n"
Q
Quleaf 已提交
603 604 605 606 607 608
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Q
Quleaf 已提交
609 610 611 612
    "### Measurement\n",
    "After passing through the PQC $U(\\theta)$, the quantum data becomes $\\lvert \\psi_{\\rm out}\\rangle^k = U(\\theta)\\lvert \\psi_{\\rm in} \\rangle^k$. To get its label, we need to measure this new quantum state to obtain the classical information. These processed classical information will then be used to calculate the loss function $\\mathcal{L}(\\boldsymbol{\\theta})$. Finally, based on the gradient descent algorithm, we continuously update the PQC parameters $\\boldsymbol{\\theta}$ and optimize the loss function. \n",
    "\n",
    "Here we measure the expected value of the Pauli $Z$ operator on the first qubit. Specifically,\n",
Q
Quleaf 已提交
613 614 615
    "\n",
    "$$\n",
    "\\langle Z \\rangle =\n",
Q
Quleaf 已提交
616
    "\\langle \\psi_{\\rm out} |Z\\otimes I\\cdots \\otimes I| \\psi_{\\rm out}\\rangle.\n",
Q
Quleaf 已提交
617 618 619 620 621 622 623 624 625 626 627 628 629 630
    "\\tag{12}\n",
    "$$\n",
    "\n",
    "Recall that the matrix of the Pauli $Z$ operator is defined as:\n",
    "\n",
    "$$\n",
    "Z := \\begin{bmatrix} 1 &0 \\\\ 0 &-1 \\end{bmatrix}.\n",
    "\\tag{13}\n",
    "$$\n",
    "\n",
    "Continuing our previous 2-qubit example, the expected value we get after the measurement is\n",
    "\n",
    "$$\n",
    "\\langle Z \\rangle =\n",
Q
Quleaf 已提交
631
    "\\langle \\psi_{\\rm out} |Z\\otimes I| \\psi_{\\rm out}\\rangle =\n",
Q
Quleaf 已提交
632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
    "\\frac{1}{2}\n",
    "\\begin{bmatrix}\n",
    "-1-i \\quad\n",
    "-1-i \\quad\n",
    "0 \\quad\n",
    "0\n",
    "\\end{bmatrix}\n",
    "\\begin{bmatrix}\n",
    "1 &0 &0 &0 \\\\\n",
    "0 &1 &0 &0 \\\\\n",
    "0 &0 &-1 &0 \\\\\n",
    "0 &0 &0 &-1\n",
    "\\end{bmatrix}\n",
    "\\cdot\n",
    "\\frac{1}{2}\n",
    "\\begin{bmatrix}\n",
    "-1+i \\\\\n",
    "-1+i \\\\\n",
    "0 \\\\\n",
    "0\n",
    "\\end{bmatrix}\n",
    "= 1. \\tag{14}\n",
    "$$\n",
    "\n",
Q
Quleaf 已提交
656 657
    "This measurement result seems to be our original label 1. Does this mean that we have successfully classified this data point? This is not the case because the range of $\\langle Z \\rangle$ is usually between $[-1,1]$. \n",
    "To match it to our label range $y^{k} \\in \\{0,1\\}$, we need to map the upper and lower limits. The simplest mapping is \n",
Q
Quleaf 已提交
658 659
    "\n",
    "$$\n",
Q
Quleaf 已提交
660
    "\\tilde{y}^{k} = \\frac{\\langle Z \\rangle}{2} + \\frac{1}{2} + bias \\quad \\in [0, 1].\n",
Q
Quleaf 已提交
661 662 663 664 665 666
    "\\tag{15}\n",
    "$$\n",
    "\n",
    "Using bias is a trick in machine learning. The purpose is to make the decision boundary not restricted by the origin or some hyperplane. Generally, the default bias is initialized to be 0, and the optimizer will continuously update it like all the other parameters $\\theta$ in the iterative process to ensure $\\tilde{y}^{k} \\in [0, 1]$. Of course, you can also choose other complex mappings (activation functions), such as the sigmoid function. After mapping, we can regard $\\tilde{y}^{k}$ as the label we estimated. $\\tilde{y}^{k}< 0.5$ corresponds to label 0, and $\\tilde{y}^{k}> 0.5$ corresponds to label 1. It's time to quickly review the whole process before we finish discussion,\n",
    "\n",
    "$$\n",
Q
Quleaf 已提交
667 668 669
    "x^{k} \\rightarrow |\\psi_{\\rm in}\\rangle^{k} \\rightarrow U(\\boldsymbol{\\theta})|\\psi_{\\rm in}\\rangle^{k} \\rightarrow\n",
    "|\\psi_{\\rm out}\\rangle^{k} \\rightarrow ^{k}\\langle \\psi_{\\rm out} |Z\\otimes I\\cdots \\otimes I| \\psi_{\\rm out} \\rangle^{k}\n",
    "\\rightarrow \\langle Z \\rangle  \\rightarrow \\tilde{y}^{k}.\\tag{16}\n",
Q
Quleaf 已提交
670 671
    "$$\n",
    "\n",
Q
Quleaf 已提交
672 673 674 675 676 677 678 679 680
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "###  Loss function\n",
    "To calculate the loss function in Eq. (1), we need to measure all training data in each iteration. In real practice, we devide the training data into \"Ntrain/BATCH\" groups, where each group contains \"BATCH\" data pairs.\n",
Q
Quleaf 已提交
681
    "\n",
Q
Quleaf 已提交
682
    "The loss function for the i-th group is \n",
Q
Quleaf 已提交
683
    "$$\n",
Q
Quleaf 已提交
684
    "\\mathcal{L}_{i} = \\sum_{k=1}^{BATCH} \\frac{1}{BATCH} |y^{i,k} - \\tilde{y}^{i,k}|^2,\\tag{17}\n",
Q
Quleaf 已提交
685
    "$$\n",
Q
Quleaf 已提交
686 687 688
    "and we train the PQC with $\\mathcal{L}_{i}$ for \"EPOCH\" times. \n",
    "\n",
    "If you set \"BATCH = Ntrain\", there will be only one group, and Eq. (17) becomes Eq. (1)."
Q
Quleaf 已提交
689 690 691 692
   ]
  },
  {
   "cell_type": "code",
Q
Quleaf 已提交
693
   "execution_count": 9,
Q
Quleaf 已提交
694 695
   "metadata": {
    "ExecuteTime": {
Q
Quleaf 已提交
696 697
     "end_time": "2021-03-09T04:03:37.439183Z",
     "start_time": "2021-03-09T04:03:37.432202Z"
Q
Quleaf 已提交
698 699 700 701 702 703 704
    }
   },
   "outputs": [],
   "source": [
    "# Generate Pauli Z operator that only acts on the first qubit\n",
    "# Act the identity matrix on rest of the qubits\n",
    "def Observable(n):\n",
Q
Quleaf 已提交
705
    "    r\"\"\"\n",
Q
Quleaf 已提交
706 707 708 709 710 711 712 713 714
    "    :param n: number of qubits\n",
    "    :return: local observable: Z \\otimes I \\otimes ...\\otimes I\n",
    "    \"\"\"\n",
    "    Ob = pauli_str_to_matrix([[1.0,'z0']], n)\n",
    "    return Ob"
   ]
  },
  {
   "cell_type": "code",
Q
Quleaf 已提交
715
   "execution_count": 10,
Q
Quleaf 已提交
716 717
   "metadata": {
    "ExecuteTime": {
Q
Quleaf 已提交
718 719
     "end_time": "2021-03-09T04:03:37.503213Z",
     "start_time": "2021-03-09T04:03:37.473028Z"
Q
Quleaf 已提交
720 721 722 723 724
    }
   },
   "outputs": [],
   "source": [
    "# Build the computational graph\n",
Q
Quleaf 已提交
725
    "class Opt_Classifier(paddle.nn.Layer):\n",
Q
Quleaf 已提交
726 727 728
    "    \"\"\"\n",
    "    Construct the model net\n",
    "    \"\"\"\n",
Q
Quleaf 已提交
729 730 731
    "    def __init__(self, n, depth, seed_paras=1, dtype='float64'):\n",
    "        # Initialization, use n, depth give the initial PQC\n",
    "        super(Opt_Classifier, self).__init__()\n",
Q
Quleaf 已提交
732 733 734 735 736
    "        self.n = n\n",
    "        self.depth = depth\n",
    "        \n",
    "        # Initialize the parameters theta with a uniform distribution of [0, 2*pi]\n",
    "        self.theta = self.create_parameter(\n",
Q
Quleaf 已提交
737
    "            shape=[n, depth + 3],  # \"+3\" because we add an initial generalized rotation gate to each qubit\n",
Q
Quleaf 已提交
738
    "            default_initializer=paddle.nn.initializer.Uniform(low=0.0, high=2*PI),\n",
Q
Quleaf 已提交
739 740 741 742 743
    "            dtype=dtype,\n",
    "            is_bias=False)\n",
    "        # Initialize bias\n",
    "        self.bias = self.create_parameter(\n",
    "            shape=[1],\n",
Q
Quleaf 已提交
744
    "            default_initializer=paddle.nn.initializer.Normal(std=0.01),\n",
Q
Quleaf 已提交
745 746 747 748 749 750 751
    "            dtype=dtype,\n",
    "            is_bias=False)\n",
    "\n",
    "    # Define forward propagation mechanism, and then calculate loss function and cross-validation accuracy\n",
    "    def forward(self, state_in, label):\n",
    "        \"\"\"\n",
    "        Args:\n",
Q
Quleaf 已提交
752
    "            state_in: The input quantum state, shape [-1, 1, 2^n] -- in this tutorial: [BATCH, 1, 2^n]\n",
Q
Quleaf 已提交
753 754 755
    "            label: label for the input state, shape [-1, 1]\n",
    "        Returns:\n",
    "            The loss:\n",
Q
Quleaf 已提交
756
    "                L = 1/BATCH * ((<Z> + 1)/2 + bias - label)^2\n",
Q
Quleaf 已提交
757
    "        \"\"\"\n",
Q
Quleaf 已提交
758 759 760
    "        # Convert Numpy array to tensor\n",
    "        Ob = paddle.to_tensor(Observable(self.n))\n",
    "        label_pp = paddle.to_tensor(label)\n",
Q
Quleaf 已提交
761
    "\n",
Q
Quleaf 已提交
762 763
    "        # Build the quantum circuit\n",
    "        cir = cir_Classifier(self.theta, n=self.n, depth=self.depth)\n",
Q
Quleaf 已提交
764
    "        Utheta = cir.U\n",
Q
Quleaf 已提交
765 766
    "        \n",
    "        # Because Utheta is achieved by learning, we compute with row vectors to speed up without affecting the training effect\n",
Q
Quleaf 已提交
767
    "        state_out = matmul(state_in, Utheta)  # shape:[-1, 1, 2 ** n], the first parameter is BATCH in this tutorial\n",
Q
Quleaf 已提交
768
    "        \n",
Q
Quleaf 已提交
769
    "        # Measure the expected value of Pauli Z operator <Z> -- shape [-1,1,1]\n",
Q
Quleaf 已提交
770
    "        E_Z = matmul(matmul(state_out, Ob), transpose(paddle.conj(state_out), perm=[0, 2, 1]))\n",
Q
Quleaf 已提交
771 772
    "        \n",
    "        # Mapping <Z> to the estimated value of the label\n",
Q
Quleaf 已提交
773 774
    "        state_predict = paddle.real(E_Z)[:, 0] * 0.5 + 0.5 + self.bias  # |y^{i,k} - \\tilde{y}^{i,k}|^2\n",
    "        loss = paddle.mean((state_predict - label_pp) ** 2)  # Get average for \"BATCH\" |y^{i,k} - \\tilde{y}^{i,k}|^2: L_i:shape:[1,1]\n",
Q
Quleaf 已提交
775 776
    "        \n",
    "        # Calculate the accuracy of cross-validation\n",
Q
Quleaf 已提交
777
    "        is_correct = (paddle.abs(state_predict - label_pp) < 0.5).nonzero().shape[0]\n",
Q
Quleaf 已提交
778 779
    "        acc = is_correct / label.shape[0]\n",
    "\n",
Q
Quleaf 已提交
780 781
    "        return loss, acc, state_predict.numpy(), cir\n",
    "    "
Q
Quleaf 已提交
782 783 784 785 786 787 788 789 790 791 792 793 794
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Training process\n",
    "\n",
    "After defining all the concepts above, we might take a look at the actual training process."
   ]
  },
  {
   "cell_type": "code",
Q
Quleaf 已提交
795 796
   "execution_count": 11,
   "metadata": {},
Q
Quleaf 已提交
797 798
   "outputs": [],
   "source": [
Q
Quleaf 已提交
799 800
    "# Draw the figure of the final training classifier\n",
    "def heatmap_plot(Opt_Classifier, N):\n",
Q
Quleaf 已提交
801 802 803 804 805 806 807 808 809 810 811
    "    # generate data points x_y_\n",
    "    Num_points = 30\n",
    "    x_y_ = []\n",
    "    for row_y in np.linspace(0.9, -0.9, Num_points):\n",
    "        row = []\n",
    "        for row_x in np.linspace(-0.9, 0.9, Num_points):\n",
    "            row.append([row_x, row_y])\n",
    "        x_y_.append(row)\n",
    "    x_y_ = np.array(x_y_).reshape(-1, 2).astype(\"float64\")\n",
    "\n",
    "    # make prediction: heat_data\n",
Q
Quleaf 已提交
812
    "    input_state_test = paddle.to_tensor(\n",
Q
Quleaf 已提交
813
    "        datapoints_transform_to_state(x_y_, N))\n",
Q
Quleaf 已提交
814
    "    loss_useless, acc_useless, state_predict, cir = Opt_Classifier(state_in=input_state_test, label=x_y_[:, 0])\n",
Q
Quleaf 已提交
815 816 817 818 819 820 821
    "    heat_data = state_predict.reshape(Num_points, Num_points)\n",
    "\n",
    "    # plot\n",
    "    fig = plt.figure(1)\n",
    "    ax = fig.add_subplot(111)\n",
    "    x_label = np.linspace(-0.9, 0.9, 3)\n",
    "    y_label = np.linspace(0.9, -0.9, 3)\n",
Q
Quleaf 已提交
822
    "    ax.set_xticks([0, Num_points // 2, Num_points - 1])\n",
Q
Quleaf 已提交
823
    "    ax.set_xticklabels(x_label)\n",
Q
Quleaf 已提交
824
    "    ax.set_yticks([0, Num_points // 2, Num_points - 1])\n",
Q
Quleaf 已提交
825 826 827
    "    ax.set_yticklabels(y_label)\n",
    "    im = ax.imshow(heat_data, cmap=plt.cm.RdBu)\n",
    "    plt.colorbar(im)\n",
Q
Quleaf 已提交
828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
    "    plt.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Learn the PQC via Adam"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {
    "ExecuteTime": {
     "end_time": "2021-03-09T04:03:38.325454Z",
     "start_time": "2021-03-09T04:03:38.299975Z"
    }
   },
   "outputs": [],
   "source": [
    "def QClassifier(Ntrain, Ntest, gap, N, DEPTH, EPOCH, LR, BATCH, seed_paras, seed_data,):\n",
Q
Quleaf 已提交
850 851
    "    \"\"\"\n",
    "    Quantum Binary Classifier\n",
Q
Quleaf 已提交
852 853 854 855 856 857 858 859 860 861 862
    "    Input:\n",
    "        Ntrain     # Specify the training set size\n",
    "        Ntest      # Specify the test set size\n",
    "        gap        # Set the width of the decision boundary\n",
    "        N          # Number of qubits required\n",
    "        DEPTH      # Circuit depth\n",
    "        BATCH      # Batch size during training\n",
    "        EPOCH      # Number of training epochs, the total iteration number \"EPOCH * (Ntrain / BATCH)\" is chosen to be about 200\n",
    "        LR         # Set the learning rate\n",
    "        seed_paras # Set random seed to initialize various parameters\n",
    "        seed_data  # Fixed random seed required to generate the data set\n",
Q
Quleaf 已提交
863
    "    \"\"\"\n",
Q
Quleaf 已提交
864 865 866 867
    "    # Generate data set\n",
    "    train_x, train_y, test_x, test_y = circle_data_point_generator(Ntrain=Ntrain, Ntest=Ntest, boundary_gap=gap, seed_data=seed_data)\n",
    "    # Read the dimension of the training set\n",
    "    N_train = train_x.shape[0]\n",
Q
Quleaf 已提交
868
    "    \n",
Q
Quleaf 已提交
869
    "    paddle.seed(seed_paras)\n",
Q
Quleaf 已提交
870 871
    "    # Initialize the registers to store the accuracy rate and other information\n",
    "    summary_iter, summary_test_acc = [], []\n",
Q
Quleaf 已提交
872 873 874
    "\n",
    "    # Generally, we use Adam optimizer to get relatively good convergence\n",
    "    # Of course, it can be changed to SGD or RMSprop\n",
Q
Quleaf 已提交
875 876
    "    myLayer = Opt_Classifier(n=N, depth=DEPTH)  # Initial PQC\n",
    "    opt = paddle.optimizer.Adam(learning_rate=LR, parameters=myLayer.parameters())\n",
Q
Quleaf 已提交
877 878 879
    "\n",
    "\n",
    "    # Optimize iteration\n",
Q
Quleaf 已提交
880 881 882 883
    "    # We divide the training set into \"Ntrain/BATCH\" groups\n",
    "    # For each group the final circuit will be used as the initial circuit for the next group\n",
    "    # Use cir to record the final circuit after learning.\n",
    "    i = 0  # Record the iteration number\n",
Q
Quleaf 已提交
884
    "    for ep in range(EPOCH):\n",
Q
Quleaf 已提交
885
    "        # Learn for each group\n",
Q
Quleaf 已提交
886
    "        for itr in range(N_train // BATCH):\n",
Q
Quleaf 已提交
887 888
    "            i += 1  # Record the iteration number\n",
    "            # Encode classical data into a quantum state |psi>, dimension [BATCH, 2 ** N]\n",
Q
Quleaf 已提交
889 890 891
    "            input_state = paddle.to_tensor(datapoints_transform_to_state(train_x[itr * BATCH:(itr + 1) * BATCH], N))\n",
    "\n",
    "            # Run forward propagation to calculate loss function\n",
Q
Quleaf 已提交
892
    "            loss, train_acc, state_predict_useless, cir \\\n",
Q
Quleaf 已提交
893 894 895
    "                = myLayer(state_in=input_state, label=train_y[itr * BATCH:(itr + 1) * BATCH])  # optimize the given PQC\n",
    "            # Print the performance in iteration\n",
    "            if i % 30 == 5:\n",
Q
Quleaf 已提交
896 897
    "                # Calculate the correct rate on the test set test_acc\n",
    "                input_state_test = paddle.to_tensor(datapoints_transform_to_state(test_x, N))\n",
Q
Quleaf 已提交
898
    "                loss_useless, test_acc, state_predict_useless, t_cir \\\n",
Q
Quleaf 已提交
899
    "                    = myLayer(state_in=input_state_test,label=test_y)\n",
Q
Quleaf 已提交
900
    "                print(\"epoch:\", ep, \"iter:\", itr,\n",
Q
Quleaf 已提交
901 902 903
    "                      \"loss: %.4f\" % loss.numpy(),\n",
    "                      \"train acc: %.4f\" % train_acc,\n",
    "                      \"test acc: %.4f\" % test_acc)\n",
Q
Quleaf 已提交
904 905
    "                # Store accuracy rate and other information\n",
    "                summary_iter.append(itr + ep * N_train)\n",
Q
Quleaf 已提交
906
    "                summary_test_acc.append(test_acc) \n",
Q
Quleaf 已提交
907 908 909 910 911
    "\n",
    "            # Run back propagation to minimize the loss function\n",
    "            loss.backward()\n",
    "            opt.minimize(loss)\n",
    "            opt.clear_grad()\n",
Q
Quleaf 已提交
912 913 914 915
    "            \n",
    "    # Print the final circuit\n",
    "    print(\"The trained circuit:\")\n",
    "    print(cir)\n",
Q
Quleaf 已提交
916
    "    # Draw the decision boundary represented by heatmap\n",
Q
Quleaf 已提交
917
    "    heatmap_plot(myLayer, N=N)\n",
Q
Quleaf 已提交
918
    "\n",
Q
Quleaf 已提交
919
    "    return summary_test_acc\n"
Q
Quleaf 已提交
920 921 922 923
   ]
  },
  {
   "cell_type": "code",
Q
Quleaf 已提交
924
   "execution_count": 13,
Q
Quleaf 已提交
925 926
   "metadata": {
    "ExecuteTime": {
Q
Quleaf 已提交
927 928
     "end_time": "2021-03-09T04:04:19.852356Z",
     "start_time": "2021-03-09T04:03:38.709491Z"
Q
Quleaf 已提交
929 930 931 932 933 934 935 936 937 938
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The dimensions of the training set x (200, 2) and y (200, 1)\n",
      "The dimensions of the test set x (100, 2) and y (100, 1) \n",
      "\n",
Q
Quleaf 已提交
939 940 941 942 943 944 945
      "epoch: 0 iter: 4 loss: 0.1547 train acc: 0.8500 test acc: 0.6400\n",
      "epoch: 3 iter: 4 loss: 0.1337 train acc: 0.9500 test acc: 0.8800\n",
      "epoch: 6 iter: 4 loss: 0.1265 train acc: 1.0000 test acc: 1.0000\n",
      "epoch: 9 iter: 4 loss: 0.1247 train acc: 1.0000 test acc: 1.0000\n",
      "epoch: 12 iter: 4 loss: 0.1261 train acc: 1.0000 test acc: 1.0000\n",
      "epoch: 15 iter: 4 loss: 0.1268 train acc: 1.0000 test acc: 1.0000\n",
      "epoch: 18 iter: 4 loss: 0.1269 train acc: 1.0000 test acc: 1.0000\n",
Q
Quleaf 已提交
946
      "The trained circuit:\n",
Q
Quleaf 已提交
947
      "--Rz(0.542)----Ry(3.458)----Rz(2.692)----*--------------x----Ry(6.191)--\n",
Q
Quleaf 已提交
948
      "                                         |              |               \n",
Q
Quleaf 已提交
949
      "--Rz(3.514)----Ry(1.543)----Rz(2.499)----x----*---------|----Ry(2.968)--\n",
Q
Quleaf 已提交
950
      "                                              |         |               \n",
Q
Quleaf 已提交
951
      "--Rz(5.947)----Ry(3.161)----Rz(3.897)---------x----*----|----Ry(1.579)--\n",
Q
Quleaf 已提交
952
      "                                                   |    |               \n",
Q
Quleaf 已提交
953
      "--Rz(0.718)----Ry(5.038)----Rz(1.348)--------------x----*----Ry(0.036)--\n",
Q
Quleaf 已提交
954
      "                                                                        \n"
Q
Quleaf 已提交
955 956 957 958
     ]
    },
    {
     "data": {
Q
Quleaf 已提交
959
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAATsAAAD5CAYAAABYi5LMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAAhMklEQVR4nO2dfYxld3nfv9/7Nnd2ZnY9u2NjwMbgYjfYITXFKm1RC4obbFIJQ0gTg9qaisZ9gbRKQtRaqgoyopg2BVEJpWwcKyYSb3IkalQUamLcVLyFpRAsOwG/UeLF4PXs++7M3Lenf5wzw/X4Ps85594zO+fO/X6ko71zn/s7v9/cc+bZ3zm/73m+NDMIIcRep7bbAxBCiAuBkp0QYiZQshNCzARKdkKImUDJTggxEyjZCSFmgkbRBiRvAvBRAHUAd5nZndviVwC4G8DFAI4D+Mdm9lTWfmtzi1ZfODQ6VqvHY6r5OZuMGvrBqFnmBybZ75h9TrTfihGKoSZQSsX79aOROitTuhWEB4O+3yyK9Xphl4N+d3S7jTOw3vpEp0pt/2WG3nquz9ra6hfN7KZJ+iuTQsmOZB3AxwD8AoCnAHyT5H1m9sjQx34HwCfM7B6SPw/ggwD+Sda+6wuHsPIL/25kbG7xYNi22Z5zY42mnwjrDT9Wq8eT3qgta/75VIsSYdAuifuxWkbbcWH4v4XPJPrNwSBIPIOgz6AdAAyCMQ16/o57XT/x9DrBgDLads6fDWKn3dj6qWNhn2urR0e+3/3L/xG2y0V/A81XvCXXRzv/966VyTssj6KXsX8LwGNm9oSZdQB8GsDN2z5zDYAH0tdfHhEXQkwxrNVzbVWjaLJ7MYC/Gvr5qfS9Yf4cwC+lr98CYInk6OtTIcSUwZlJdnl4D4DXkfw2gNcBOApg5Fye5G0kj5A8Mtjwp/RCiIrA6U12RRcojgK4fOjny9L3tjCzHyGd2ZFcBPBWMzs5amdmdhjAYQBoHrxCD+kKUXFIot5s7fYwxqJosvsmgKtIvgxJkrsFwNuHP0ByBcBxMxsAuB3JyqwQYo9QxVlbHgolOzPrkXw3gC8ikZ7cbWYPk7wDwBEzuw/A6wF8kKQB+FMA78qz71Z7Dpe94uUjY0sH58O2K0v+auyhRf9/oQP7/NhSO/5q5lv+AW83/Fiz7q9uNjNWVJvBCnE9WDWNdrtTq7hZRCuu0aJqd+Cvfnb78cXBerDiut7zV03PrPtSj1PnO2Gfq2f9+LHTG27s5Mk1N3Z69Yqwz+NHXzTy/WefvD9sl4v0MnYaKayzM7MvAPjCtvf+49DrewHcO/nQhBBVg4h1rVVmOkcthNglylugIHkTye+RfIzkvx8RfwnJL5P8NsnvkvzFodjtabvvkbwxz8gLz+yEEDNMSZexOR9Q+A8APmtmv0vyGiRXlC9NX98C4FoALwLwJZJXm5l/LwJKdkKIIpColbMau/WAQrJbbj6gMJzsDMD+9PUBAD9KX98M4NNmtgHgSZKPpfv7WtShkp0QIjfJPbvcM7sVkkeGfj6cys2A0Q8ovGZb+/cB+F8kfx3AAoB/MNT269vabn+44Xko2Qkh8lPsMvZZM7t+gt7eBuAPzOy/kvw7AP6Q5M+OuzMlOyFEAZhZhSgnmQ8oAHgngJsAwMy+RrINYCVn2+dRmWTXatXxkssPjIxde9no9ze5fNnX4a0EWroDc/6vfyBLZxdUU2kF2rXGBDq7RhAPdhtXWsmQ2Y27XB/XAonLJvWDYD/YcTej6kkn0OFFsfNB5ZJTgQYPAJ4NdHhPn/V1dk884z8++dBfnQr79DSMJ5rNsF0uWJqoOPMBBQA/BHADgD8g+QoAbQDHANwH4JMkP4xkgeIqAH+W1WFlkp0QovoQRK0x+QJFzgcUfgvA75H8DSSLFe+wpHbYwyQ/i2QxowfgXVkrsYCSnRCiCCU+QZHjAYVHALzWafsBAB8o0p+SnRCiADP0uJgQYoYhwLqSnRBij0PN7IQQM8EsVT3ZKdrNOn7mRftHxq55wVLY9qUX+dKTg/v8X3ExkI8sBDEAmKv5UgV2zvuxni834Ebs2sTeaNcoAMDAl0AwiIUONnnibqcZopUgbjX/mFndl09Ysx332fDjg30LbmzD/BJiZ7uxnOOFG37bSxb92FLL/w76GRKb86dHn0eRSVQR6o3KpI1CTOeohRC7AslMF7yqomQnhCjEuPaau42SnRCiELtV3XpSlOyEEPlhtpl7VVGyE0LkJinxpGQnhNjrkKgHxk9VpjLJrtWo4SWOi1gkLQGAS5f85f/lucAFrO87ONXOxZUluH7Gb9v19zs4d3qsGAAMOr40xaJYN5KsxM9PW0bcI1OLFcQ550tE2PJjtXlfPgIA3OdLmOr7RsueAKA+71fdac8vh33uW/TP3UjdFLmvnVwPjieAv3x69LlZKylJaWYnhNjzkFqgEELMCFl68aqiZCeEKIR0dkKIPQ/J0h47u9BM56iFELsGa8y1Ze4n2yT7IyS/k27fJ3lyKNYfit2XZ9ya2Qkh8sPY0yT3bnKYZJvZbwx9/tcBvGpoF2tmdl2RPiuT7Bo14pBjjhNVLgGAg4E5TnvDl5DUzh7zd3rm2bDPwalVN9YLYoPzvmSlf9aPAUD3vC8v6a/5xi79rl/1xCIHGwA2GK/qCWvxRQMDGUSj7Xsc1INYa38sPaktXuTHDhzy+1y+xI8d8GVGALBvyW9r874UZj0wAHpBUC0FAA4ujP6OIsOmvJQoKs5jkj3M2wC8d5IOdRkrhChAvkvYNCGukDwytN02tKNRJtkjja5JXgHgZQAeGHq7ne7z6yTfnGfklZnZCSGmgGI6u0lNsje5BcC92xzErjCzoySvBPAAyYfM7PFoJ5rZCSFyQwC1OnNtGRQxur4FwKeG3zCzo+m/TwB4EM+9nzcSJTshRH7SmV2eLYMtk2ySLSQJ7XmrqiR/BsAygK8NvbdMci59vYLEbtG717eFLmOFEIUoY4Eip0k2kCTBT6fm2Ju8AsDHSQ6QTNjuHF7F9VCyE0IUgKU9QZFlkp3+/L4R7b4K4JVF+1OyE0LkRoUASqBRIw62R5dqilzAAGCu57t5hVq6E0+7of7qj8M+e6t+287xk25s4+RZv92Zc3Gf53ydXW890NkFsUGWzi7Qe0Uw4wZ1vemferXAWau5zy/x1Nq/L+xz7qITbmz+kpNuzNb941Lv+d8tANSDp+b3Lfu/y/6WXwJreT52NDu06OjsshcNcqEST0KIPQ+Z1J6cRpTshBC5IYi6ZnZCiD0PoWQnhNj7EEp2QogZgCynoMBuoGQnhMgNSS1QTEqdxAGnVNNChvQkcgLjOV9u0AvkJb1j3mN6CWs/9ktAra3641lf9R3EOmd8CQ0AdM76rlLdc36s3/EdwvrdDHexHZOe+NKKxrx/WrYWfNnF3H5fygEAndP+9xtJdxb7wXeU4aLWbPtlp2ptv8TTvjm/5NSBufjPdtH5OypDH5dcxirZCSFmAN2zE0LseajVWCHELCCdnRBiZqjLSlEIsdfR42JCiJlAOrsSIIE553+MuVosf+CGX5WiHzh99U8848bWjx0P+zx/zJe0rD1z0m/3rD/WjdMbYZ9RvLfuO4j11qZNeuLHWo5zFgC0l335DRC7rEVEFVr2zcVyl9DRbOliN9Ze8GP7gu8OAOadqjGlWCBO8T276ZyPCiF2jXqNubYsJjTJvpXko+l2a55xV2ZmJ4SoPmVJTyYxySZ5EImH7PUADMC30rb+5RY0sxNCFGCzEEAJM7stk2wz6wDYNMn2eBt+6jB2I4D7zex4muDuB3BTVoea2QkhclPw2dgVkkeGfj5sZofT16NMsl/j9LndJDu3wfYwSnZCiEIUuIzdSZPswugyVgiRm817diVcxk5ikl2k7RaVmdmRQMuRK7DrG80kcb+axeDsSTfWOx1VJ/FjSdyvXhLJS9ZW/bGunYh/z6jqSee8H1sL5COdQSwt6dt40pMslX0r+GOYP+PH2kuBjCao7gLEMppa3f9/vz7vy12aGSY/jUNn3Fh03jbMl8nMNeLvdp9j1lOO9KS0Z2O3TLKRJKpbALz9ef2NMMlG4jX7n0gupz+/AcDtWR1WJtkJIaaAklZjJzHJNrPjJN+PJGECwB1mFgtjoWQnhCgAQTRLqmc3rkl2+v7dAO4u0p+SnRAiNwRQkv3sBUfJTgiRH5ZT8Xg3ULITQuQmmdkp2QkhZoAyVnV3AyU7IURudM+uBJJVHkdn14tLH9m6r1eyNV/z1j3n69oiJ6okvubG1gO9XKSlWz8R/57nN3zt1dnewN9voKXL1tmFYZesP4hIZ7fW92MHgjJXg77/HQBA3dGfAXFZqeaSfy50M86TuXO+HhMd/1xgz3c7a9R8hzXAL65ZxoSMJBqBJrHKVCbZCSGmA83shBB7HkL37IQQs4CsFIUQs4BmdkKImUH37IQQex6SaGo1djKIwKItWIYHYunJYH086Un3fFxuKXL66pzzxxuVaYqkJQBwqutLK84FsotpK/HUGXPqUI9VIOExay74co7eBOeJBfISC85N9v3zpE6/5BQAtJxkVMaELLmMLWFHu0Blkp0QYjrQ42JCiD2PFiiEELMBgSm9ZScPCiFEfjaLd+bZMveVYZKdfuZXSD5C8mGSnxx6vz9koH3fqLbb0cxOCJGbsi5j85hkk7wKibfEa83sBMlLhnaxZmbXFelTyU4IkZ/yLmO3TLIBgOSmSfYjQ5/5NQAfS42wYWbPTNJhZZId6S9pcxBLMqwbSFN6/hJ+f92XIvTXY7lLd80fU2/dj0UuYFHlEiCWl0Rtp016Et1dqdMfTyvj+2uNecx668E51PFjQIb0JDg3EZzzWcnGm3mxJHexAjO7SU2yrwYAkl9BYsrzPjP74zTWTvfdA3CnmX0uazCVSXZCiOmgQM6c1CS7AeAqAK9H4g37pyRfaWYnAVxhZkdJXgngAZIPmdnj0c60QCGEKEQNzLVlkMfo+ikA95lZ18yeBPB9JMkPZnY0/fcJAA8CeFX2uIUQIieJSXa+LYMtk2ySLST+sNtXVT+HZFYHkitILmufILlMcm7o/dfiuff6RqLLWCFEflhOxeOcJtlfBPAGko8A6AP4bTNbJfl3AXyc5ADJhO3O4VVcDyU7IURumO8SNRdZJtlmZgB+M92GP/NVAK8s2p+SnRCiEFP6tFi1kp0rVxjEkoJIXjIIpAH9rr+83+/0wy4HXT/eW/NjkdSjm6HyiNqOG1vLMKkZ33Anq6F/UycaU1gtJUNGE8lLouMdxQbBOQTE518omQqkJ7WMqjA7/TiXqp4IIfY8MskWQswMU5rrlOyEEMWYVr2akp0QIjdkOY+d7QZKdkKIQmiBQggxE0zpxE7JTgiRH63G7jQWa8Fs4OugLNDoWaDnGmQIzKL4INhvtNssndhO6OyydHQZCkefCTSD42rpsnSKg6DtIHBu6weaykEno/xYpBENzlsG53xWrnFLPMXN8hGUYqs605HshBCVYUpznZKdECI/8o0VQswMkp4IIfY8mtkJIWYETu1q7LQ++SGE2A24+RRF9pa5q8l8Y28l+Wi63Zpn6GPN7EjeBOCjSCqM3mVmd26LzwH4BIBXA1gF8Ktm9oNx+tprjOvWNUvoO6ouNANLOD6T+MaSPAjgvQCuRyJy+lba9kTUZ+GZ3dAg3wjgGgBvI3nNto+9E8AJM3s5gI8A+FDRfoQQFcUG+baYLd9YM+sA2PSNHcbzjb0RwP1mdjyN3Q/gpqwOx7mMzTPImwHck76+F8ANnNYlHCHEc6ANcm0ZjPKNffG2z1wN4GqSXyH59fSKMm/b5zHOZWwec9utz6TGGqcAHALw7Bj9CSEqg4VPfmwjMsnOw0jf2ALtn7ezXYPkbQBuA4AXX3Z5xqeFELuOWZ5L1E0ik+y8vrHfMLMugCdJbvrGHkVqsTjU9sGswYxzGZtnkFufIdkAcADJQsVzMLPDZna9mV1/aGVljKEIIS40JV3Gju0bi59aLC6TXAbwhvS9kHGSXZ5B3gdgczn4lwE8kNqiCSGmnRIWKMysB2DTN/YvAHx20zeW5JvSj30RwGrqG/tlpL6xZnYcwPuR5KJvArgjfS+k8GVsTnPb3wfwhyQfA3AcSULcMVir7+TuSyUSZGaYRk2tmLMo435Hk4hGGTwWwJq/Z05i5RWct8bx9ztw5hXlzDYKXcbGexrTNzaN3Q3g7iL9jXXPLscg1wH8o3H2LYSoMIbSkt2FRo+LCSEKYGA/ruFXVZTshBDF0MxOCLHnMUu2KUTJTghRDM3shBCzQA4NXSVRshNCFKA86cmFplLJztMHIUtzFOmgglit6f/69VbcZ73pa6TqLT8WOWdl6egijVm03ywHsYhxyy1l/S7ReMf9jrJ0io3gmDFoXAtiWTq76BxjfTyd3a7eMjMDBlqNFULscQhdxgohZoXIC7fCKNkJIQog6YkQYhbQ42JCiNnAQC1QCCFmAs3sJsMskEjU42Gy2XJjtXbbjdVbTT8WSAaStr5soDnvt22e9mUM7Qz34U4gc4jlJf7JmSXX6Nt4ZaWy9hvJS+aDxnEsloE02sFxCY5ZI4q1/XMPiM9NNPzzDzW/zyw5UH8nc5EVKsteKSqT7IQQ04FN6WqsTLKFEAVIZ3Z5tgyyTLJJvoPkMZLfSbd/PhTrD72/vVL6SDSzE0Lkx1DKZWwek+yUz5jZu0fsYs3MrivSp5KdECI3ZgbrdsvY1Zb/NACQ3PSf3p7sSkOXsUKIApR2GZvX6PqtJL9L8l6Sw66GbZJHUvPsN+cZuWZ2Qoj8mMEunEn25wF8ysw2SP4LAPcA+Pk0doWZHSV5JYAHSD5kZo9HO6tUsvOW1K0eL+/XWr68hEGsHsgGGgt+OwBoLqwFMV9S0Frw+1zsb4R9xpIDf5IeyUA6gwwZw5hPBk0iPVls+L/LQiAvWWjGFyqtRf+4NIPjEslL6u25sM/o/Itig8B5rN+ND0rXWS0tzc00/2rsRCbZZjbsNX0XgP88FDua/vsEyQcBvApAmOx0GSuEKEAys8uzZZDpP03yhUM/vgmJvyxSc+y59PUKgNcix72+Ss3shBAVp6TV2Jz+0/8mNczuIfGffkfa/BUAPk5ygGTCdueIVdznoWQnhMhPeauxefynbwdw+4h2XwXwyqL9KdkJIQqgx8WEELOAno0VQswK0/psbGWSncHQc3QO1gyqQwBge8GN1dr73FhrKYjt92MA0D5w3o311v16X/3O+P8r1s/40pRWzz8Bo2oq3awKGjskPWkGxjlRZZP9QbWZ+eVYLjS335eQzO33JSSTnCfR+ccghoY/1m6sUELHORcyVEY50cxOCDEDmBmsV84CxYVGyU4IkZ+SpCe7gZKdEKIAuowVQswCBlhfyU4Isecx+cYKIWYEXcYKIfY8ZhhoNXYyzPxyQ9aKtUyYC7RMC/vdWOsiPzZ3xtfRAUDv3Lobi7R0FgjXahnuWPWWH2+e80/AxUD3V8UST83ABWxcrRwAtAMdXnvZP4fmlpfcWKTBA4Da0rIbs6bfdtDwx9obdMI+zzvn36CMEk9msB21L9s5KpPshBDVxwxKdkKIWcD0uJgQYgbQzE4IMQuYGfqd6VygUFl2IUQhbDDItWUxoUn2rSQfTbdb84xbMzshRH5KWo2dxCSb5EEA7wVwPZKndb+Vtj0R9VmZZDcwYKM3emm8x3iY9ZZf4ql+4JAbs3On3dj8oVh6Muj4cg7WAqevoERRY96PAbFrWTeQnuxUyakIZmhP6s3oe/CPd+TOFslSAGB+ZdGPXXzRWLH68iVhn7Ulv63N+efteqD5OZdxzNaceFnmYiXds5vEJPtGAPeb2fG07f0AbgLwqaiRLmOFELkxs7IuYycxyc7b9jko2QkhCjHoD3JtSE2yh7bbCnb1eQAvNbOfA3A/EpPssanMZawQYgoYWHgLZxs7ZZJ9FMDrt7V9MGswmtkJIXJjKG01dmyTbCRes29IzbKXAbwhfS9EMzshRH5KWo2dxCTbzI6TfD+ShAkAd2wuVkQo2QkhClHWExTjmmSnsbsB3F2kv8oku74ZTm2Mvhdwrhu7izXnD7ixxoGL3Vi941cuaWZMwxcDeUmj7UsgGgt+NYvm0tmwz6jSSm/dl5501/x7LINuLGMYjFn2pJYhPakF0pNmID1pLoznAgYA7UP+edI+FFTAufRSN1Y/5McAgMH515/zq6mc7/rn36mN+AmGs8650C/DXsyAgZ6NFULsdQwq8SSEmAXMMOhO57OxSnZCiPyo6okQYjbQZawQYgYww+bTEVOHkp0QogCqVDwx/YHhxNroG59nO7GRymJgqsOFDTdWN/+gNRqx3KU2H1Ra2b/qxtqnT7qxTobJTzcy+Vn3f89+N5CeZDz6M+4lCzPMg2ot/9RrtP3jXQ9kPVnSk8hgqb7/oB9beaEbqx3yYwDQX/SlJxtNvwrL2bP+IsCJQEoEAKtnRxvy9MpIUgNgsEOVcnaayiQ7IUT1MZguY4UQM4ABVoY4eRdQshNCFGLcp2p2GyU7IURu5BsrhJgNzGCa2Qkh9jy2c74lO42SnRAiNwZgoAWKyegNDM+eH60PWnX0d5u0gnJCBxd8nRPqvmaLgWMZADQOrPi7DVzLBmd8t7fWeoaj2do5N2ZBuSrrjf5ek51m3H8ZjPm/eC12SkNQIostvwxWLYgx0D4CQG1p2Y8tXuTGbJ8f6y/47nUA0Gn7ZaWOB3q5Z875x+wn53xNJQAcd3R2/TIuP6f4MlZl2YUQhShguBOSZZI99Lm3kjSS16c/v5Tk2pB59n/PM+7KzOyEENUnWY2dfGaX1ySb5BKAfwvgG9t28biZXVekT83shBD5SZNdni2DLZNsM+sA2DTJ3s77AXwIgH+fJidKdkKI/Jih3+3n2jLINLom+TcBXG5m/3NE+5eR/DbJ/03y7+UZui5jhRC5MRR6gmKF5JGhnw+b2eE8DUnWAHwYqaPYNp4G8BIzWyX5agCfI3mtmfkrg1CyE0IUoZiV4iQm2UsAfhbAgyQB4FIA95F8k5kdAbCRDMe+RfJxAFcDGE6sz6MyyW6jN8APVkdLLw7MjT/MjZ7fdilwd1pY9iUDANAY+NKA2oYvEWHPv/VQ68aSgnrf75NRLJCPWD/jcmOHpCes+3Gr++W1LJALRe0AwFp+CaheIDXqNf12ZwMXMAA4FZRq+okjEQGAx4/7MqQnnold6E6fXBv5fr8sC8RypCdbJtlIktwtAN6+1YfZKQBb+i6SDwJ4j5kdIXkxgONm1id5JYCrADyR1WFlkp0QovoklYonT3Y5TbI9/j6AO0h2AQwA/EuZZAshyiVdoChnV7FJ9rb3Xz/0+o8A/FHR/pTshBD5KUlntxso2QkhcmNQiSchxCxQ0j273UDJTghRgOktBFCZZLfW7ePhp06N1fbUhl89YmWfL1VYnvelCllyl3bDf/ikVfclLa2m73DVnPOrtwBA0CXqNb9t9JhMqmHy28Zhl6wqQGb+B6K/pX7QrpvxR9gJBrWxHsSCCiTHMyryeJV8AODHZ3yp0aM/OePGHj4aamdxypFw9XuTX36aAYPgGFSZyiQ7IUT1McT/aVQZJTshRCGi2XWVUbITQuTGEN9mqDJKdkKI3JhpZieEmBE0sxNC7HkMppndpHQ6ffzwhydHxk4GS/QA8PDSnBs7uOhLTy7a50tPFttxBY2ltv/VzTf9ih5zgX6kmaHziOQlzcDAJtptbVxtyYREDlXRYl83MAjKkp6sB9KLcx1fvnRm3Y+dCqQlALAaVDY5dto/r73KJYAvLdnkxNGnRr7f68YymTwkq7ET72ZXqEyyE0JUH92zE0LMDLpnJ4TY8yTSk+nMdkp2QojcTLPOTu5iQojcmCWPi+XZshjXJDt97/a03fdI3phn7JrZCSEKUcZl7CQm2SSvQeJZcS2AFwH4EsmrzSwsoVxoZseE/5Zm1O+mvo6jPverafxhkh8q0ocQoroYEtOHPFsGk5hk3wzg02a2YWZPAngs3V9I0ZndG5E4+VwF4DUAfjf9dwuShwD8FwCvNrNjJO8heYOZ/Um04+75NTz10CMjY80FvywSADTbi26s1vD1co2Wr4er12P9GQN9Wj3Q0kUllSbRvEXjiWJVxIJLoCgWafcAYBBU2I3a9gIHsV4n9mPod3w3ue667xLWPeeXcdo4E3vLrJ/8yeixrPuud/kpTVQ8yiR7ey7ZMskm+dvb2n59W9vnGGyPoug9u5sBfMISvg7gIpIv3PaZKwE8ambH0p+/BOCtBfsRQlSQzQWKPBtSk+yh7ba8/QyZZP9WWWMvOrMblY1fjMShe5PHAPx1ki9N428G4D/GIISYGgpKT3bEJDtH25GUvkBhZidI/isAn0Fy6f5VAH9t1GfTTH8bANTml8seihCiZDZXY0tgEpPsNQCfJPlhJAsUVwH4s6wOM5MdyXcB+LWhAWZmVDP7PIDPp+1vAzDyxoaZHQZwGACaF10+peodIWaLMnR2k5hkp5/7LIBHAPQAvCtrJRbIkezM7GNIlohB8h8CeDfJTyO5mXjKzJ7e3obkJWb2DMllAP8awK9k9SOEqD5lPkExrkl2+vMHAHygSH9FL2O/AOAXkdyXOw/gn20GSH7HzK5Lf/woyb+Rvr7DzL5fsB8hRAWZ5icoGLk8XUhIHgPw/9IfVwA8u4vDEcXRMasmw8flCjO7eJKdkfxjDN1Ly+BZM7tpkv7KpDLJbhiSR4JVHFFBdMyqiY7LT9GzsUKImUDJTggxE1Q12R3e7QGIwuiYVRMdl5RK3rMTQoiyqerMTgghSmVXk51KRk0fWQUXSc6R/Ewa/0b6jLTYQXIckytI/kn6N/Qgyct2Y5y7zW7P7IZLRt2GpGTUcxgqGXWDmV0L4FKSN1zQUQoAzym4+EYA1wB4W1pIcZh3AjhhZi8H8BEktcjEDpHzmPwOkmpFPwfgDgAfvLCjrAa7nexUMmq6yFNw8WYA96Sv7wVwA6MifmJS8hyTawA8kL7+8oj4TLDbyc4rGTXMVskokg0kJaMuh9gN8hyvrc+YWQ/AKQCHLsjoZpM8x+TPAfxS+votAJbSK6aZYreTXSZmdgLAZsmo/wPgB3CqqAghRvIeAK8j+W0Ar0NSqWjm/oYuuOHOTpaMEjtOnqKJm595Kp2JHwCwemGGN5NkHhMz+xHSmR3JRQBvNbOTF2qAVeGCz+zM7GNmdl1aIeVzAP5puir7txGUjEr/3SwZddcFHLL4KVsFF0m2kBRc3F537D4At6avfxnAAyYx506SeUxIrqRlzgHgdgB3X+AxVoLdvoz9AoAnkNyX+z0kiQxAUjJq6HMfJfkIgK8AuFMlo3aH9B7cZsHFvwDw2c2Ci2m5bAD4fQCHSD4G4DcBuH6gYnJyHpPXA/geye8DeAEK1oHbK+gJCiHETLDbMzshhLggKNkJIWYCJTshxEygZCeEmAmU7IQQM4GSnRBiJlCyE0LMBEp2QoiZ4P8DX2J1bRLhxNUAAAAASUVORK5CYII=",
Q
Quleaf 已提交
960 961 962 963 964 965 966 967 968 969 970 971 972
      "text/plain": [
       "<Figure size 432x288 with 2 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
Q
Quleaf 已提交
973
      "The main program finished running in  7.169757127761841 seconds.\n"
Q
Quleaf 已提交
974 975 976 977 978 979 980 981 982 983 984 985 986 987
     ]
    }
   ],
   "source": [
    "def main():\n",
    "    \"\"\"\n",
    "    main\n",
    "    \"\"\"\n",
    "    time_start = time.time()\n",
    "    acc = QClassifier(\n",
    "        Ntrain = 200,    # Specify the training set size\n",
    "        Ntest = 100,     # Specify the test set size\n",
    "        gap = 0.5,       # Set the width of the decision boundary\n",
    "        N = 4,           # Number of qubits required\n",
Q
Quleaf 已提交
988 989 990 991
    "        DEPTH = 1,       # Circuit depth\n",
    "        BATCH = 20,      # Batch size during training\n",
    "        EPOCH = int(200 * BATCH / Ntrain),\n",
    "                        # Number of training epochs, the total iteration number \"EPOCH * (Ntrain / BATCH)\" is chosen to be about 200\n",
Q
Quleaf 已提交
992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
    "        LR = 0.01,       # Set the learning rate\n",
    "        seed_paras = 19, # Set random seed to initialize various parameters\n",
    "        seed_data = 2,   # Fixed random seed required to generate the data set\n",
    "    )\n",
    "    \n",
    "    time_span = time.time()-time_start\n",
    "    print('The main program finished running in ', time_span, 'seconds.')\n",
    "if __name__ == '__main__':\n",
    "    main()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "By printing out the training results, you can see that the classification accuracy in the test set and the data set after continuous optimization has reached $100\\%$."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "_______\n",
    "\n",
    "## References\n",
    "\n",
    "\n",
Q
Quleaf 已提交
1019 1020 1021 1022
    "[1] Mitarai, Kosuke, et al. Quantum circuit learning. [Physical Review A 98.3 (2018): 032309.](https://arxiv.org/abs/1803.00745)\n",
    "\n",
    "[2] Farhi, Edward, and Hartmut Neven. Classification with quantum neural networks on near term processors. [arXiv preprint arXiv:1802.06002 (2018).](https://arxiv.org/abs/1802.06002)\n",
    "\n",
Q
Quleaf 已提交
1023
    "[3] Schuld, Maria, et al. Circuit-centric quantum classifiers. [Physical Review A 101.3 (2020): 032308.](https://arxiv.org/abs/1804.00633)\n"
Q
Quleaf 已提交
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
Q
Quleaf 已提交
1043
   "version": "3.7.11"
Q
Quleaf 已提交
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
  },
  "toc": {
   "base_numbering": 1,
   "nav_menu": {},
   "number_sections": true,
   "sideBar": true,
   "skip_h1_title": false,
   "title_cell": "Table of Contents",
   "title_sidebar": "Contents",
   "toc_cell": false,
   "toc_position": {},
   "toc_section_display": true,
   "toc_window_display": true
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}