eval_utils.py 8.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import logging
import numpy as np
21
import os
22
import time
23 24 25

import paddle.fluid as fluid

26 27
from .voc_eval import bbox_eval as voc_bbox_eval
from .post_process import mstest_box_post_process, mstest_mask_post_process, box_flip
28

29
__all__ = ['parse_fetches', 'eval_run', 'eval_results', 'json_eval_results']
30 31 32 33 34 35 36 37 38 39 40 41 42 43

logger = logging.getLogger(__name__)


def parse_fetches(fetches, prog=None, extra_keys=None):
    """
    Parse fetch variable infos from model fetches,
    values for fetch_list and keys for stat
    """
    keys, values = [], []
    cls = []
    for k, v in fetches.items():
        if hasattr(v, 'name'):
            keys.append(k)
44
            #v.persistable = True
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
            values.append(v.name)
        else:
            cls.append(v)

    if prog is not None and extra_keys is not None:
        for k in extra_keys:
            try:
                v = fluid.framework._get_var(k, prog)
                keys.append(k)
                values.append(v.name)
            except Exception:
                pass

    return keys, values, cls


W
wangguanzhong 已提交
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
def length2lod(length_lod):
    offset_lod = [0]
    for i in length_lod:
        offset_lod.append(offset_lod[-1] + i)
    return [offset_lod]


def get_sub_feed(input, place):
    new_dict = {}
    res_feed = {}
    key_name = ['bbox', 'im_info', 'im_id', 'im_shape', 'bbox_flip']
    for k in key_name:
        if k in input.keys():
            new_dict[k] = input[k]
    for k in input.keys():
        if 'image' in k:
            new_dict[k] = input[k]
    for k, v in new_dict.items():
        data_t = fluid.LoDTensor()
        data_t.set(v[0], place)
        if 'bbox' in k:
            lod = length2lod(v[1][0])
            data_t.set_lod(lod)
        res_feed[k] = data_t
    return res_feed


def clean_res(result, keep_name_list):
    clean_result = {}
    for k in result.keys():
        if k in keep_name_list:
            clean_result[k] = result[k]
    result.clear()
    return clean_result


def eval_run(exe,
             compile_program,
W
wangguanzhong 已提交
99
             loader,
W
wangguanzhong 已提交
100 101 102 103 104 105
             keys,
             values,
             cls,
             cfg=None,
             sub_prog=None,
             sub_keys=None,
W
wangguanzhong 已提交
106 107
             sub_values=None,
             resolution=None):
108 109 110 111 112 113 114 115 116 117 118 119
    """
    Run evaluation program, return program outputs.
    """
    iter_id = 0
    results = []
    if len(cls) != 0:
        values = []
        for i in range(len(cls)):
            _, accum_map = cls[i].get_map_var()
            cls[i].reset(exe)
            values.append(accum_map)

120 121 122 123
    images_num = 0
    start_time = time.time()
    has_bbox = 'bbox' in keys

124
    try:
W
wangguanzhong 已提交
125
        loader.start()
126 127 128 129 130 131 132 133
        while True:
            outs = exe.run(compile_program,
                           fetch_list=values,
                           return_numpy=False)
            res = {
                k: (np.array(v), v.recursive_sequence_lengths())
                for k, v in zip(keys, outs)
            }
W
wangguanzhong 已提交
134 135 136 137
            multi_scale_test = getattr(cfg, 'MultiScaleTEST', None)
            mask_multi_scale_test = multi_scale_test and 'Mask' in cfg.architecture

            if multi_scale_test:
W
wangguanzhong 已提交
138 139
                post_res = mstest_box_post_process(res, multi_scale_test,
                                                   cfg.num_classes)
W
wangguanzhong 已提交
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
                res.update(post_res)
            if mask_multi_scale_test:
                place = fluid.CUDAPlace(0) if cfg.use_gpu else fluid.CPUPlace()
                sub_feed = get_sub_feed(res, place)
                sub_prog_outs = exe.run(sub_prog,
                                        feed=sub_feed,
                                        fetch_list=sub_values,
                                        return_numpy=False)
                sub_prog_res = {
                    k: (np.array(v), v.recursive_sequence_lengths())
                    for k, v in zip(sub_keys, sub_prog_outs)
                }
                post_res = mstest_mask_post_process(sub_prog_res, cfg)
                res.update(post_res)
            if multi_scale_test:
                res = clean_res(
                    res, ['im_info', 'bbox', 'im_id', 'im_shape', 'mask'])
W
wangguanzhong 已提交
157 158 159
            if 'mask' in res:
                from ppdet.utils.post_process import mask_encode
                res['mask'] = mask_encode(res, resolution)
W
wangguanzhong 已提交
160 161 162 163
            post_config = getattr(cfg, 'PostProcess', None)
            if 'Corner' in cfg.architecture and post_config is not None:
                from ppdet.utils.post_process import corner_post_process
                corner_post_process(res, post_config, cfg.num_classes)
164 165 166 167
            results.append(res)
            if iter_id % 100 == 0:
                logger.info('Test iter {}'.format(iter_id))
            iter_id += 1
W
wangguanzhong 已提交
168 169
            if len(res['bbox'][1]) == 0:
                has_bbox = False
170
            images_num += len(res['bbox'][1][0]) if has_bbox else 1
171
    except (StopIteration, fluid.core.EOFException):
W
wangguanzhong 已提交
172
        loader.reset()
173 174
    logger.info('Test finish iter {}'.format(iter_id))

175 176 177 178 179 180 181 182 183
    end_time = time.time()
    fps = images_num / (end_time - start_time)
    if has_bbox:
        logger.info('Total number of images: {}, inference time: {} fps.'.
                    format(images_num, fps))
    else:
        logger.info('Total iteration: {}, inference time: {} batch/s.'.format(
            images_num, fps))

184 185 186
    return results


W
wangguanzhong 已提交
187 188
def eval_results(results,
                 metric,
189
                 num_classes,
W
wangguanzhong 已提交
190 191
                 resolution=None,
                 is_bbox_normalized=False,
192
                 output_directory=None,
193
                 map_type='11point',
W
wangguanzhong 已提交
194 195
                 dataset=None,
                 save_only=False):
196
    """Evaluation for evaluation program results"""
197
    box_ap_stats = []
198
    if metric == 'COCO':
199
        from ppdet.utils.coco_eval import proposal_eval, bbox_eval, mask_eval
200 201
        anno_file = dataset.get_anno()
        with_background = dataset.with_background
202 203
        if 'proposal' in results[0]:
            output = 'proposal.json'
204 205
            if output_directory:
                output = os.path.join(output_directory, 'proposal.json')
206 207 208
            proposal_eval(results, anno_file, output)
        if 'bbox' in results[0]:
            output = 'bbox.json'
209 210
            if output_directory:
                output = os.path.join(output_directory, 'bbox.json')
211

212 213 214 215 216
            box_ap_stats = bbox_eval(
                results,
                anno_file,
                output,
                with_background,
W
wangguanzhong 已提交
217 218
                is_bbox_normalized=is_bbox_normalized,
                save_only=save_only)
219

220 221
        if 'mask' in results[0]:
            output = 'mask.json'
222 223
            if output_directory:
                output = os.path.join(output_directory, 'mask.json')
W
wangguanzhong 已提交
224 225
            mask_eval(
                results, anno_file, output, resolution, save_only=save_only)
226
    else:
227 228 229
        if 'accum_map' in results[-1]:
            res = np.mean(results[-1]['accum_map'][0])
            logger.info('mAP: {:.2f}'.format(res * 100.))
230
            box_ap_stats.append(res * 100.)
231
        elif 'bbox' in results[0]:
232
            box_ap = voc_bbox_eval(
233 234
                results,
                num_classes,
235 236
                is_bbox_normalized=is_bbox_normalized,
                map_type=map_type)
237 238
            box_ap_stats.append(box_ap)
    return box_ap_stats
239

240

241
def json_eval_results(metric, json_directory=None, dataset=None):
242 243 244 245 246
    """
    cocoapi eval with already exists proposal.json, bbox.json or mask.json
    """
    assert metric == 'COCO'
    from ppdet.utils.coco_eval import cocoapi_eval
247
    anno_file = dataset.get_anno()
248 249
    json_file_list = ['proposal.json', 'bbox.json', 'mask.json']
    if json_directory:
250 251 252
        assert os.path.exists(
            json_directory), "The json directory:{} does not exist".format(
                json_directory)
253 254 255 256 257 258 259 260 261
        for k, v in enumerate(json_file_list):
            json_file_list[k] = os.path.join(str(json_directory), v)

    coco_eval_style = ['proposal', 'bbox', 'segm']
    for i, v_json in enumerate(json_file_list):
        if os.path.exists(v_json):
            cocoapi_eval(v_json, coco_eval_style[i], anno_file=anno_file)
        else:
            logger.info("{} not exists!".format(v_json))