eval_utils.py 8.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import logging
import numpy as np
21
import os
22
import time
23 24 25

import paddle.fluid as fluid

26 27
from .voc_eval import bbox_eval as voc_bbox_eval
from .post_process import mstest_box_post_process, mstest_mask_post_process, box_flip
28

29
__all__ = ['parse_fetches', 'eval_run', 'eval_results', 'json_eval_results']
30 31 32 33 34 35 36 37 38 39 40 41 42 43

logger = logging.getLogger(__name__)


def parse_fetches(fetches, prog=None, extra_keys=None):
    """
    Parse fetch variable infos from model fetches,
    values for fetch_list and keys for stat
    """
    keys, values = [], []
    cls = []
    for k, v in fetches.items():
        if hasattr(v, 'name'):
            keys.append(k)
44
            #v.persistable = True
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
            values.append(v.name)
        else:
            cls.append(v)

    if prog is not None and extra_keys is not None:
        for k in extra_keys:
            try:
                v = fluid.framework._get_var(k, prog)
                keys.append(k)
                values.append(v.name)
            except Exception:
                pass

    return keys, values, cls


W
wangguanzhong 已提交
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
def length2lod(length_lod):
    offset_lod = [0]
    for i in length_lod:
        offset_lod.append(offset_lod[-1] + i)
    return [offset_lod]


def get_sub_feed(input, place):
    new_dict = {}
    res_feed = {}
    key_name = ['bbox', 'im_info', 'im_id', 'im_shape', 'bbox_flip']
    for k in key_name:
        if k in input.keys():
            new_dict[k] = input[k]
    for k in input.keys():
        if 'image' in k:
            new_dict[k] = input[k]
    for k, v in new_dict.items():
        data_t = fluid.LoDTensor()
        data_t.set(v[0], place)
        if 'bbox' in k:
            lod = length2lod(v[1][0])
            data_t.set_lod(lod)
        res_feed[k] = data_t
    return res_feed


def clean_res(result, keep_name_list):
    clean_result = {}
    for k in result.keys():
        if k in keep_name_list:
            clean_result[k] = result[k]
    result.clear()
    return clean_result


def eval_run(exe,
             compile_program,
W
wangguanzhong 已提交
99
             loader,
W
wangguanzhong 已提交
100 101 102 103 104 105
             keys,
             values,
             cls,
             cfg=None,
             sub_prog=None,
             sub_keys=None,
W
wangguanzhong 已提交
106 107
             sub_values=None,
             resolution=None):
108 109 110 111 112 113 114 115 116 117 118 119
    """
    Run evaluation program, return program outputs.
    """
    iter_id = 0
    results = []
    if len(cls) != 0:
        values = []
        for i in range(len(cls)):
            _, accum_map = cls[i].get_map_var()
            cls[i].reset(exe)
            values.append(accum_map)

120 121 122 123
    images_num = 0
    start_time = time.time()
    has_bbox = 'bbox' in keys

124
    try:
W
wangguanzhong 已提交
125
        loader.start()
126 127 128 129 130 131 132 133
        while True:
            outs = exe.run(compile_program,
                           fetch_list=values,
                           return_numpy=False)
            res = {
                k: (np.array(v), v.recursive_sequence_lengths())
                for k, v in zip(keys, outs)
            }
W
wangguanzhong 已提交
134 135 136 137
            multi_scale_test = getattr(cfg, 'MultiScaleTEST', None)
            mask_multi_scale_test = multi_scale_test and 'Mask' in cfg.architecture

            if multi_scale_test:
W
wangguanzhong 已提交
138 139
                post_res = mstest_box_post_process(res, multi_scale_test,
                                                   cfg.num_classes)
W
wangguanzhong 已提交
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
                res.update(post_res)
            if mask_multi_scale_test:
                place = fluid.CUDAPlace(0) if cfg.use_gpu else fluid.CPUPlace()
                sub_feed = get_sub_feed(res, place)
                sub_prog_outs = exe.run(sub_prog,
                                        feed=sub_feed,
                                        fetch_list=sub_values,
                                        return_numpy=False)
                sub_prog_res = {
                    k: (np.array(v), v.recursive_sequence_lengths())
                    for k, v in zip(sub_keys, sub_prog_outs)
                }
                post_res = mstest_mask_post_process(sub_prog_res, cfg)
                res.update(post_res)
            if multi_scale_test:
                res = clean_res(
                    res, ['im_info', 'bbox', 'im_id', 'im_shape', 'mask'])
W
wangguanzhong 已提交
157 158 159
            if 'mask' in res:
                from ppdet.utils.post_process import mask_encode
                res['mask'] = mask_encode(res, resolution)
W
wangguanzhong 已提交
160 161 162 163
            post_config = getattr(cfg, 'PostProcess', None)
            if 'Corner' in cfg.architecture and post_config is not None:
                from ppdet.utils.post_process import corner_post_process
                corner_post_process(res, post_config, cfg.num_classes)
164 165 166 167
            results.append(res)
            if iter_id % 100 == 0:
                logger.info('Test iter {}'.format(iter_id))
            iter_id += 1
W
wangguanzhong 已提交
168 169
            if len(res['bbox'][1]) == 0:
                has_bbox = False
170
            images_num += len(res['bbox'][1][0]) if has_bbox else 1
171
    except (StopIteration, fluid.core.EOFException):
W
wangguanzhong 已提交
172
        loader.reset()
173 174
    logger.info('Test finish iter {}'.format(iter_id))

175 176 177 178 179 180 181 182 183
    end_time = time.time()
    fps = images_num / (end_time - start_time)
    if has_bbox:
        logger.info('Total number of images: {}, inference time: {} fps.'.
                    format(images_num, fps))
    else:
        logger.info('Total iteration: {}, inference time: {} batch/s.'.format(
            images_num, fps))

184 185 186
    return results


W
wangguanzhong 已提交
187 188
def eval_results(results,
                 metric,
189
                 num_classes,
W
wangguanzhong 已提交
190 191
                 resolution=None,
                 is_bbox_normalized=False,
192
                 output_directory=None,
193 194
                 map_type='11point',
                 dataset=None):
195
    """Evaluation for evaluation program results"""
196
    box_ap_stats = []
197
    if metric == 'COCO':
198
        from ppdet.utils.coco_eval import proposal_eval, bbox_eval, mask_eval
199 200
        anno_file = dataset.get_anno()
        with_background = dataset.with_background
201 202
        if 'proposal' in results[0]:
            output = 'proposal.json'
203 204
            if output_directory:
                output = os.path.join(output_directory, 'proposal.json')
205 206 207
            proposal_eval(results, anno_file, output)
        if 'bbox' in results[0]:
            output = 'bbox.json'
208 209
            if output_directory:
                output = os.path.join(output_directory, 'bbox.json')
210

211 212 213 214 215 216
            box_ap_stats = bbox_eval(
                results,
                anno_file,
                output,
                with_background,
                is_bbox_normalized=is_bbox_normalized)
217

218 219
        if 'mask' in results[0]:
            output = 'mask.json'
220 221
            if output_directory:
                output = os.path.join(output_directory, 'mask.json')
222 223
            mask_eval(results, anno_file, output, resolution)
    else:
224 225 226
        if 'accum_map' in results[-1]:
            res = np.mean(results[-1]['accum_map'][0])
            logger.info('mAP: {:.2f}'.format(res * 100.))
227
            box_ap_stats.append(res * 100.)
228
        elif 'bbox' in results[0]:
229
            box_ap = voc_bbox_eval(
230 231
                results,
                num_classes,
232 233
                is_bbox_normalized=is_bbox_normalized,
                map_type=map_type)
234 235
            box_ap_stats.append(box_ap)
    return box_ap_stats
236

237

238
def json_eval_results(metric, json_directory=None, dataset=None):
239 240 241 242 243
    """
    cocoapi eval with already exists proposal.json, bbox.json or mask.json
    """
    assert metric == 'COCO'
    from ppdet.utils.coco_eval import cocoapi_eval
244
    anno_file = dataset.get_anno()
245 246
    json_file_list = ['proposal.json', 'bbox.json', 'mask.json']
    if json_directory:
247 248 249
        assert os.path.exists(
            json_directory), "The json directory:{} does not exist".format(
                json_directory)
250 251 252 253 254 255 256 257 258
        for k, v in enumerate(json_file_list):
            json_file_list[k] = os.path.join(str(json_directory), v)

    coco_eval_style = ['proposal', 'bbox', 'segm']
    for i, v_json in enumerate(json_file_list):
        if os.path.exists(v_json):
            cocoapi_eval(v_json, coco_eval_style[i], anno_file=anno_file)
        else:
            logger.info("{} not exists!".format(v_json))