eval_utils.py 4.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import logging
import numpy as np

import paddle.fluid as fluid

24 25
from ppdet.utils.voc_eval import bbox_eval as voc_bbox_eval

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
__all__ = ['parse_fetches', 'eval_run', 'eval_results']

logger = logging.getLogger(__name__)


def parse_fetches(fetches, prog=None, extra_keys=None):
    """
    Parse fetch variable infos from model fetches,
    values for fetch_list and keys for stat
    """
    keys, values = [], []
    cls = []
    for k, v in fetches.items():
        if hasattr(v, 'name'):
            keys.append(k)
            v.persistable = True
            values.append(v.name)
        else:
            cls.append(v)

    if prog is not None and extra_keys is not None:
        for k in extra_keys:
            try:
                v = fluid.framework._get_var(k, prog)
                v.persistable = True
                keys.append(k)
                values.append(v.name)
            except Exception:
                pass

    return keys, values, cls


def eval_run(exe, compile_program, pyreader, keys, values, cls):
    """
    Run evaluation program, return program outputs.
    """
    iter_id = 0
    results = []
    if len(cls) != 0:
        values = []
        for i in range(len(cls)):
            _, accum_map = cls[i].get_map_var()
            cls[i].reset(exe)
            values.append(accum_map)

    try:
        pyreader.start()
        while True:
            outs = exe.run(compile_program,
                           fetch_list=values,
                           return_numpy=False)
            res = {
                k: (np.array(v), v.recursive_sequence_lengths())
                for k, v in zip(keys, outs)
            }
            results.append(res)
            if iter_id % 100 == 0:
                logger.info('Test iter {}'.format(iter_id))
            iter_id += 1
    except (StopIteration, fluid.core.EOFException):
        pyreader.reset()
    logger.info('Test finish iter {}'.format(iter_id))

    return results


W
wangguanzhong 已提交
93 94 95
def eval_results(results,
                 feed,
                 metric,
96
                 num_classes,
W
wangguanzhong 已提交
97 98
                 resolution=None,
                 is_bbox_normalized=False,
99
                 output_file=None):
100 101
    """Evaluation for evaluation program results"""
    if metric == 'COCO':
102
        from ppdet.utils.coco_eval import proposal_eval, bbox_eval, mask_eval
103 104
        anno_file = getattr(feed.dataset, 'annotation', None)
        with_background = getattr(feed, 'with_background', True)
105 106 107 108 109 110 111 112 113 114
        if 'proposal' in results[0]:
            output = 'proposal.json'
            if output_file:
                output = '{}_proposal.json'.format(output_file)
            proposal_eval(results, anno_file, output)
        if 'bbox' in results[0]:
            output = 'bbox.json'
            if output_file:
                output = '{}_bbox.json'.format(output_file)
            bbox_eval(results, anno_file, output, with_background)
115 116 117 118 119 120
        if 'mask' in results[0]:
            output = 'mask.json'
            if output_file:
                output = '{}_mask.json'.format(output_file)
            mask_eval(results, anno_file, output, resolution)
    else:
121 122 123 124
        if 'accum_map' in results[-1]:
            res = np.mean(results[-1]['accum_map'][0])
            logger.info('mAP: {:.2f}'.format(res * 100.))
        elif 'bbox' in results[0]:
W
wangguanzhong 已提交
125 126
            voc_bbox_eval(
                results, num_classes, is_bbox_normalized=is_bbox_normalized)