eval_utils.py 8.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import logging
import numpy as np
21
import os
22
import time
23 24 25

import paddle.fluid as fluid

26
from ppdet.utils.voc_eval import bbox_eval as voc_bbox_eval
W
wangguanzhong 已提交
27
from ppdet.utils.post_process import mstest_box_post_process, mstest_mask_post_process, box_flip
28

29
__all__ = ['parse_fetches', 'eval_run', 'eval_results', 'json_eval_results']
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

logger = logging.getLogger(__name__)


def parse_fetches(fetches, prog=None, extra_keys=None):
    """
    Parse fetch variable infos from model fetches,
    values for fetch_list and keys for stat
    """
    keys, values = [], []
    cls = []
    for k, v in fetches.items():
        if hasattr(v, 'name'):
            keys.append(k)
            v.persistable = True
            values.append(v.name)
        else:
            cls.append(v)

    if prog is not None and extra_keys is not None:
        for k in extra_keys:
            try:
                v = fluid.framework._get_var(k, prog)
                keys.append(k)
                values.append(v.name)
            except Exception:
                pass

    return keys, values, cls


W
wangguanzhong 已提交
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
def length2lod(length_lod):
    offset_lod = [0]
    for i in length_lod:
        offset_lod.append(offset_lod[-1] + i)
    return [offset_lod]


def get_sub_feed(input, place):
    new_dict = {}
    res_feed = {}
    key_name = ['bbox', 'im_info', 'im_id', 'im_shape', 'bbox_flip']
    for k in key_name:
        if k in input.keys():
            new_dict[k] = input[k]
    for k in input.keys():
        if 'image' in k:
            new_dict[k] = input[k]
    for k, v in new_dict.items():
        data_t = fluid.LoDTensor()
        data_t.set(v[0], place)
        if 'bbox' in k:
            lod = length2lod(v[1][0])
            data_t.set_lod(lod)
        res_feed[k] = data_t
    return res_feed


def clean_res(result, keep_name_list):
    clean_result = {}
    for k in result.keys():
        if k in keep_name_list:
            clean_result[k] = result[k]
    result.clear()
    return clean_result


def eval_run(exe,
             compile_program,
             pyreader,
             keys,
             values,
             cls,
             cfg=None,
             sub_prog=None,
             sub_keys=None,
             sub_values=None):
107 108 109 110 111 112 113 114 115 116 117 118
    """
    Run evaluation program, return program outputs.
    """
    iter_id = 0
    results = []
    if len(cls) != 0:
        values = []
        for i in range(len(cls)):
            _, accum_map = cls[i].get_map_var()
            cls[i].reset(exe)
            values.append(accum_map)

119 120 121 122
    images_num = 0
    start_time = time.time()
    has_bbox = 'bbox' in keys

123
    try:
124
        pyreader.start()
125 126 127 128 129 130 131 132
        while True:
            outs = exe.run(compile_program,
                           fetch_list=values,
                           return_numpy=False)
            res = {
                k: (np.array(v), v.recursive_sequence_lengths())
                for k, v in zip(keys, outs)
            }
W
wangguanzhong 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
            multi_scale_test = getattr(cfg, 'MultiScaleTEST', None)
            mask_multi_scale_test = multi_scale_test and 'Mask' in cfg.architecture

            if multi_scale_test:
                post_res = mstest_box_post_process(res, cfg)
                res.update(post_res)
            if mask_multi_scale_test:
                place = fluid.CUDAPlace(0) if cfg.use_gpu else fluid.CPUPlace()
                sub_feed = get_sub_feed(res, place)
                sub_prog_outs = exe.run(sub_prog,
                                        feed=sub_feed,
                                        fetch_list=sub_values,
                                        return_numpy=False)
                sub_prog_res = {
                    k: (np.array(v), v.recursive_sequence_lengths())
                    for k, v in zip(sub_keys, sub_prog_outs)
                }
                post_res = mstest_mask_post_process(sub_prog_res, cfg)
                res.update(post_res)
            if multi_scale_test:
                res = clean_res(
                    res, ['im_info', 'bbox', 'im_id', 'im_shape', 'mask'])
155 156 157 158
            results.append(res)
            if iter_id % 100 == 0:
                logger.info('Test iter {}'.format(iter_id))
            iter_id += 1
159
            images_num += len(res['bbox'][1][0]) if has_bbox else 1
160
    except (StopIteration, fluid.core.EOFException):
161
        pyreader.reset()
162 163
    logger.info('Test finish iter {}'.format(iter_id))

164 165 166 167 168 169 170 171 172
    end_time = time.time()
    fps = images_num / (end_time - start_time)
    if has_bbox:
        logger.info('Total number of images: {}, inference time: {} fps.'.
                    format(images_num, fps))
    else:
        logger.info('Total iteration: {}, inference time: {} batch/s.'.format(
            images_num, fps))

173 174 175
    return results


W
wangguanzhong 已提交
176 177 178
def eval_results(results,
                 feed,
                 metric,
179
                 num_classes,
W
wangguanzhong 已提交
180 181
                 resolution=None,
                 is_bbox_normalized=False,
182 183
                 output_directory=None,
                 map_type='11point'):
184
    """Evaluation for evaluation program results"""
185
    box_ap_stats = []
186
    if metric == 'COCO':
187
        from ppdet.utils.coco_eval import proposal_eval, bbox_eval, mask_eval
188 189
        anno_file = getattr(feed.dataset, 'annotation', None)
        with_background = getattr(feed, 'with_background', True)
190 191
        if 'proposal' in results[0]:
            output = 'proposal.json'
192 193
            if output_directory:
                output = os.path.join(output_directory, 'proposal.json')
194 195 196
            proposal_eval(results, anno_file, output)
        if 'bbox' in results[0]:
            output = 'bbox.json'
197 198
            if output_directory:
                output = os.path.join(output_directory, 'bbox.json')
199

200 201 202 203 204 205
            box_ap_stats = bbox_eval(
                results,
                anno_file,
                output,
                with_background,
                is_bbox_normalized=is_bbox_normalized)
206

207 208
        if 'mask' in results[0]:
            output = 'mask.json'
209 210
            if output_directory:
                output = os.path.join(output_directory, 'mask.json')
211 212
            mask_eval(results, anno_file, output, resolution)
    else:
213 214 215
        if 'accum_map' in results[-1]:
            res = np.mean(results[-1]['accum_map'][0])
            logger.info('mAP: {:.2f}'.format(res * 100.))
216
            box_ap_stats.append(res * 100.)
217
        elif 'bbox' in results[0]:
218
            box_ap = voc_bbox_eval(
219 220
                results,
                num_classes,
221 222
                is_bbox_normalized=is_bbox_normalized,
                map_type=map_type)
223 224
            box_ap_stats.append(box_ap)
    return box_ap_stats
225

226

227 228 229 230 231 232 233 234 235
def json_eval_results(feed, metric, json_directory=None):
    """
    cocoapi eval with already exists proposal.json, bbox.json or mask.json
    """
    assert metric == 'COCO'
    from ppdet.utils.coco_eval import cocoapi_eval
    anno_file = getattr(feed.dataset, 'annotation', None)
    json_file_list = ['proposal.json', 'bbox.json', 'mask.json']
    if json_directory:
236 237 238
        assert os.path.exists(
            json_directory), "The json directory:{} does not exist".format(
                json_directory)
239 240 241 242 243 244 245 246 247
        for k, v in enumerate(json_file_list):
            json_file_list[k] = os.path.join(str(json_directory), v)

    coco_eval_style = ['proposal', 'bbox', 'segm']
    for i, v_json in enumerate(json_file_list):
        if os.path.exists(v_json):
            cocoapi_eval(v_json, coco_eval_style[i], anno_file=anno_file)
        else:
            logger.info("{} not exists!".format(v_json))