Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
6b5d7100
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
6b5d7100
编写于
7月 23, 2019
作者:
Y
Yuan Gao
提交者:
wangguanzhong
7月 23, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add rpn recall function and class-aware rpn (#2814)
* add rpn recall function and class-aware rpn
上级
3dd4f349
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
194 addition
and
40 deletion
+194
-40
ppdet/modeling/anchor_heads/rpn_head.py
ppdet/modeling/anchor_heads/rpn_head.py
+88
-32
ppdet/modeling/architectures/cascade_rcnn.py
ppdet/modeling/architectures/cascade_rcnn.py
+8
-0
ppdet/modeling/architectures/faster_rcnn.py
ppdet/modeling/architectures/faster_rcnn.py
+8
-1
ppdet/modeling/architectures/mask_rcnn.py
ppdet/modeling/architectures/mask_rcnn.py
+7
-1
ppdet/utils/coco_eval.py
ppdet/utils/coco_eval.py
+72
-1
ppdet/utils/eval_utils.py
ppdet/utils/eval_utils.py
+11
-5
未找到文件。
ppdet/modeling/anchor_heads/rpn_head.py
浏览文件 @
6b5d7100
...
...
@@ -22,8 +22,8 @@ from paddle.fluid.initializer import Normal
from
paddle.fluid.regularizer
import
L2Decay
from
ppdet.core.workspace
import
register
from
ppdet.modeling.ops
import
(
AnchorGenerator
,
RPNTargetAssign
,
GenerateProposals
)
from
ppdet.modeling.ops
import
(
AnchorGenerator
,
RPNTargetAssign
,
GenerateProposals
)
__all__
=
[
'RPNTargetAssign'
,
'GenerateProposals'
,
'RPNHead'
,
'FPNRPNHead'
]
...
...
@@ -48,12 +48,14 @@ class RPNHead(object):
anchor_generator
=
AnchorGenerator
().
__dict__
,
rpn_target_assign
=
RPNTargetAssign
().
__dict__
,
train_proposal
=
GenerateProposals
(
12000
,
2000
).
__dict__
,
test_proposal
=
GenerateProposals
().
__dict__
):
test_proposal
=
GenerateProposals
().
__dict__
,
num_classes
=
1
):
super
(
RPNHead
,
self
).
__init__
()
self
.
anchor_generator
=
anchor_generator
self
.
rpn_target_assign
=
rpn_target_assign
self
.
train_proposal
=
train_proposal
self
.
test_proposal
=
test_proposal
self
.
num_classes
=
num_classes
if
isinstance
(
anchor_generator
,
dict
):
self
.
anchor_generator
=
AnchorGenerator
(
**
anchor_generator
)
if
isinstance
(
rpn_target_assign
,
dict
):
...
...
@@ -96,7 +98,7 @@ class RPNHead(object):
# Proposal classification scores
self
.
rpn_cls_score
=
fluid
.
layers
.
conv2d
(
rpn_conv
,
num_filters
=
num_anchor
,
num_filters
=
num_anchor
*
self
.
num_classes
,
filter_size
=
1
,
stride
=
1
,
padding
=
0
,
...
...
@@ -147,12 +149,27 @@ class RPNHead(object):
body_feat
=
list
(
body_feats
.
values
())[
-
1
]
rpn_cls_score
,
rpn_bbox_pred
=
self
.
_get_output
(
body_feat
)
rpn_cls_score_prob
=
fluid
.
layers
.
sigmoid
(
rpn_cls_score
,
name
=
'rpn_cls_score_prob'
)
if
self
.
num_classes
==
1
:
rpn_cls_prob
=
fluid
.
layers
.
sigmoid
(
rpn_cls_score
,
name
=
'rpn_cls_prob'
)
else
:
rpn_cls_score
=
fluid
.
layers
.
transpose
(
rpn_cls_score
,
perm
=
[
0
,
2
,
3
,
1
])
rpn_cls_score
=
fluid
.
layers
.
reshape
(
rpn_cls_score
,
shape
=
(
0
,
0
,
0
,
-
1
,
self
.
num_classes
))
rpn_cls_prob_tmp
=
fluid
.
layers
.
softmax
(
rpn_cls_score
,
use_cudnn
=
False
,
name
=
'rpn_cls_prob'
)
rpn_cls_prob_slice
=
fluid
.
layers
.
slice
(
rpn_cls_prob_tmp
,
axes
=
[
4
],
starts
=
[
1
],
ends
=
[
self
.
num_classes
])
rpn_cls_prob
,
_
=
fluid
.
layers
.
topk
(
rpn_cls_prob_slice
,
1
)
rpn_cls_prob
=
fluid
.
layers
.
reshape
(
rpn_cls_prob
,
shape
=
(
0
,
0
,
0
,
-
1
))
rpn_cls_prob
=
fluid
.
layers
.
transpose
(
rpn_cls_prob
,
perm
=
[
0
,
3
,
1
,
2
])
prop_op
=
self
.
train_proposal
if
mode
==
'train'
else
self
.
test_proposal
rpn_rois
,
rpn_roi_probs
=
prop_op
(
scores
=
rpn_cls_
score_
prob
,
scores
=
rpn_cls_prob
,
bbox_deltas
=
rpn_bbox_pred
,
im_info
=
im_info
,
anchors
=
self
.
anchor
,
...
...
@@ -165,7 +182,8 @@ class RPNHead(object):
rpn_bbox_pred
=
fluid
.
layers
.
transpose
(
rpn_bbox_pred
,
perm
=
[
0
,
2
,
3
,
1
])
anchor
=
fluid
.
layers
.
reshape
(
anchor
,
shape
=
(
-
1
,
4
))
anchor_var
=
fluid
.
layers
.
reshape
(
anchor_var
,
shape
=
(
-
1
,
4
))
rpn_cls_score
=
fluid
.
layers
.
reshape
(
x
=
rpn_cls_score
,
shape
=
(
0
,
-
1
,
1
))
rpn_cls_score
=
fluid
.
layers
.
reshape
(
x
=
rpn_cls_score
,
shape
=
(
0
,
-
1
,
self
.
num_classes
))
rpn_bbox_pred
=
fluid
.
layers
.
reshape
(
x
=
rpn_bbox_pred
,
shape
=
(
0
,
-
1
,
4
))
return
rpn_cls_score
,
rpn_bbox_pred
,
anchor
,
anchor_var
...
...
@@ -177,7 +195,7 @@ class RPNHead(object):
return
self
.
_transform_input
(
self
.
rpn_cls_score
,
self
.
rpn_bbox_pred
,
self
.
anchor
,
self
.
anchor_var
)
def
get_loss
(
self
,
im_info
,
gt_box
,
is_crowd
):
def
get_loss
(
self
,
im_info
,
gt_box
,
is_crowd
,
gt_label
=
None
):
"""
Sample proposals and Calculate rpn loss.
...
...
@@ -196,20 +214,37 @@ class RPNHead(object):
"""
rpn_cls
,
rpn_bbox
,
anchor
,
anchor_var
=
self
.
_get_loss_input
()
score_pred
,
loc_pred
,
score_tgt
,
loc_tgt
,
bbox_weight
=
\
self
.
rpn_target_assign
(
bbox_pred
=
rpn_bbox
,
cls_logits
=
rpn_cls
,
anchor_box
=
anchor
,
anchor_var
=
anchor_var
,
gt_boxes
=
gt_box
,
is_crowd
=
is_crowd
,
im_info
=
im_info
)
score_tgt
=
fluid
.
layers
.
cast
(
x
=
score_tgt
,
dtype
=
'float32'
)
score_tgt
.
stop_gradient
=
True
rpn_cls_loss
=
fluid
.
layers
.
sigmoid_cross_entropy_with_logits
(
x
=
score_pred
,
label
=
score_tgt
)
if
self
.
num_classes
==
1
:
score_pred
,
loc_pred
,
score_tgt
,
loc_tgt
,
bbox_weight
=
\
self
.
rpn_target_assign
(
bbox_pred
=
rpn_bbox
,
cls_logits
=
rpn_cls
,
anchor_box
=
anchor
,
anchor_var
=
anchor_var
,
gt_boxes
=
gt_box
,
is_crowd
=
is_crowd
,
im_info
=
im_info
)
score_tgt
=
fluid
.
layers
.
cast
(
x
=
score_tgt
,
dtype
=
'float32'
)
score_tgt
.
stop_gradient
=
True
rpn_cls_loss
=
fluid
.
layers
.
sigmoid_cross_entropy_with_logits
(
x
=
score_pred
,
label
=
score_tgt
)
else
:
score_pred
,
loc_pred
,
score_tgt
,
loc_tgt
,
bbox_weight
=
\
self
.
rpn_target_assign
(
bbox_pred
=
rpn_bbox
,
cls_logits
=
rpn_cls
,
anchor_box
=
anchor
,
anchor_var
=
anchor_var
,
gt_boxes
=
gt_box
,
gt_labels
=
gt_label
,
is_crowd
=
is_crowd
,
num_classes
=
self
.
num_classes
,
im_info
=
im_info
)
labels_int64
=
fluid
.
layers
.
cast
(
x
=
score_tgt
,
dtype
=
'int64'
)
labels_int64
.
stop_gradient
=
True
rpn_cls_loss
=
fluid
.
layers
.
softmax_with_cross_entropy
(
logits
=
score_pred
,
label
=
labels_int64
,
numeric_stable_mode
=
True
)
rpn_cls_loss
=
fluid
.
layers
.
reduce_mean
(
rpn_cls_loss
,
name
=
'loss_rpn_cls'
)
...
...
@@ -261,13 +296,15 @@ class FPNRPNHead(RPNHead):
anchor_start_size
=
32
,
num_chan
=
256
,
min_level
=
2
,
max_level
=
6
):
max_level
=
6
,
num_classes
=
1
):
super
(
FPNRPNHead
,
self
).
__init__
(
anchor_generator
,
rpn_target_assign
,
train_proposal
,
test_proposal
)
self
.
anchor_start_size
=
anchor_start_size
self
.
num_chan
=
num_chan
self
.
min_level
=
min_level
self
.
max_level
=
max_level
self
.
num_classes
=
num_classes
self
.
fpn_rpn_list
=
[]
self
.
anchors_list
=
[]
...
...
@@ -319,9 +356,10 @@ class FPNRPNHead(RPNHead):
**
(
feat_lvl
-
self
.
min_level
),
),
stride
=
(
2.
**
feat_lvl
,
2.
**
feat_lvl
))
cls_num_filters
=
num_anchors
*
self
.
num_classes
self
.
rpn_cls_score
=
fluid
.
layers
.
conv2d
(
input
=
conv_rpn_fpn
,
num_filters
=
num_ancho
rs
,
num_filters
=
cls_num_filte
rs
,
filter_size
=
1
,
act
=
None
,
name
=
cls_name
,
...
...
@@ -366,19 +404,37 @@ class FPNRPNHead(RPNHead):
shape of (rois_num, 1).
"""
rpn_cls_
logits
_fpn
,
rpn_bbox_pred_fpn
=
self
.
_get_output
(
body_feat
,
feat_lvl
)
rpn_cls_
score
_fpn
,
rpn_bbox_pred_fpn
=
self
.
_get_output
(
body_feat
,
feat_lvl
)
prop_op
=
self
.
train_proposal
if
mode
==
'train'
else
self
.
test_proposal
rpn_cls_prob_fpn
=
fluid
.
layers
.
sigmoid
(
rpn_cls_logits_fpn
,
name
=
'rpn_cls_probs_fpn'
+
str
(
feat_lvl
))
rpn_rois_fpn
,
rpn_roi_probs_fpn
=
prop_op
(
if
self
.
num_classes
==
1
:
rpn_cls_prob_fpn
=
fluid
.
layers
.
sigmoid
(
rpn_cls_score_fpn
,
name
=
'rpn_cls_prob_fpn'
+
str
(
feat_lvl
))
else
:
rpn_cls_score_fpn
=
fluid
.
layers
.
transpose
(
rpn_cls_score_fpn
,
perm
=
[
0
,
2
,
3
,
1
])
rpn_cls_score_fpn
=
fluid
.
layers
.
reshape
(
rpn_cls_score_fpn
,
shape
=
(
0
,
0
,
0
,
-
1
,
self
.
num_classes
))
rpn_cls_prob_fpn
=
fluid
.
layers
.
softmax
(
rpn_cls_score_fpn
,
use_cudnn
=
False
,
name
=
'rpn_cls_prob_fpn'
+
str
(
feat_lvl
))
rpn_cls_prob_fpn
=
fluid
.
layers
.
slice
(
rpn_cls_prob_fpn
,
axes
=
[
4
],
starts
=
[
1
],
ends
=
[
self
.
num_classes
])
rpn_cls_prob_fpn
,
_
=
fluid
.
layers
.
topk
(
rpn_cls_prob_fpn
,
1
)
rpn_cls_prob_fpn
=
fluid
.
layers
.
reshape
(
rpn_cls_prob_fpn
,
shape
=
(
0
,
0
,
0
,
-
1
))
rpn_cls_prob_fpn
=
fluid
.
layers
.
transpose
(
rpn_cls_prob_fpn
,
perm
=
[
0
,
3
,
1
,
2
])
rpn_rois_fpn
,
rpn_roi_prob_fpn
=
prop_op
(
scores
=
rpn_cls_prob_fpn
,
bbox_deltas
=
rpn_bbox_pred_fpn
,
im_info
=
im_info
,
anchors
=
self
.
anchors
,
variances
=
self
.
anchor_var
)
return
rpn_rois_fpn
,
rpn_roi_prob
s
_fpn
return
rpn_rois_fpn
,
rpn_roi_prob_fpn
def
get_proposals
(
self
,
fpn_feats
,
im_info
,
mode
=
'train'
):
"""
...
...
ppdet/modeling/architectures/cascade_rcnn.py
浏览文件 @
6b5d7100
...
...
@@ -49,6 +49,7 @@ class CascadeRCNN(object):
roi_extractor
=
'FPNRoIAlign'
,
bbox_head
=
'CascadeBBoxHead'
,
bbox_assigner
=
'CascadeBBoxAssigner'
,
rpn_only
=
False
,
fpn
=
'FPN'
):
super
(
CascadeRCNN
,
self
).
__init__
()
assert
fpn
is
not
None
,
"cascade RCNN requires FPN"
...
...
@@ -58,6 +59,7 @@ class CascadeRCNN(object):
self
.
bbox_assigner
=
bbox_assigner
self
.
roi_extractor
=
roi_extractor
self
.
bbox_head
=
bbox_head
self
.
rpn_only
=
rpn_only
# Cascade local cfg
self
.
cls_agnostic_bbox_reg
=
2
(
brw0
,
brw1
,
brw2
)
=
self
.
bbox_assigner
.
bbox_reg_weights
...
...
@@ -88,6 +90,12 @@ class CascadeRCNN(object):
if
mode
==
'train'
:
rpn_loss
=
self
.
rpn_head
.
get_loss
(
im_info
,
gt_box
,
is_crowd
)
else
:
if
self
.
rpn_only
:
im_scale
=
fluid
.
layers
.
slice
(
im_info
,
[
1
],
starts
=
[
2
],
ends
=
[
3
])
im_scale
=
fluid
.
layers
.
sequence_expand
(
im_scale
,
rois
)
rois
=
rois
/
im_scale
return
{
'proposal'
:
rois
}
proposal_list
=
[]
roi_feat_list
=
[]
...
...
ppdet/modeling/architectures/faster_rcnn.py
浏览文件 @
6b5d7100
...
...
@@ -48,6 +48,7 @@ class FasterRCNN(object):
roi_extractor
,
bbox_head
=
'BBoxHead'
,
bbox_assigner
=
'BBoxAssigner'
,
rpn_only
=
False
,
fpn
=
None
):
super
(
FasterRCNN
,
self
).
__init__
()
self
.
backbone
=
backbone
...
...
@@ -56,6 +57,7 @@ class FasterRCNN(object):
self
.
roi_extractor
=
roi_extractor
self
.
bbox_head
=
bbox_head
self
.
fpn
=
fpn
self
.
rpn_only
=
rpn_only
def
build
(
self
,
feed_vars
,
mode
=
'train'
):
im
=
feed_vars
[
'image'
]
...
...
@@ -90,7 +92,12 @@ class FasterRCNN(object):
bbox_targets
=
outs
[
2
]
bbox_inside_weights
=
outs
[
3
]
bbox_outside_weights
=
outs
[
4
]
else
:
if
self
.
rpn_only
:
im_scale
=
fluid
.
layers
.
slice
(
im_info
,
[
1
],
starts
=
[
2
],
ends
=
[
3
])
im_scale
=
fluid
.
layers
.
sequence_expand
(
im_scale
,
rois
)
rois
=
rois
/
im_scale
return
{
'proposal'
:
rois
}
if
self
.
fpn
is
None
:
# in models without FPN, roi extractor only uses the last level of
# feature maps. And body_feat_names[-1] represents the name of
...
...
ppdet/modeling/architectures/mask_rcnn.py
浏览文件 @
6b5d7100
...
...
@@ -51,6 +51,7 @@ class MaskRCNN(object):
roi_extractor
=
'RoIAlign'
,
mask_assigner
=
'MaskAssigner'
,
mask_head
=
'MaskHead'
,
rpn_only
=
False
,
fpn
=
None
):
super
(
MaskRCNN
,
self
).
__init__
()
self
.
backbone
=
backbone
...
...
@@ -60,6 +61,7 @@ class MaskRCNN(object):
self
.
bbox_head
=
bbox_head
self
.
mask_assigner
=
mask_assigner
self
.
mask_head
=
mask_head
self
.
rpn_only
=
rpn_only
self
.
fpn
=
fpn
def
build
(
self
,
feed_vars
,
mode
=
'train'
):
...
...
@@ -130,7 +132,11 @@ class MaskRCNN(object):
return
loss
else
:
if
self
.
rpn_only
:
im_scale
=
fluid
.
layers
.
slice
(
im_info
,
[
1
],
starts
=
[
2
],
ends
=
[
3
])
im_scale
=
fluid
.
layers
.
sequence_expand
(
im_scale
,
rois
)
rois
=
rois
/
im_scale
return
{
'proposal'
:
rois
}
if
self
.
fpn
is
None
:
last_feat
=
body_feats
[
list
(
body_feats
.
keys
())[
-
1
]]
roi_feat
=
self
.
roi_extractor
(
last_feat
,
rois
)
...
...
ppdet/utils/coco_eval.py
浏览文件 @
6b5d7100
...
...
@@ -30,7 +30,12 @@ import logging
logger
=
logging
.
getLogger
(
__name__
)
__all__
=
[
'bbox_eval'
,
'mask_eval'
,
'bbox2out'
,
'mask2out'
,
'get_category_info'
'bbox_eval'
,
'mask_eval'
,
'bbox2out'
,
'mask2out'
,
'get_category_info'
,
'proposal_eval'
,
]
...
...
@@ -42,6 +47,34 @@ def clip_bbox(bbox):
return
xmin
,
ymin
,
xmax
,
ymax
def
proposal_eval
(
results
,
anno_file
,
outfile
,
max_dets
=
(
100
,
300
,
1000
)):
assert
'proposal'
in
results
[
0
]
assert
outfile
.
endswith
(
'.json'
)
xywh_results
=
proposal2out
(
results
)
assert
len
(
xywh_results
)
>
0
,
"The number of valid proposal detected is zero.
\n
\
Please use reasonable model and check input data."
with
open
(
outfile
,
'w'
)
as
f
:
json
.
dump
(
xywh_results
,
f
)
coco_gt
=
COCO
(
anno_file
)
logger
.
info
(
"Start evaluate..."
)
coco_dt
=
coco_gt
.
loadRes
(
outfile
)
coco_ev
=
COCOeval
(
coco_gt
,
coco_dt
,
'bbox'
)
coco_ev
.
params
.
useCats
=
0
coco_ev
.
params
.
maxDets
=
list
(
max_dets
)
coco_ev
.
evaluate
()
coco_ev
.
accumulate
()
coco_ev
.
summarize
()
# flush coco evaluation result
sys
.
stdout
.
flush
()
def
bbox_eval
(
results
,
anno_file
,
outfile
,
with_background
=
True
):
assert
'bbox'
in
results
[
0
]
assert
outfile
.
endswith
(
'.json'
)
...
...
@@ -96,6 +129,44 @@ def mask_eval(results, anno_file, outfile, resolution, thresh_binarize=0.5):
coco_ev
.
summarize
()
def
proposal2out
(
results
,
is_bbox_normalized
=
False
):
xywh_res
=
[]
for
t
in
results
:
bboxes
=
t
[
'proposal'
][
0
]
lengths
=
t
[
'proposal'
][
1
][
0
]
im_ids
=
np
.
array
(
t
[
'im_id'
][
0
])
if
bboxes
.
shape
==
(
1
,
1
)
or
bboxes
is
None
:
continue
k
=
0
for
i
in
range
(
len
(
lengths
)):
num
=
lengths
[
i
]
im_id
=
int
(
im_ids
[
i
][
0
])
for
j
in
range
(
num
):
dt
=
bboxes
[
k
]
xmin
,
ymin
,
xmax
,
ymax
=
dt
.
tolist
()
if
is_bbox_normalized
:
xmin
,
ymin
,
xmax
,
ymax
=
\
clip_bbox
([
xmin
,
ymin
,
xmax
,
ymax
])
w
=
xmax
-
xmin
h
=
ymax
-
ymin
else
:
w
=
xmax
-
xmin
+
1
h
=
ymax
-
ymin
+
1
bbox
=
[
xmin
,
ymin
,
w
,
h
]
coco_res
=
{
'image_id'
:
im_id
,
'category_id'
:
1
,
'bbox'
:
bbox
,
'score'
:
1.0
}
xywh_res
.
append
(
coco_res
)
k
+=
1
return
xywh_res
def
bbox2out
(
results
,
clsid2catid
,
is_bbox_normalized
=
False
):
xywh_res
=
[]
for
t
in
results
:
...
...
ppdet/utils/eval_utils.py
浏览文件 @
6b5d7100
...
...
@@ -91,13 +91,19 @@ def eval_run(exe, compile_program, pyreader, keys, values, cls):
def
eval_results
(
results
,
feed
,
metric
,
resolution
=
None
,
output_file
=
None
):
"""Evaluation for evaluation program results"""
if
metric
==
'COCO'
:
from
ppdet.utils.coco_eval
import
bbox_eval
,
mask_eval
from
ppdet.utils.coco_eval
import
proposal_eval
,
bbox_eval
,
mask_eval
anno_file
=
getattr
(
feed
.
dataset
,
'annotation'
,
None
)
with_background
=
getattr
(
feed
,
'with_background'
,
True
)
output
=
'bbox.json'
if
output_file
:
output
=
'{}_bbox.json'
.
format
(
output_file
)
bbox_eval
(
results
,
anno_file
,
output
,
with_background
)
if
'proposal'
in
results
[
0
]:
output
=
'proposal.json'
if
output_file
:
output
=
'{}_proposal.json'
.
format
(
output_file
)
proposal_eval
(
results
,
anno_file
,
output
)
if
'bbox'
in
results
[
0
]:
output
=
'bbox.json'
if
output_file
:
output
=
'{}_bbox.json'
.
format
(
output_file
)
bbox_eval
(
results
,
anno_file
,
output
,
with_background
)
if
'mask'
in
results
[
0
]:
output
=
'mask.json'
if
output_file
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录