eval_utils.py 8.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import logging
import numpy as np
21
import os
22
import time
23 24 25

import paddle.fluid as fluid

26 27
from .voc_eval import bbox_eval as voc_bbox_eval
from .post_process import mstest_box_post_process, mstest_mask_post_process, box_flip
28

29
__all__ = ['parse_fetches', 'eval_run', 'eval_results', 'json_eval_results']
30 31 32 33 34 35 36 37 38 39 40 41 42 43

logger = logging.getLogger(__name__)


def parse_fetches(fetches, prog=None, extra_keys=None):
    """
    Parse fetch variable infos from model fetches,
    values for fetch_list and keys for stat
    """
    keys, values = [], []
    cls = []
    for k, v in fetches.items():
        if hasattr(v, 'name'):
            keys.append(k)
44
            #v.persistable = True
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
            values.append(v.name)
        else:
            cls.append(v)

    if prog is not None and extra_keys is not None:
        for k in extra_keys:
            try:
                v = fluid.framework._get_var(k, prog)
                keys.append(k)
                values.append(v.name)
            except Exception:
                pass

    return keys, values, cls


W
wangguanzhong 已提交
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
def length2lod(length_lod):
    offset_lod = [0]
    for i in length_lod:
        offset_lod.append(offset_lod[-1] + i)
    return [offset_lod]


def get_sub_feed(input, place):
    new_dict = {}
    res_feed = {}
    key_name = ['bbox', 'im_info', 'im_id', 'im_shape', 'bbox_flip']
    for k in key_name:
        if k in input.keys():
            new_dict[k] = input[k]
    for k in input.keys():
        if 'image' in k:
            new_dict[k] = input[k]
    for k, v in new_dict.items():
        data_t = fluid.LoDTensor()
        data_t.set(v[0], place)
        if 'bbox' in k:
            lod = length2lod(v[1][0])
            data_t.set_lod(lod)
        res_feed[k] = data_t
    return res_feed


def clean_res(result, keep_name_list):
    clean_result = {}
    for k in result.keys():
        if k in keep_name_list:
            clean_result[k] = result[k]
    result.clear()
    return clean_result


def eval_run(exe,
             compile_program,
W
wangguanzhong 已提交
99
             loader,
W
wangguanzhong 已提交
100 101 102 103 104 105
             keys,
             values,
             cls,
             cfg=None,
             sub_prog=None,
             sub_keys=None,
W
wangguanzhong 已提交
106 107
             sub_values=None,
             resolution=None):
108 109 110 111 112 113 114 115 116 117 118 119
    """
    Run evaluation program, return program outputs.
    """
    iter_id = 0
    results = []
    if len(cls) != 0:
        values = []
        for i in range(len(cls)):
            _, accum_map = cls[i].get_map_var()
            cls[i].reset(exe)
            values.append(accum_map)

120 121 122 123
    images_num = 0
    start_time = time.time()
    has_bbox = 'bbox' in keys

124
    try:
W
wangguanzhong 已提交
125
        loader.start()
126 127 128 129 130 131 132 133
        while True:
            outs = exe.run(compile_program,
                           fetch_list=values,
                           return_numpy=False)
            res = {
                k: (np.array(v), v.recursive_sequence_lengths())
                for k, v in zip(keys, outs)
            }
W
wangguanzhong 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
            multi_scale_test = getattr(cfg, 'MultiScaleTEST', None)
            mask_multi_scale_test = multi_scale_test and 'Mask' in cfg.architecture

            if multi_scale_test:
                post_res = mstest_box_post_process(res, cfg)
                res.update(post_res)
            if mask_multi_scale_test:
                place = fluid.CUDAPlace(0) if cfg.use_gpu else fluid.CPUPlace()
                sub_feed = get_sub_feed(res, place)
                sub_prog_outs = exe.run(sub_prog,
                                        feed=sub_feed,
                                        fetch_list=sub_values,
                                        return_numpy=False)
                sub_prog_res = {
                    k: (np.array(v), v.recursive_sequence_lengths())
                    for k, v in zip(sub_keys, sub_prog_outs)
                }
                post_res = mstest_mask_post_process(sub_prog_res, cfg)
                res.update(post_res)
            if multi_scale_test:
                res = clean_res(
                    res, ['im_info', 'bbox', 'im_id', 'im_shape', 'mask'])
W
wangguanzhong 已提交
156 157 158
            if 'mask' in res:
                from ppdet.utils.post_process import mask_encode
                res['mask'] = mask_encode(res, resolution)
159 160 161 162
            results.append(res)
            if iter_id % 100 == 0:
                logger.info('Test iter {}'.format(iter_id))
            iter_id += 1
163
            images_num += len(res['bbox'][1][0]) if has_bbox else 1
164
    except (StopIteration, fluid.core.EOFException):
W
wangguanzhong 已提交
165
        loader.reset()
166 167
    logger.info('Test finish iter {}'.format(iter_id))

168 169 170 171 172 173 174 175 176
    end_time = time.time()
    fps = images_num / (end_time - start_time)
    if has_bbox:
        logger.info('Total number of images: {}, inference time: {} fps.'.
                    format(images_num, fps))
    else:
        logger.info('Total iteration: {}, inference time: {} batch/s.'.format(
            images_num, fps))

177 178 179
    return results


W
wangguanzhong 已提交
180 181
def eval_results(results,
                 metric,
182
                 num_classes,
W
wangguanzhong 已提交
183 184
                 resolution=None,
                 is_bbox_normalized=False,
185
                 output_directory=None,
186 187
                 map_type='11point',
                 dataset=None):
188
    """Evaluation for evaluation program results"""
189
    box_ap_stats = []
190
    if metric == 'COCO':
191
        from ppdet.utils.coco_eval import proposal_eval, bbox_eval, mask_eval
192 193
        anno_file = dataset.get_anno()
        with_background = dataset.with_background
194 195
        if 'proposal' in results[0]:
            output = 'proposal.json'
196 197
            if output_directory:
                output = os.path.join(output_directory, 'proposal.json')
198 199 200
            proposal_eval(results, anno_file, output)
        if 'bbox' in results[0]:
            output = 'bbox.json'
201 202
            if output_directory:
                output = os.path.join(output_directory, 'bbox.json')
203

204 205 206 207 208 209
            box_ap_stats = bbox_eval(
                results,
                anno_file,
                output,
                with_background,
                is_bbox_normalized=is_bbox_normalized)
210

211 212
        if 'mask' in results[0]:
            output = 'mask.json'
213 214
            if output_directory:
                output = os.path.join(output_directory, 'mask.json')
215 216
            mask_eval(results, anno_file, output, resolution)
    else:
217 218 219
        if 'accum_map' in results[-1]:
            res = np.mean(results[-1]['accum_map'][0])
            logger.info('mAP: {:.2f}'.format(res * 100.))
220
            box_ap_stats.append(res * 100.)
221
        elif 'bbox' in results[0]:
222
            box_ap = voc_bbox_eval(
223 224
                results,
                num_classes,
225 226
                is_bbox_normalized=is_bbox_normalized,
                map_type=map_type)
227 228
            box_ap_stats.append(box_ap)
    return box_ap_stats
229

230

231
def json_eval_results(metric, json_directory=None, dataset=None):
232 233 234 235 236
    """
    cocoapi eval with already exists proposal.json, bbox.json or mask.json
    """
    assert metric == 'COCO'
    from ppdet.utils.coco_eval import cocoapi_eval
237
    anno_file = dataset.get_anno()
238 239
    json_file_list = ['proposal.json', 'bbox.json', 'mask.json']
    if json_directory:
240 241 242
        assert os.path.exists(
            json_directory), "The json directory:{} does not exist".format(
                json_directory)
243 244 245 246 247 248 249 250 251
        for k, v in enumerate(json_file_list):
            json_file_list[k] = os.path.join(str(json_directory), v)

    coco_eval_style = ['proposal', 'bbox', 'segm']
    for i, v_json in enumerate(json_file_list):
        if os.path.exists(v_json):
            cocoapi_eval(v_json, coco_eval_style[i], anno_file=anno_file)
        else:
            logger.info("{} not exists!".format(v_json))