pico_head.py 30.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
G
Guanghua Yu 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import math
import numpy as np
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle import ParamAttr
from paddle.nn.initializer import Normal, Constant
26
from paddle.fluid.dygraph import parallel_helper
G
Guanghua Yu 已提交
27

28 29 30 31
from ppdet.modeling.ops import get_static_shape
from ..initializer import normal_
from ..assigners.utils import generate_anchors_for_grid_cell
from ..bbox_utils import bbox_center, batch_distance2bbox, bbox2distance
G
Guanghua Yu 已提交
32 33
from ppdet.core.workspace import register
from ppdet.modeling.layers import ConvNormLayer
34
from .simota_head import OTAVFLHead
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
from .gfl_head import Integral, GFLHead
from ppdet.modeling.necks.csp_pan import DPModule

eps = 1e-9

__all__ = ['PicoHead', 'PicoHeadV2', 'PicoFeat']


class PicoSE(nn.Layer):
    def __init__(self, feat_channels):
        super(PicoSE, self).__init__()
        self.fc = nn.Conv2D(feat_channels, feat_channels, 1)
        self.conv = ConvNormLayer(feat_channels, feat_channels, 1, 1)

        self._init_weights()

    def _init_weights(self):
        normal_(self.fc.weight, std=0.001)

    def forward(self, feat, avg_feat):
        weight = F.sigmoid(self.fc(avg_feat))
        out = self.conv(feat * weight)
        return out
G
Guanghua Yu 已提交
58 59 60 61 62 63 64 65 66 67 68 69


@register
class PicoFeat(nn.Layer):
    """
    PicoFeat of PicoDet

    Args:
        feat_in (int): The channel number of input Tensor.
        feat_out (int): The channel number of output Tensor.
        num_convs (int): The convolution number of the LiteGFLFeat.
        norm_type (str): Normalization type, 'bn'/'sync_bn'/'gn'.
70 71 72
        share_cls_reg (bool): Whether to share the cls and reg output.
        act (str): The act of per layers.
        use_se (bool): Whether to use se module.
G
Guanghua Yu 已提交
73 74 75 76 77 78 79 80
    """

    def __init__(self,
                 feat_in=256,
                 feat_out=96,
                 num_fpn_stride=3,
                 num_convs=2,
                 norm_type='bn',
81
                 share_cls_reg=False,
82 83
                 act='hard_swish',
                 use_se=False):
G
Guanghua Yu 已提交
84 85 86 87
        super(PicoFeat, self).__init__()
        self.num_convs = num_convs
        self.norm_type = norm_type
        self.share_cls_reg = share_cls_reg
88
        self.act = act
89
        self.use_se = use_se
G
Guanghua Yu 已提交
90 91
        self.cls_convs = []
        self.reg_convs = []
92 93
        if use_se:
            assert share_cls_reg == True, \
G
Guanghua Yu 已提交
94
                'In the case of using se, share_cls_reg must be set to True'
95
            self.se = nn.LayerList()
G
Guanghua Yu 已提交
96 97 98 99 100 101 102 103 104 105
        for stage_idx in range(num_fpn_stride):
            cls_subnet_convs = []
            reg_subnet_convs = []
            for i in range(self.num_convs):
                in_c = feat_in if i == 0 else feat_out
                cls_conv_dw = self.add_sublayer(
                    'cls_conv_dw{}.{}'.format(stage_idx, i),
                    ConvNormLayer(
                        ch_in=in_c,
                        ch_out=feat_out,
G
Guanghua Yu 已提交
106
                        filter_size=5,
G
Guanghua Yu 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
                        stride=1,
                        groups=feat_out,
                        norm_type=norm_type,
                        bias_on=False,
                        lr_scale=2.))
                cls_subnet_convs.append(cls_conv_dw)
                cls_conv_pw = self.add_sublayer(
                    'cls_conv_pw{}.{}'.format(stage_idx, i),
                    ConvNormLayer(
                        ch_in=in_c,
                        ch_out=feat_out,
                        filter_size=1,
                        stride=1,
                        norm_type=norm_type,
                        bias_on=False,
                        lr_scale=2.))
                cls_subnet_convs.append(cls_conv_pw)

                if not self.share_cls_reg:
                    reg_conv_dw = self.add_sublayer(
                        'reg_conv_dw{}.{}'.format(stage_idx, i),
                        ConvNormLayer(
                            ch_in=in_c,
                            ch_out=feat_out,
G
Guanghua Yu 已提交
131
                            filter_size=5,
G
Guanghua Yu 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
                            stride=1,
                            groups=feat_out,
                            norm_type=norm_type,
                            bias_on=False,
                            lr_scale=2.))
                    reg_subnet_convs.append(reg_conv_dw)
                    reg_conv_pw = self.add_sublayer(
                        'reg_conv_pw{}.{}'.format(stage_idx, i),
                        ConvNormLayer(
                            ch_in=in_c,
                            ch_out=feat_out,
                            filter_size=1,
                            stride=1,
                            norm_type=norm_type,
                            bias_on=False,
                            lr_scale=2.))
                    reg_subnet_convs.append(reg_conv_pw)
            self.cls_convs.append(cls_subnet_convs)
            self.reg_convs.append(reg_subnet_convs)
151 152
            if use_se:
                self.se.append(PicoSE(feat_out))
G
Guanghua Yu 已提交
153

154 155 156 157 158 159 160
    def act_func(self, x):
        if self.act == "leaky_relu":
            x = F.leaky_relu(x)
        elif self.act == "hard_swish":
            x = F.hardswish(x)
        return x

G
Guanghua Yu 已提交
161 162 163 164 165
    def forward(self, fpn_feat, stage_idx):
        assert stage_idx < len(self.cls_convs)
        cls_feat = fpn_feat
        reg_feat = fpn_feat
        for i in range(len(self.cls_convs[stage_idx])):
166
            cls_feat = self.act_func(self.cls_convs[stage_idx][i](cls_feat))
167
            reg_feat = cls_feat
G
Guanghua Yu 已提交
168
            if not self.share_cls_reg:
169
                reg_feat = self.act_func(self.reg_convs[stage_idx][i](reg_feat))
170 171 172 173
        if self.use_se:
            avg_feat = F.adaptive_avg_pool2d(cls_feat, (1, 1))
            se_feat = self.act_func(self.se[stage_idx](cls_feat, avg_feat))
            return cls_feat, se_feat
G
Guanghua Yu 已提交
174 175 176 177
        return cls_feat, reg_feat


@register
178
class PicoHead(OTAVFLHead):
G
Guanghua Yu 已提交
179 180 181
    """
    PicoHead
    Args:
182
        conv_feat (object): Instance of 'PicoFeat'
G
Guanghua Yu 已提交
183 184 185
        num_classes (int): Number of classes
        fpn_stride (list): The stride of each FPN Layer
        prior_prob (float): Used to set the bias init for the class prediction layer
186 187 188 189
        loss_class (object): Instance of VariFocalLoss.
        loss_dfl (object): Instance of DistributionFocalLoss.
        loss_bbox (object): Instance of bbox loss.
        assigner (object): Instance of label assigner.
G
Guanghua Yu 已提交
190
        reg_max: Max value of integral set :math: `{0, ..., reg_max}`
191
                n QFL setting. Default: 7.
G
Guanghua Yu 已提交
192 193
    """
    __inject__ = [
194 195
        'conv_feat', 'dgqp_module', 'loss_class', 'loss_dfl', 'loss_bbox',
        'assigner', 'nms'
G
Guanghua Yu 已提交
196
    ]
197
    __shared__ = ['num_classes', 'eval_size']
G
Guanghua Yu 已提交
198 199 200 201 202 203 204

    def __init__(self,
                 conv_feat='PicoFeat',
                 dgqp_module=None,
                 num_classes=80,
                 fpn_stride=[8, 16, 32],
                 prior_prob=0.01,
205
                 loss_class='VariFocalLoss',
G
Guanghua Yu 已提交
206 207
                 loss_dfl='DistributionFocalLoss',
                 loss_bbox='GIoULoss',
208
                 assigner='SimOTAAssigner',
G
Guanghua Yu 已提交
209 210 211 212
                 reg_max=16,
                 feat_in_chan=96,
                 nms=None,
                 nms_pre=1000,
213 214
                 cell_offset=0,
                 eval_size=None):
G
Guanghua Yu 已提交
215 216 217 218 219 220
        super(PicoHead, self).__init__(
            conv_feat=conv_feat,
            dgqp_module=dgqp_module,
            num_classes=num_classes,
            fpn_stride=fpn_stride,
            prior_prob=prior_prob,
221
            loss_class=loss_class,
G
Guanghua Yu 已提交
222 223
            loss_dfl=loss_dfl,
            loss_bbox=loss_bbox,
224
            assigner=assigner,
G
Guanghua Yu 已提交
225 226 227 228 229 230 231 232 233
            reg_max=reg_max,
            feat_in_chan=feat_in_chan,
            nms=nms,
            nms_pre=nms_pre,
            cell_offset=cell_offset)
        self.conv_feat = conv_feat
        self.num_classes = num_classes
        self.fpn_stride = fpn_stride
        self.prior_prob = prior_prob
234
        self.loss_vfl = loss_class
G
Guanghua Yu 已提交
235 236
        self.loss_dfl = loss_dfl
        self.loss_bbox = loss_bbox
237
        self.assigner = assigner
G
Guanghua Yu 已提交
238 239 240 241 242
        self.reg_max = reg_max
        self.feat_in_chan = feat_in_chan
        self.nms = nms
        self.nms_pre = nms_pre
        self.cell_offset = cell_offset
243
        self.eval_size = eval_size
244 245

        self.use_sigmoid = self.loss_vfl.use_sigmoid
G
Guanghua Yu 已提交
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
        if self.use_sigmoid:
            self.cls_out_channels = self.num_classes
        else:
            self.cls_out_channels = self.num_classes + 1
        bias_init_value = -math.log((1 - self.prior_prob) / self.prior_prob)
        # Clear the super class initialization
        self.gfl_head_cls = None
        self.gfl_head_reg = None
        self.scales_regs = None

        self.head_cls_list = []
        self.head_reg_list = []
        for i in range(len(fpn_stride)):
            head_cls = self.add_sublayer(
                "head_cls" + str(i),
                nn.Conv2D(
                    in_channels=self.feat_in_chan,
                    out_channels=self.cls_out_channels + 4 * (self.reg_max + 1)
                    if self.conv_feat.share_cls_reg else self.cls_out_channels,
                    kernel_size=1,
                    stride=1,
                    padding=0,
                    weight_attr=ParamAttr(initializer=Normal(
                        mean=0., std=0.01)),
                    bias_attr=ParamAttr(
                        initializer=Constant(value=bias_init_value))))
            self.head_cls_list.append(head_cls)
            if not self.conv_feat.share_cls_reg:
                head_reg = self.add_sublayer(
                    "head_reg" + str(i),
                    nn.Conv2D(
                        in_channels=self.feat_in_chan,
                        out_channels=4 * (self.reg_max + 1),
                        kernel_size=1,
                        stride=1,
                        padding=0,
                        weight_attr=ParamAttr(initializer=Normal(
                            mean=0., std=0.01)),
                        bias_attr=ParamAttr(initializer=Constant(value=0))))
                self.head_reg_list.append(head_reg)

287 288 289 290
        # initialize the anchor points
        if self.eval_size:
            self.anchor_points, self.stride_tensor = self._generate_anchors()

291
    def forward(self, fpn_feats, export_post_process=True):
G
Guanghua Yu 已提交
292 293 294
        assert len(fpn_feats) == len(
            self.fpn_stride
        ), "The size of fpn_feats is not equal to size of fpn_stride"
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330

        if self.training:
            return self.forward_train(fpn_feats)
        else:
            return self.forward_eval(
                fpn_feats, export_post_process=export_post_process)

    def forward_train(self, fpn_feats):
        cls_logits_list, bboxes_reg_list = [], []
        for i, fpn_feat in enumerate(fpn_feats):
            conv_cls_feat, conv_reg_feat = self.conv_feat(fpn_feat, i)
            if self.conv_feat.share_cls_reg:
                cls_logits = self.head_cls_list[i](conv_cls_feat)
                cls_score, bbox_pred = paddle.split(
                    cls_logits,
                    [self.cls_out_channels, 4 * (self.reg_max + 1)],
                    axis=1)
            else:
                cls_score = self.head_cls_list[i](conv_cls_feat)
                bbox_pred = self.head_reg_list[i](conv_reg_feat)

            if self.dgqp_module:
                quality_score = self.dgqp_module(bbox_pred)
                cls_score = F.sigmoid(cls_score) * quality_score

            cls_logits_list.append(cls_score)
            bboxes_reg_list.append(bbox_pred)

        return (cls_logits_list, bboxes_reg_list)

    def forward_eval(self, fpn_feats, export_post_process=True):
        if self.eval_size:
            anchor_points, stride_tensor = self.anchor_points, self.stride_tensor
        else:
            anchor_points, stride_tensor = self._generate_anchors(fpn_feats)
        cls_logits_list, bboxes_reg_list = [], []
G
Guanghua Yu 已提交
331 332 333 334 335 336 337 338 339 340 341
        for i, fpn_feat in enumerate(fpn_feats):
            conv_cls_feat, conv_reg_feat = self.conv_feat(fpn_feat, i)
            if self.conv_feat.share_cls_reg:
                cls_logits = self.head_cls_list[i](conv_cls_feat)
                cls_score, bbox_pred = paddle.split(
                    cls_logits,
                    [self.cls_out_channels, 4 * (self.reg_max + 1)],
                    axis=1)
            else:
                cls_score = self.head_cls_list[i](conv_cls_feat)
                bbox_pred = self.head_reg_list[i](conv_reg_feat)
342

G
Guanghua Yu 已提交
343 344 345 346
            if self.dgqp_module:
                quality_score = self.dgqp_module(bbox_pred)
                cls_score = F.sigmoid(cls_score) * quality_score

347
            if not export_post_process:
348 349
                # Now only supports batch size = 1 in deploy
                # TODO(ygh): support batch size > 1
350
                cls_score_out = F.sigmoid(cls_score).reshape(
351 352 353
                    [1, self.cls_out_channels, -1]).transpose([0, 2, 1])
                bbox_pred = bbox_pred.reshape([1, (self.reg_max + 1) * 4,
                                               -1]).transpose([0, 2, 1])
354 355 356 357 358
            else:
                b, _, h, w = fpn_feat.shape
                l = h * w
                cls_score_out = F.sigmoid(
                    cls_score.reshape([b, self.cls_out_channels, l]))
G
Guanghua Yu 已提交
359
                bbox_pred = bbox_pred.transpose([0, 2, 3, 1])
360 361
                bbox_pred = self.distribution_project(bbox_pred)
                bbox_pred = bbox_pred.reshape([b, l, 4])
G
Guanghua Yu 已提交
362

363
            cls_logits_list.append(cls_score_out)
G
Guanghua Yu 已提交
364 365
            bboxes_reg_list.append(bbox_pred)

366 367 368 369 370 371 372
        if export_post_process:
            cls_logits_list = paddle.concat(cls_logits_list, axis=-1)
            bboxes_reg_list = paddle.concat(bboxes_reg_list, axis=1)
            bboxes_reg_list = batch_distance2bbox(anchor_points,
                                                  bboxes_reg_list)
            bboxes_reg_list *= stride_tensor

G
Guanghua Yu 已提交
373
        return (cls_logits_list, bboxes_reg_list)
374

375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
    def _generate_anchors(self, feats=None):
        # just use in eval time
        anchor_points = []
        stride_tensor = []
        for i, stride in enumerate(self.fpn_stride):
            if feats is not None:
                _, _, h, w = feats[i].shape
            else:
                h = math.ceil(self.eval_size[0] / stride)
                w = math.ceil(self.eval_size[1] / stride)
            shift_x = paddle.arange(end=w) + self.cell_offset
            shift_y = paddle.arange(end=h) + self.cell_offset
            shift_y, shift_x = paddle.meshgrid(shift_y, shift_x)
            anchor_point = paddle.cast(
                paddle.stack(
                    [shift_x, shift_y], axis=-1), dtype='float32')
            anchor_points.append(anchor_point.reshape([-1, 2]))
            stride_tensor.append(
                paddle.full(
                    [h * w, 1], stride, dtype='float32'))
        anchor_points = paddle.concat(anchor_points)
        stride_tensor = paddle.concat(stride_tensor)
        return anchor_points, stride_tensor

    def post_process(self, head_outs, scale_factor, export_nms=True):
        pred_scores, pred_bboxes = head_outs
401
        if not export_nms:
402
            return pred_bboxes, pred_scores
403 404
        else:
            # rescale: [h_scale, w_scale] -> [w_scale, h_scale, w_scale, h_scale]
405 406 407 408 409 410 411
            scale_y, scale_x = paddle.split(scale_factor, 2, axis=-1)
            scale_factor = paddle.concat(
                [scale_x, scale_y, scale_x, scale_y],
                axis=-1).reshape([-1, 1, 4])
            # scale bbox to origin image size.
            pred_bboxes /= scale_factor
            bbox_pred, bbox_num, _ = self.nms(pred_bboxes, pred_scores)
412 413
            return bbox_pred, bbox_num

414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434

@register
class PicoHeadV2(GFLHead):
    """
    PicoHeadV2
    Args:
        conv_feat (object): Instance of 'PicoFeat'
        num_classes (int): Number of classes
        fpn_stride (list): The stride of each FPN Layer
        prior_prob (float): Used to set the bias init for the class prediction layer
        loss_class (object): Instance of VariFocalLoss.
        loss_dfl (object): Instance of DistributionFocalLoss.
        loss_bbox (object): Instance of bbox loss.
        assigner (object): Instance of label assigner.
        reg_max: Max value of integral set :math: `{0, ..., reg_max}`
                n QFL setting. Default: 7.
    """
    __inject__ = [
        'conv_feat', 'dgqp_module', 'loss_class', 'loss_dfl', 'loss_bbox',
        'static_assigner', 'assigner', 'nms'
    ]
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
    __shared__ = ['num_classes', 'eval_size']

    def __init__(self,
                 conv_feat='PicoFeatV2',
                 dgqp_module=None,
                 num_classes=80,
                 fpn_stride=[8, 16, 32],
                 prior_prob=0.01,
                 use_align_head=True,
                 loss_class='VariFocalLoss',
                 loss_dfl='DistributionFocalLoss',
                 loss_bbox='GIoULoss',
                 static_assigner_epoch=60,
                 static_assigner='ATSSAssigner',
                 assigner='TaskAlignedAssigner',
                 reg_max=16,
                 feat_in_chan=96,
                 nms=None,
                 nms_pre=1000,
                 cell_offset=0,
                 act='hard_swish',
                 grid_cell_scale=5.0,
                 eval_size=None):
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
        super(PicoHeadV2, self).__init__(
            conv_feat=conv_feat,
            dgqp_module=dgqp_module,
            num_classes=num_classes,
            fpn_stride=fpn_stride,
            prior_prob=prior_prob,
            loss_class=loss_class,
            loss_dfl=loss_dfl,
            loss_bbox=loss_bbox,
            reg_max=reg_max,
            feat_in_chan=feat_in_chan,
            nms=nms,
            nms_pre=nms_pre,
            cell_offset=cell_offset, )
        self.conv_feat = conv_feat
        self.num_classes = num_classes
        self.fpn_stride = fpn_stride
        self.prior_prob = prior_prob
        self.loss_vfl = loss_class
        self.loss_dfl = loss_dfl
        self.loss_bbox = loss_bbox

        self.static_assigner_epoch = static_assigner_epoch
        self.static_assigner = static_assigner
        self.assigner = assigner

        self.reg_max = reg_max
        self.feat_in_chan = feat_in_chan
        self.nms = nms
        self.nms_pre = nms_pre
        self.cell_offset = cell_offset
        self.act = act
        self.grid_cell_scale = grid_cell_scale
        self.use_align_head = use_align_head
        self.cls_out_channels = self.num_classes
493
        self.eval_size = eval_size
494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539

        bias_init_value = -math.log((1 - self.prior_prob) / self.prior_prob)
        # Clear the super class initialization
        self.gfl_head_cls = None
        self.gfl_head_reg = None
        self.scales_regs = None

        self.head_cls_list = []
        self.head_reg_list = []
        self.cls_align = nn.LayerList()

        for i in range(len(fpn_stride)):
            head_cls = self.add_sublayer(
                "head_cls" + str(i),
                nn.Conv2D(
                    in_channels=self.feat_in_chan,
                    out_channels=self.cls_out_channels,
                    kernel_size=1,
                    stride=1,
                    padding=0,
                    weight_attr=ParamAttr(initializer=Normal(
                        mean=0., std=0.01)),
                    bias_attr=ParamAttr(
                        initializer=Constant(value=bias_init_value))))
            self.head_cls_list.append(head_cls)
            head_reg = self.add_sublayer(
                "head_reg" + str(i),
                nn.Conv2D(
                    in_channels=self.feat_in_chan,
                    out_channels=4 * (self.reg_max + 1),
                    kernel_size=1,
                    stride=1,
                    padding=0,
                    weight_attr=ParamAttr(initializer=Normal(
                        mean=0., std=0.01)),
                    bias_attr=ParamAttr(initializer=Constant(value=0))))
            self.head_reg_list.append(head_reg)
            if self.use_align_head:
                self.cls_align.append(
                    DPModule(
                        self.feat_in_chan,
                        1,
                        5,
                        act=self.act,
                        use_act_in_out=False))

540 541 542 543
        # initialize the anchor points
        if self.eval_size:
            self.anchor_points, self.stride_tensor = self._generate_anchors()

G
Guanghua Yu 已提交
544
    def forward(self, fpn_feats, export_post_process=True):
545 546 547 548
        assert len(fpn_feats) == len(
            self.fpn_stride
        ), "The size of fpn_feats is not equal to size of fpn_stride"

549 550 551 552 553 554 555
        if self.training:
            return self.forward_train(fpn_feats)
        else:
            return self.forward_eval(
                fpn_feats, export_post_process=export_post_process)

    def forward_train(self, fpn_feats):
556
        cls_score_list, reg_list, box_list = [], [], []
557
        for i, (fpn_feat, stride) in enumerate(zip(fpn_feats, self.fpn_stride)):
558 559 560 561 562 563 564 565
            b, _, h, w = get_static_shape(fpn_feat)
            # task decomposition
            conv_cls_feat, se_feat = self.conv_feat(fpn_feat, i)
            cls_logit = self.head_cls_list[i](se_feat)
            reg_pred = self.head_reg_list[i](se_feat)

            # cls prediction and alignment
            if self.use_align_head:
566
                cls_prob = F.sigmoid(self.cls_align[i](conv_cls_feat))
567 568 569 570
                cls_score = (F.sigmoid(cls_logit) * cls_prob + eps).sqrt()
            else:
                cls_score = F.sigmoid(cls_logit)

571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
            cls_score_out = cls_score.transpose([0, 2, 3, 1])
            bbox_pred = reg_pred.transpose([0, 2, 3, 1])
            b, cell_h, cell_w, _ = paddle.shape(cls_score_out)
            y, x = self.get_single_level_center_point(
                [cell_h, cell_w], stride, cell_offset=self.cell_offset)
            center_points = paddle.stack([x, y], axis=-1)
            cls_score_out = cls_score_out.reshape(
                [b, -1, self.cls_out_channels])
            bbox_pred = self.distribution_project(bbox_pred) * stride
            bbox_pred = bbox_pred.reshape([b, cell_h * cell_w, 4])
            bbox_pred = batch_distance2bbox(
                center_points, bbox_pred, max_shapes=None)
            cls_score_list.append(cls_score.flatten(2).transpose([0, 2, 1]))
            reg_list.append(reg_pred.flatten(2).transpose([0, 2, 1]))
            box_list.append(bbox_pred / stride)

        cls_score_list = paddle.concat(cls_score_list, axis=1)
        box_list = paddle.concat(box_list, axis=1)
        reg_list = paddle.concat(reg_list, axis=1)
        return cls_score_list, reg_list, box_list, fpn_feats

    def forward_eval(self, fpn_feats, export_post_process=True):
        if self.eval_size:
            anchor_points, stride_tensor = self.anchor_points, self.stride_tensor
        else:
            anchor_points, stride_tensor = self._generate_anchors(fpn_feats)
        cls_score_list, box_list = [], []
        for i, (fpn_feat, stride) in enumerate(zip(fpn_feats, self.fpn_stride)):
            b, _, h, w = fpn_feat.shape
            # task decomposition
            conv_cls_feat, se_feat = self.conv_feat(fpn_feat, i)
            cls_logit = self.head_cls_list[i](se_feat)
            reg_pred = self.head_reg_list[i](se_feat)

            # cls prediction and alignment
            if self.use_align_head:
                cls_prob = F.sigmoid(self.cls_align[i](conv_cls_feat))
                cls_score = (F.sigmoid(cls_logit) * cls_prob + eps).sqrt()
            else:
                cls_score = F.sigmoid(cls_logit)

            if not export_post_process:
G
Guanghua Yu 已提交
613
                # Now only supports batch size = 1 in deploy
614
                cls_score_list.append(
G
Guanghua Yu 已提交
615 616 617 618 619
                    cls_score.reshape([1, self.cls_out_channels, -1]).transpose(
                        [0, 2, 1]))
                box_list.append(
                    reg_pred.reshape([1, (self.reg_max + 1) * 4, -1]).transpose(
                        [0, 2, 1]))
620
            else:
621 622
                l = h * w
                cls_score_out = cls_score.reshape([b, self.cls_out_channels, l])
G
Guanghua Yu 已提交
623
                bbox_pred = reg_pred.transpose([0, 2, 3, 1])
624 625 626 627 628 629 630
                bbox_pred = self.distribution_project(bbox_pred)
                bbox_pred = bbox_pred.reshape([b, l, 4])
                cls_score_list.append(cls_score_out)
                box_list.append(bbox_pred)

        if export_post_process:
            cls_score_list = paddle.concat(cls_score_list, axis=-1)
631
            box_list = paddle.concat(box_list, axis=1)
632 633 634 635
            box_list = batch_distance2bbox(anchor_points, box_list)
            box_list *= stride_tensor

        return cls_score_list, box_list
636 637

    def get_loss(self, head_outs, gt_meta):
G
Guanghua Yu 已提交
638
        pred_scores, pred_regs, pred_bboxes, fpn_feats = head_outs
639 640 641 642 643 644
        gt_labels = gt_meta['gt_class']
        gt_bboxes = gt_meta['gt_bbox']
        gt_scores = gt_meta['gt_score'] if 'gt_score' in gt_meta else None
        num_imgs = gt_meta['im_id'].shape[0]
        pad_gt_mask = gt_meta['pad_gt_mask']

G
Guanghua Yu 已提交
645 646 647
        anchors, _, num_anchors_list, stride_tensor_list = generate_anchors_for_grid_cell(
            fpn_feats, self.fpn_stride, self.grid_cell_scale, self.cell_offset)

648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
        centers = bbox_center(anchors)

        # label assignment
        if gt_meta['epoch_id'] < self.static_assigner_epoch:
            assigned_labels, assigned_bboxes, assigned_scores = self.static_assigner(
                anchors,
                num_anchors_list,
                gt_labels,
                gt_bboxes,
                pad_gt_mask,
                bg_index=self.num_classes,
                gt_scores=gt_scores,
                pred_bboxes=pred_bboxes.detach() * stride_tensor_list)

        else:
            assigned_labels, assigned_bboxes, assigned_scores = self.assigner(
                pred_scores.detach(),
                pred_bboxes.detach() * stride_tensor_list,
                centers,
                num_anchors_list,
                gt_labels,
                gt_bboxes,
                pad_gt_mask,
                bg_index=self.num_classes,
                gt_scores=gt_scores)

        assigned_bboxes /= stride_tensor_list

        centers_shape = centers.shape
        flatten_centers = centers.expand(
            [num_imgs, centers_shape[0], centers_shape[1]]).reshape([-1, 2])
        flatten_strides = stride_tensor_list.expand(
            [num_imgs, centers_shape[0], 1]).reshape([-1, 1])
        flatten_cls_preds = pred_scores.reshape([-1, self.num_classes])
        flatten_regs = pred_regs.reshape([-1, 4 * (self.reg_max + 1)])
        flatten_bboxes = pred_bboxes.reshape([-1, 4])
        flatten_bbox_targets = assigned_bboxes.reshape([-1, 4])
        flatten_labels = assigned_labels.reshape([-1])
        flatten_assigned_scores = assigned_scores.reshape(
            [-1, self.num_classes])

        pos_inds = paddle.nonzero(
            paddle.logical_and((flatten_labels >= 0),
                               (flatten_labels < self.num_classes)),
            as_tuple=False).squeeze(1)

        num_total_pos = len(pos_inds)

        if num_total_pos > 0:
            pos_bbox_targets = paddle.gather(
                flatten_bbox_targets, pos_inds, axis=0)
            pos_decode_bbox_pred = paddle.gather(
                flatten_bboxes, pos_inds, axis=0)
            pos_reg = paddle.gather(flatten_regs, pos_inds, axis=0)
            pos_strides = paddle.gather(flatten_strides, pos_inds, axis=0)
            pos_centers = paddle.gather(
                flatten_centers, pos_inds, axis=0) / pos_strides

            weight_targets = flatten_assigned_scores.detach()
            weight_targets = paddle.gather(
                weight_targets.max(axis=1, keepdim=True), pos_inds, axis=0)

            pred_corners = pos_reg.reshape([-1, self.reg_max + 1])
            target_corners = bbox2distance(pos_centers, pos_bbox_targets,
                                           self.reg_max).reshape([-1])
            # regression loss
            loss_bbox = paddle.sum(
                self.loss_bbox(pos_decode_bbox_pred,
                               pos_bbox_targets) * weight_targets)

            # dfl loss
            loss_dfl = self.loss_dfl(
                pred_corners,
                target_corners,
                weight=weight_targets.expand([-1, 4]).reshape([-1]),
                avg_factor=4.0)
        else:
            loss_bbox = paddle.zeros([1])
            loss_dfl = paddle.zeros([1])

        avg_factor = flatten_assigned_scores.sum()
        if paddle.fluid.core.is_compiled_with_dist(
        ) and parallel_helper._is_parallel_ctx_initialized():
            paddle.distributed.all_reduce(avg_factor)
            avg_factor = paddle.clip(
                avg_factor / paddle.distributed.get_world_size(), min=1)
        loss_vfl = self.loss_vfl(
            flatten_cls_preds, flatten_assigned_scores, avg_factor=avg_factor)

        loss_bbox = loss_bbox / avg_factor
        loss_dfl = loss_dfl / avg_factor

        loss_states = dict(
            loss_vfl=loss_vfl, loss_bbox=loss_bbox, loss_dfl=loss_dfl)

        return loss_states
744

745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
    def _generate_anchors(self, feats=None):
        # just use in eval time
        anchor_points = []
        stride_tensor = []
        for i, stride in enumerate(self.fpn_stride):
            if feats is not None:
                _, _, h, w = feats[i].shape
            else:
                h = math.ceil(self.eval_size[0] / stride)
                w = math.ceil(self.eval_size[1] / stride)
            shift_x = paddle.arange(end=w) + self.cell_offset
            shift_y = paddle.arange(end=h) + self.cell_offset
            shift_y, shift_x = paddle.meshgrid(shift_y, shift_x)
            anchor_point = paddle.cast(
                paddle.stack(
                    [shift_x, shift_y], axis=-1), dtype='float32')
            anchor_points.append(anchor_point.reshape([-1, 2]))
            stride_tensor.append(
                paddle.full(
                    [h * w, 1], stride, dtype='float32'))
        anchor_points = paddle.concat(anchor_points)
        stride_tensor = paddle.concat(stride_tensor)
        return anchor_points, stride_tensor

    def post_process(self, head_outs, scale_factor, export_nms=True):
        pred_scores, pred_bboxes = head_outs
771
        if not export_nms:
772
            return pred_bboxes, pred_scores
773 774
        else:
            # rescale: [h_scale, w_scale] -> [w_scale, h_scale, w_scale, h_scale]
775 776 777 778 779 780 781
            scale_y, scale_x = paddle.split(scale_factor, 2, axis=-1)
            scale_factor = paddle.concat(
                [scale_x, scale_y, scale_x, scale_y],
                axis=-1).reshape([-1, 1, 4])
            # scale bbox to origin image size.
            pred_bboxes /= scale_factor
            bbox_pred, bbox_num, _ = self.nms(pred_bboxes, pred_scores)
782
            return bbox_pred, bbox_num