Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
c612935d
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
c612935d
编写于
4月 12, 2022
作者:
G
Guanghua Yu
提交者:
GitHub
4月 12, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Simplify picodet postprocess (#5650)
上级
df4a27c6
变更
9
隐藏空白更改
内联
并排
Showing
9 changed file
with
264 addition
and
138 deletion
+264
-138
configs/picodet/_base_/picodet_320_reader.yml
configs/picodet/_base_/picodet_320_reader.yml
+7
-6
configs/picodet/_base_/picodet_416_reader.yml
configs/picodet/_base_/picodet_416_reader.yml
+7
-6
configs/picodet/_base_/picodet_640_reader.yml
configs/picodet/_base_/picodet_640_reader.yml
+7
-6
configs/picodet/legacy_model/_base_/picodet_320_reader.yml
configs/picodet/legacy_model/_base_/picodet_320_reader.yml
+7
-6
configs/picodet/legacy_model/_base_/picodet_416_reader.yml
configs/picodet/legacy_model/_base_/picodet_416_reader.yml
+7
-6
configs/picodet/legacy_model/_base_/picodet_640_reader.yml
configs/picodet/legacy_model/_base_/picodet_640_reader.yml
+7
-6
ppdet/modeling/architectures/picodet.py
ppdet/modeling/architectures/picodet.py
+1
-2
ppdet/modeling/heads/gfl_head.py
ppdet/modeling/heads/gfl_head.py
+3
-1
ppdet/modeling/heads/pico_head.py
ppdet/modeling/heads/pico_head.py
+218
-99
未找到文件。
configs/picodet/_base_/picodet_320_reader.yml
浏览文件 @
c612935d
worker_num
:
6
eval_height
:
&eval_height
320
eval_width
:
&eval_width
320
eval_size
:
&eval_size
[
*eval_height
,
*eval_width
]
TrainReader
:
sample_transforms
:
-
Decode
:
{}
...
...
@@ -18,7 +22,7 @@ TrainReader:
EvalReader
:
sample_transforms
:
-
Decode
:
{}
-
Resize
:
{
interp
:
2
,
target_size
:
[
320
,
320
]
,
keep_ratio
:
False
}
-
Resize
:
{
interp
:
2
,
target_size
:
*eval_size
,
keep_ratio
:
False
}
-
NormalizeImage
:
{
is_scale
:
true
,
mean
:
[
0.485
,
0.456
,
0.406
],
std
:
[
0.229
,
0.224
,
0.225
]}
-
Permute
:
{}
batch_transforms
:
...
...
@@ -29,13 +33,10 @@ EvalReader:
TestReader
:
inputs_def
:
image_shape
:
[
1
,
3
,
320
,
320
]
image_shape
:
[
1
,
3
,
*eval_height
,
*eval_width
]
sample_transforms
:
-
Decode
:
{}
-
Resize
:
{
interp
:
2
,
target_size
:
[
320
,
320
]
,
keep_ratio
:
False
}
-
Resize
:
{
interp
:
2
,
target_size
:
*eval_size
,
keep_ratio
:
False
}
-
NormalizeImage
:
{
is_scale
:
true
,
mean
:
[
0.485
,
0.456
,
0.406
],
std
:
[
0.229
,
0.224
,
0.225
]}
-
Permute
:
{}
batch_transforms
:
-
PadBatch
:
{
pad_to_stride
:
32
}
batch_size
:
1
shuffle
:
false
configs/picodet/_base_/picodet_416_reader.yml
浏览文件 @
c612935d
worker_num
:
6
eval_height
:
&eval_height
416
eval_width
:
&eval_width
416
eval_size
:
&eval_size
[
*eval_height
,
*eval_width
]
TrainReader
:
sample_transforms
:
-
Decode
:
{}
...
...
@@ -18,7 +22,7 @@ TrainReader:
EvalReader
:
sample_transforms
:
-
Decode
:
{}
-
Resize
:
{
interp
:
2
,
target_size
:
[
416
,
416
]
,
keep_ratio
:
False
}
-
Resize
:
{
interp
:
2
,
target_size
:
*eval_size
,
keep_ratio
:
False
}
-
NormalizeImage
:
{
is_scale
:
true
,
mean
:
[
0.485
,
0.456
,
0.406
],
std
:
[
0.229
,
0.224
,
0.225
]}
-
Permute
:
{}
batch_transforms
:
...
...
@@ -29,13 +33,10 @@ EvalReader:
TestReader
:
inputs_def
:
image_shape
:
[
1
,
3
,
416
,
416
]
image_shape
:
[
1
,
3
,
*eval_height
,
*eval_width
]
sample_transforms
:
-
Decode
:
{}
-
Resize
:
{
interp
:
2
,
target_size
:
[
416
,
416
]
,
keep_ratio
:
False
}
-
Resize
:
{
interp
:
2
,
target_size
:
*eval_size
,
keep_ratio
:
False
}
-
NormalizeImage
:
{
is_scale
:
true
,
mean
:
[
0.485
,
0.456
,
0.406
],
std
:
[
0.229
,
0.224
,
0.225
]}
-
Permute
:
{}
batch_transforms
:
-
PadBatch
:
{
pad_to_stride
:
32
}
batch_size
:
1
shuffle
:
false
configs/picodet/_base_/picodet_640_reader.yml
浏览文件 @
c612935d
worker_num
:
6
eval_height
:
&eval_height
640
eval_width
:
&eval_width
640
eval_size
:
&eval_size
[
*eval_height
,
*eval_width
]
TrainReader
:
sample_transforms
:
-
Decode
:
{}
...
...
@@ -18,7 +22,7 @@ TrainReader:
EvalReader
:
sample_transforms
:
-
Decode
:
{}
-
Resize
:
{
interp
:
2
,
target_size
:
[
640
,
640
]
,
keep_ratio
:
False
}
-
Resize
:
{
interp
:
2
,
target_size
:
*eval_size
,
keep_ratio
:
False
}
-
NormalizeImage
:
{
is_scale
:
true
,
mean
:
[
0.485
,
0.456
,
0.406
],
std
:
[
0.229
,
0.224
,
0.225
]}
-
Permute
:
{}
batch_transforms
:
...
...
@@ -29,13 +33,10 @@ EvalReader:
TestReader
:
inputs_def
:
image_shape
:
[
1
,
3
,
640
,
640
]
image_shape
:
[
1
,
3
,
*eval_height
,
*eval_width
]
sample_transforms
:
-
Decode
:
{}
-
Resize
:
{
interp
:
2
,
target_size
:
[
640
,
640
]
,
keep_ratio
:
False
}
-
Resize
:
{
interp
:
2
,
target_size
:
*eval_size
,
keep_ratio
:
False
}
-
NormalizeImage
:
{
is_scale
:
true
,
mean
:
[
0.485
,
0.456
,
0.406
],
std
:
[
0.229
,
0.224
,
0.225
]}
-
Permute
:
{}
batch_transforms
:
-
PadBatch
:
{
pad_to_stride
:
32
}
batch_size
:
1
shuffle
:
false
configs/picodet/legacy_model/_base_/picodet_320_reader.yml
浏览文件 @
c612935d
worker_num
:
6
eval_height
:
&eval_height
320
eval_width
:
&eval_width
320
eval_size
:
&eval_size
[
*eval_height
,
*eval_width
]
TrainReader
:
sample_transforms
:
-
Decode
:
{}
...
...
@@ -18,7 +22,7 @@ TrainReader:
EvalReader
:
sample_transforms
:
-
Decode
:
{}
-
Resize
:
{
interp
:
2
,
target_size
:
[
320
,
320
]
,
keep_ratio
:
False
}
-
Resize
:
{
interp
:
2
,
target_size
:
*eval_size
,
keep_ratio
:
False
}
-
NormalizeImage
:
{
is_scale
:
true
,
mean
:
[
0.485
,
0.456
,
0.406
],
std
:
[
0.229
,
0.224
,
0.225
]}
-
Permute
:
{}
batch_transforms
:
...
...
@@ -29,13 +33,10 @@ EvalReader:
TestReader
:
inputs_def
:
image_shape
:
[
1
,
3
,
320
,
320
]
image_shape
:
[
1
,
3
,
*eval_height
,
*eval_width
]
sample_transforms
:
-
Decode
:
{}
-
Resize
:
{
interp
:
2
,
target_size
:
[
320
,
320
]
,
keep_ratio
:
False
}
-
Resize
:
{
interp
:
2
,
target_size
:
*eval_size
,
keep_ratio
:
False
}
-
NormalizeImage
:
{
is_scale
:
true
,
mean
:
[
0.485
,
0.456
,
0.406
],
std
:
[
0.229
,
0.224
,
0.225
]}
-
Permute
:
{}
batch_transforms
:
-
PadBatch
:
{
pad_to_stride
:
32
}
batch_size
:
1
shuffle
:
false
configs/picodet/legacy_model/_base_/picodet_416_reader.yml
浏览文件 @
c612935d
worker_num
:
6
eval_height
:
&eval_height
416
eval_width
:
&eval_width
416
eval_size
:
&eval_size
[
*eval_height
,
*eval_width
]
TrainReader
:
sample_transforms
:
-
Decode
:
{}
...
...
@@ -18,7 +22,7 @@ TrainReader:
EvalReader
:
sample_transforms
:
-
Decode
:
{}
-
Resize
:
{
interp
:
2
,
target_size
:
[
416
,
416
]
,
keep_ratio
:
False
}
-
Resize
:
{
interp
:
2
,
target_size
:
*eval_size
,
keep_ratio
:
False
}
-
NormalizeImage
:
{
is_scale
:
true
,
mean
:
[
0.485
,
0.456
,
0.406
],
std
:
[
0.229
,
0.224
,
0.225
]}
-
Permute
:
{}
batch_transforms
:
...
...
@@ -29,13 +33,10 @@ EvalReader:
TestReader
:
inputs_def
:
image_shape
:
[
1
,
3
,
416
,
416
]
image_shape
:
[
1
,
3
,
*eval_height
,
*eval_width
]
sample_transforms
:
-
Decode
:
{}
-
Resize
:
{
interp
:
2
,
target_size
:
[
416
,
416
]
,
keep_ratio
:
False
}
-
Resize
:
{
interp
:
2
,
target_size
:
*eval_size
,
keep_ratio
:
False
}
-
NormalizeImage
:
{
is_scale
:
true
,
mean
:
[
0.485
,
0.456
,
0.406
],
std
:
[
0.229
,
0.224
,
0.225
]}
-
Permute
:
{}
batch_transforms
:
-
PadBatch
:
{
pad_to_stride
:
32
}
batch_size
:
1
shuffle
:
false
configs/picodet/legacy_model/_base_/picodet_640_reader.yml
浏览文件 @
c612935d
worker_num
:
6
eval_height
:
&eval_height
640
eval_width
:
&eval_width
640
eval_size
:
&eval_size
[
*eval_height
,
*eval_width
]
TrainReader
:
sample_transforms
:
-
Decode
:
{}
...
...
@@ -18,7 +22,7 @@ TrainReader:
EvalReader
:
sample_transforms
:
-
Decode
:
{}
-
Resize
:
{
interp
:
2
,
target_size
:
[
640
,
640
]
,
keep_ratio
:
False
}
-
Resize
:
{
interp
:
2
,
target_size
:
*eval_size
,
keep_ratio
:
False
}
-
NormalizeImage
:
{
is_scale
:
true
,
mean
:
[
0.485
,
0.456
,
0.406
],
std
:
[
0.229
,
0.224
,
0.225
]}
-
Permute
:
{}
batch_transforms
:
...
...
@@ -29,13 +33,10 @@ EvalReader:
TestReader
:
inputs_def
:
image_shape
:
[
1
,
3
,
640
,
640
]
image_shape
:
[
1
,
3
,
*eval_height
,
*eval_width
]
sample_transforms
:
-
Decode
:
{}
-
Resize
:
{
interp
:
2
,
target_size
:
[
640
,
640
]
,
keep_ratio
:
False
}
-
Resize
:
{
interp
:
2
,
target_size
:
*eval_size
,
keep_ratio
:
False
}
-
NormalizeImage
:
{
is_scale
:
true
,
mean
:
[
0.485
,
0.456
,
0.406
],
std
:
[
0.229
,
0.224
,
0.225
]}
-
Permute
:
{}
batch_transforms
:
-
PadBatch
:
{
pad_to_stride
:
32
}
batch_size
:
1
shuffle
:
false
ppdet/modeling/architectures/picodet.py
浏览文件 @
c612935d
...
...
@@ -67,10 +67,9 @@ class PicoDet(BaseArch):
if
self
.
training
or
not
self
.
export_post_process
:
return
head_outs
,
None
else
:
im_shape
=
self
.
inputs
[
'im_shape'
]
scale_factor
=
self
.
inputs
[
'scale_factor'
]
bboxes
,
bbox_num
=
self
.
head
.
post_process
(
head_outs
,
im_shape
,
scale_factor
,
export_nms
=
self
.
export_nms
)
head_outs
,
scale_factor
,
export_nms
=
self
.
export_nms
)
return
bboxes
,
bbox_num
def
get_loss
(
self
,
):
...
...
ppdet/modeling/heads/gfl_head.py
浏览文件 @
c612935d
...
...
@@ -79,7 +79,9 @@ class Integral(nn.Layer):
offsets from the box center in four directions, shape (N, 4).
"""
x
=
F
.
softmax
(
x
.
reshape
([
-
1
,
self
.
reg_max
+
1
]),
axis
=
1
)
x
=
F
.
linear
(
x
,
self
.
project
).
reshape
([
-
1
,
4
])
x
=
F
.
linear
(
x
,
self
.
project
)
if
self
.
training
:
x
=
x
.
reshape
([
-
1
,
4
])
return
x
...
...
ppdet/modeling/heads/pico_head.py
浏览文件 @
c612935d
...
...
@@ -194,7 +194,7 @@ class PicoHead(OTAVFLHead):
'conv_feat'
,
'dgqp_module'
,
'loss_class'
,
'loss_dfl'
,
'loss_bbox'
,
'assigner'
,
'nms'
]
__shared__
=
[
'num_classes'
]
__shared__
=
[
'num_classes'
,
'eval_size'
]
def
__init__
(
self
,
conv_feat
=
'PicoFeat'
,
...
...
@@ -210,7 +210,8 @@ class PicoHead(OTAVFLHead):
feat_in_chan
=
96
,
nms
=
None
,
nms_pre
=
1000
,
cell_offset
=
0
):
cell_offset
=
0
,
eval_size
=
None
):
super
(
PicoHead
,
self
).
__init__
(
conv_feat
=
conv_feat
,
dgqp_module
=
dgqp_module
,
...
...
@@ -239,6 +240,7 @@ class PicoHead(OTAVFLHead):
self
.
nms
=
nms
self
.
nms_pre
=
nms_pre
self
.
cell_offset
=
cell_offset
self
.
eval_size
=
eval_size
self
.
use_sigmoid
=
self
.
loss_vfl
.
use_sigmoid
if
self
.
use_sigmoid
:
...
...
@@ -282,12 +284,50 @@ class PicoHead(OTAVFLHead):
bias_attr
=
ParamAttr
(
initializer
=
Constant
(
value
=
0
))))
self
.
head_reg_list
.
append
(
head_reg
)
# initialize the anchor points
if
self
.
eval_size
:
self
.
anchor_points
,
self
.
stride_tensor
=
self
.
_generate_anchors
()
def
forward
(
self
,
fpn_feats
,
export_post_process
=
True
):
assert
len
(
fpn_feats
)
==
len
(
self
.
fpn_stride
),
"The size of fpn_feats is not equal to size of fpn_stride"
cls_logits_list
=
[]
bboxes_reg_list
=
[]
if
self
.
training
:
return
self
.
forward_train
(
fpn_feats
)
else
:
return
self
.
forward_eval
(
fpn_feats
,
export_post_process
=
export_post_process
)
def
forward_train
(
self
,
fpn_feats
):
cls_logits_list
,
bboxes_reg_list
=
[],
[]
for
i
,
fpn_feat
in
enumerate
(
fpn_feats
):
conv_cls_feat
,
conv_reg_feat
=
self
.
conv_feat
(
fpn_feat
,
i
)
if
self
.
conv_feat
.
share_cls_reg
:
cls_logits
=
self
.
head_cls_list
[
i
](
conv_cls_feat
)
cls_score
,
bbox_pred
=
paddle
.
split
(
cls_logits
,
[
self
.
cls_out_channels
,
4
*
(
self
.
reg_max
+
1
)],
axis
=
1
)
else
:
cls_score
=
self
.
head_cls_list
[
i
](
conv_cls_feat
)
bbox_pred
=
self
.
head_reg_list
[
i
](
conv_reg_feat
)
if
self
.
dgqp_module
:
quality_score
=
self
.
dgqp_module
(
bbox_pred
)
cls_score
=
F
.
sigmoid
(
cls_score
)
*
quality_score
cls_logits_list
.
append
(
cls_score
)
bboxes_reg_list
.
append
(
bbox_pred
)
return
(
cls_logits_list
,
bboxes_reg_list
)
def
forward_eval
(
self
,
fpn_feats
,
export_post_process
=
True
):
if
self
.
eval_size
:
anchor_points
,
stride_tensor
=
self
.
anchor_points
,
self
.
stride_tensor
else
:
anchor_points
,
stride_tensor
=
self
.
_generate_anchors
(
fpn_feats
)
cls_logits_list
,
bboxes_reg_list
=
[],
[]
for
i
,
fpn_feat
in
enumerate
(
fpn_feats
):
conv_cls_feat
,
conv_reg_feat
=
self
.
conv_feat
(
fpn_feat
,
i
)
if
self
.
conv_feat
.
share_cls_reg
:
...
...
@@ -307,50 +347,68 @@ class PicoHead(OTAVFLHead):
if
not
export_post_process
:
# Now only supports batch size = 1 in deploy
# TODO(ygh): support batch size > 1
cls_score
=
F
.
sigmoid
(
cls_score
).
reshape
(
cls_score
_out
=
F
.
sigmoid
(
cls_score
).
reshape
(
[
1
,
self
.
cls_out_channels
,
-
1
]).
transpose
([
0
,
2
,
1
])
bbox_pred
=
bbox_pred
.
reshape
([
1
,
(
self
.
reg_max
+
1
)
*
4
,
-
1
]).
transpose
([
0
,
2
,
1
])
elif
not
self
.
training
:
cls_score
=
F
.
sigmoid
(
cls_score
.
transpose
([
0
,
2
,
3
,
1
]))
else
:
b
,
_
,
h
,
w
=
fpn_feat
.
shape
l
=
h
*
w
cls_score_out
=
F
.
sigmoid
(
cls_score
.
reshape
([
b
,
self
.
cls_out_channels
,
l
]))
bbox_pred
=
bbox_pred
.
transpose
([
0
,
2
,
3
,
1
])
stride
=
self
.
fpn_stride
[
i
]
b
,
cell_h
,
cell_w
,
_
=
paddle
.
shape
(
cls_score
)
y
,
x
=
self
.
get_single_level_center_point
(
[
cell_h
,
cell_w
],
stride
,
cell_offset
=
self
.
cell_offset
)
center_points
=
paddle
.
stack
([
x
,
y
],
axis
=-
1
)
cls_score
=
cls_score
.
reshape
([
b
,
-
1
,
self
.
cls_out_channels
])
bbox_pred
=
self
.
distribution_project
(
bbox_pred
)
*
stride
bbox_pred
=
bbox_pred
.
reshape
([
b
,
cell_h
*
cell_w
,
4
])
# NOTE: If keep_ratio=False and image shape value that
# multiples of 32, distance2bbox not set max_shapes parameter
# to speed up model prediction. If need to set max_shapes,
# please use inputs['im_shape'].
bbox_pred
=
batch_distance2bbox
(
center_points
,
bbox_pred
,
max_shapes
=
None
)
bbox_pred
=
self
.
distribution_project
(
bbox_pred
)
bbox_pred
=
bbox_pred
.
reshape
([
b
,
l
,
4
])
cls_logits_list
.
append
(
cls_score
)
cls_logits_list
.
append
(
cls_score
_out
)
bboxes_reg_list
.
append
(
bbox_pred
)
if
export_post_process
:
cls_logits_list
=
paddle
.
concat
(
cls_logits_list
,
axis
=-
1
)
bboxes_reg_list
=
paddle
.
concat
(
bboxes_reg_list
,
axis
=
1
)
bboxes_reg_list
=
batch_distance2bbox
(
anchor_points
,
bboxes_reg_list
)
bboxes_reg_list
*=
stride_tensor
return
(
cls_logits_list
,
bboxes_reg_list
)
def
post_process
(
self
,
gfl_head_outs
,
im_shape
,
scale_factor
,
export_nms
=
True
):
cls_scores
,
bboxes_reg
=
gfl_head_outs
bboxes
=
paddle
.
concat
(
bboxes_reg
,
axis
=
1
)
mlvl_scores
=
paddle
.
concat
(
cls_scores
,
axis
=
1
)
mlvl_scores
=
mlvl_scores
.
transpose
([
0
,
2
,
1
])
def
_generate_anchors
(
self
,
feats
=
None
):
# just use in eval time
anchor_points
=
[]
stride_tensor
=
[]
for
i
,
stride
in
enumerate
(
self
.
fpn_stride
):
if
feats
is
not
None
:
_
,
_
,
h
,
w
=
feats
[
i
].
shape
else
:
h
=
math
.
ceil
(
self
.
eval_size
[
0
]
/
stride
)
w
=
math
.
ceil
(
self
.
eval_size
[
1
]
/
stride
)
shift_x
=
paddle
.
arange
(
end
=
w
)
+
self
.
cell_offset
shift_y
=
paddle
.
arange
(
end
=
h
)
+
self
.
cell_offset
shift_y
,
shift_x
=
paddle
.
meshgrid
(
shift_y
,
shift_x
)
anchor_point
=
paddle
.
cast
(
paddle
.
stack
(
[
shift_x
,
shift_y
],
axis
=-
1
),
dtype
=
'float32'
)
anchor_points
.
append
(
anchor_point
.
reshape
([
-
1
,
2
]))
stride_tensor
.
append
(
paddle
.
full
(
[
h
*
w
,
1
],
stride
,
dtype
=
'float32'
))
anchor_points
=
paddle
.
concat
(
anchor_points
)
stride_tensor
=
paddle
.
concat
(
stride_tensor
)
return
anchor_points
,
stride_tensor
def
post_process
(
self
,
head_outs
,
scale_factor
,
export_nms
=
True
):
pred_scores
,
pred_bboxes
=
head_outs
if
not
export_nms
:
return
bboxes
,
mlvl
_scores
return
pred_bboxes
,
pred
_scores
else
:
# rescale: [h_scale, w_scale] -> [w_scale, h_scale, w_scale, h_scale]
im_scale
=
scale_factor
.
flip
([
1
]).
tile
([
1
,
2
]).
unsqueeze
(
1
)
bboxes
/=
im_scale
bbox_pred
,
bbox_num
,
_
=
self
.
nms
(
bboxes
,
mlvl_scores
)
scale_y
,
scale_x
=
paddle
.
split
(
scale_factor
,
2
,
axis
=-
1
)
scale_factor
=
paddle
.
concat
(
[
scale_x
,
scale_y
,
scale_x
,
scale_y
],
axis
=-
1
).
reshape
([
-
1
,
1
,
4
])
# scale bbox to origin image size.
pred_bboxes
/=
scale_factor
bbox_pred
,
bbox_num
,
_
=
self
.
nms
(
pred_bboxes
,
pred_scores
)
return
bbox_pred
,
bbox_num
...
...
@@ -374,29 +432,29 @@ class PicoHeadV2(GFLHead):
'conv_feat'
,
'dgqp_module'
,
'loss_class'
,
'loss_dfl'
,
'loss_bbox'
,
'static_assigner'
,
'assigner'
,
'nms'
]
__shared__
=
[
'num_classes'
]
def
__init__
(
self
,
conv_feat
=
'PicoFeatV2'
,
dgqp_module
=
None
,
num_classes
=
80
,
fpn_stride
=
[
8
,
16
,
32
]
,
prior_prob
=
0.01
,
use_align_head
=
True
,
loss_class
=
'Vari
FocalLoss'
,
loss_dfl
=
'DistributionFocal
Loss'
,
loss_bbox
=
'GIoULoss'
,
static_assigner_epoch
=
60
,
static_assigner
=
'ATSS
Assigner'
,
assigner
=
'TaskAlignedAssigner'
,
reg_max
=
1
6
,
feat_in_chan
=
96
,
nms
=
None
,
nms_pre
=
100
0
,
cell_offset
=
0
,
act
=
'hard_swish'
,
grid_cell_scale
=
5.0
,
):
__shared__
=
[
'num_classes'
,
'eval_size'
]
def
__init__
(
self
,
conv_feat
=
'PicoFeatV2'
,
dgqp_module
=
None
,
num_classes
=
80
,
fpn_stride
=
[
8
,
16
,
32
]
,
prior_prob
=
0.01
,
use_align_head
=
True
,
loss_class
=
'VariFocalLoss'
,
loss_dfl
=
'Distribution
FocalLoss'
,
loss_bbox
=
'GIoU
Loss'
,
static_assigner_epoch
=
60
,
static_assigner
=
'ATSSAssigner'
,
assigner
=
'TaskAligned
Assigner'
,
reg_max
=
16
,
feat_in_chan
=
9
6
,
nms
=
None
,
nms_pre
=
1000
,
cell_offset
=
0
,
act
=
'hard_swish'
,
grid_cell_scale
=
5.0
,
eval_size
=
None
):
super
(
PicoHeadV2
,
self
).
__init__
(
conv_feat
=
conv_feat
,
dgqp_module
=
dgqp_module
,
...
...
@@ -432,6 +490,7 @@ class PicoHeadV2(GFLHead):
self
.
grid_cell_scale
=
grid_cell_scale
self
.
use_align_head
=
use_align_head
self
.
cls_out_channels
=
self
.
num_classes
self
.
eval_size
=
eval_size
bias_init_value
=
-
math
.
log
((
1
-
self
.
prior_prob
)
/
self
.
prior_prob
)
# Clear the super class initialization
...
...
@@ -478,11 +537,22 @@ class PicoHeadV2(GFLHead):
act
=
self
.
act
,
use_act_in_out
=
False
))
# initialize the anchor points
if
self
.
eval_size
:
self
.
anchor_points
,
self
.
stride_tensor
=
self
.
_generate_anchors
()
def
forward
(
self
,
fpn_feats
,
export_post_process
=
True
):
assert
len
(
fpn_feats
)
==
len
(
self
.
fpn_stride
),
"The size of fpn_feats is not equal to size of fpn_stride"
if
self
.
training
:
return
self
.
forward_train
(
fpn_feats
)
else
:
return
self
.
forward_eval
(
fpn_feats
,
export_post_process
=
export_post_process
)
def
forward_train
(
self
,
fpn_feats
):
cls_score_list
,
reg_list
,
box_list
=
[],
[],
[]
for
i
,
(
fpn_feat
,
stride
)
in
enumerate
(
zip
(
fpn_feats
,
self
.
fpn_stride
)):
b
,
_
,
h
,
w
=
get_static_shape
(
fpn_feat
)
...
...
@@ -498,7 +568,48 @@ class PicoHeadV2(GFLHead):
else
:
cls_score
=
F
.
sigmoid
(
cls_logit
)
if
not
export_post_process
and
not
self
.
training
:
cls_score_out
=
cls_score
.
transpose
([
0
,
2
,
3
,
1
])
bbox_pred
=
reg_pred
.
transpose
([
0
,
2
,
3
,
1
])
b
,
cell_h
,
cell_w
,
_
=
paddle
.
shape
(
cls_score_out
)
y
,
x
=
self
.
get_single_level_center_point
(
[
cell_h
,
cell_w
],
stride
,
cell_offset
=
self
.
cell_offset
)
center_points
=
paddle
.
stack
([
x
,
y
],
axis
=-
1
)
cls_score_out
=
cls_score_out
.
reshape
(
[
b
,
-
1
,
self
.
cls_out_channels
])
bbox_pred
=
self
.
distribution_project
(
bbox_pred
)
*
stride
bbox_pred
=
bbox_pred
.
reshape
([
b
,
cell_h
*
cell_w
,
4
])
bbox_pred
=
batch_distance2bbox
(
center_points
,
bbox_pred
,
max_shapes
=
None
)
cls_score_list
.
append
(
cls_score
.
flatten
(
2
).
transpose
([
0
,
2
,
1
]))
reg_list
.
append
(
reg_pred
.
flatten
(
2
).
transpose
([
0
,
2
,
1
]))
box_list
.
append
(
bbox_pred
/
stride
)
cls_score_list
=
paddle
.
concat
(
cls_score_list
,
axis
=
1
)
box_list
=
paddle
.
concat
(
box_list
,
axis
=
1
)
reg_list
=
paddle
.
concat
(
reg_list
,
axis
=
1
)
return
cls_score_list
,
reg_list
,
box_list
,
fpn_feats
def
forward_eval
(
self
,
fpn_feats
,
export_post_process
=
True
):
if
self
.
eval_size
:
anchor_points
,
stride_tensor
=
self
.
anchor_points
,
self
.
stride_tensor
else
:
anchor_points
,
stride_tensor
=
self
.
_generate_anchors
(
fpn_feats
)
cls_score_list
,
box_list
=
[],
[]
for
i
,
(
fpn_feat
,
stride
)
in
enumerate
(
zip
(
fpn_feats
,
self
.
fpn_stride
)):
b
,
_
,
h
,
w
=
fpn_feat
.
shape
# task decomposition
conv_cls_feat
,
se_feat
=
self
.
conv_feat
(
fpn_feat
,
i
)
cls_logit
=
self
.
head_cls_list
[
i
](
se_feat
)
reg_pred
=
self
.
head_reg_list
[
i
](
se_feat
)
# cls prediction and alignment
if
self
.
use_align_head
:
cls_prob
=
F
.
sigmoid
(
self
.
cls_align
[
i
](
conv_cls_feat
))
cls_score
=
(
F
.
sigmoid
(
cls_logit
)
*
cls_prob
+
eps
).
sqrt
()
else
:
cls_score
=
F
.
sigmoid
(
cls_logit
)
if
not
export_post_process
:
# Now only supports batch size = 1 in deploy
cls_score_list
.
append
(
cls_score
.
reshape
([
1
,
self
.
cls_out_channels
,
-
1
]).
transpose
(
...
...
@@ -507,34 +618,21 @@ class PicoHeadV2(GFLHead):
reg_pred
.
reshape
([
1
,
(
self
.
reg_max
+
1
)
*
4
,
-
1
]).
transpose
(
[
0
,
2
,
1
]))
else
:
cls_score_out
=
cls_score
.
transpose
([
0
,
2
,
3
,
1
])
l
=
h
*
w
cls_score_out
=
cls_score
.
reshape
([
b
,
self
.
cls_out_channels
,
l
])
bbox_pred
=
reg_pred
.
transpose
([
0
,
2
,
3
,
1
])
b
,
cell_h
,
cell_w
,
_
=
paddle
.
shape
(
cls_score_out
)
y
,
x
=
self
.
get_single_level_center_point
(
[
cell_h
,
cell_w
],
stride
,
cell_offset
=
self
.
cell_offset
)
center_points
=
paddle
.
stack
([
x
,
y
],
axis
=-
1
)
cls_score_out
=
cls_score_out
.
reshape
(
[
b
,
-
1
,
self
.
cls_out_channels
])
bbox_pred
=
self
.
distribution_project
(
bbox_pred
)
*
stride
bbox_pred
=
bbox_pred
.
reshape
([
b
,
cell_h
*
cell_w
,
4
])
bbox_pred
=
batch_distance2bbox
(
center_points
,
bbox_pred
,
max_shapes
=
None
)
if
not
self
.
training
:
cls_score_list
.
append
(
cls_score_out
)
box_list
.
append
(
bbox_pred
)
else
:
cls_score_list
.
append
(
cls_score
.
flatten
(
2
).
transpose
([
0
,
2
,
1
]))
reg_list
.
append
(
reg_pred
.
flatten
(
2
).
transpose
([
0
,
2
,
1
]))
box_list
.
append
(
bbox_pred
/
stride
)
if
not
self
.
training
:
return
cls_score_list
,
box_list
else
:
cls_score_list
=
paddle
.
concat
(
cls_score_list
,
axis
=
1
)
bbox_pred
=
self
.
distribution_project
(
bbox_pred
)
bbox_pred
=
bbox_pred
.
reshape
([
b
,
l
,
4
])
cls_score_list
.
append
(
cls_score_out
)
box_list
.
append
(
bbox_pred
)
if
export_post_process
:
cls_score_list
=
paddle
.
concat
(
cls_score_list
,
axis
=-
1
)
box_list
=
paddle
.
concat
(
box_list
,
axis
=
1
)
reg_list
=
paddle
.
concat
(
reg_list
,
axis
=
1
)
return
cls_score_list
,
reg_list
,
box_list
,
fpn_feats
box_list
=
batch_distance2bbox
(
anchor_points
,
box_list
)
box_list
*=
stride_tensor
return
cls_score_list
,
box_list
def
get_loss
(
self
,
head_outs
,
gt_meta
):
pred_scores
,
pred_regs
,
pred_bboxes
,
fpn_feats
=
head_outs
...
...
@@ -644,20 +742,41 @@ class PicoHeadV2(GFLHead):
return
loss_states
def
post_process
(
self
,
gfl_head_outs
,
im_shape
,
scale_factor
,
export_nms
=
True
):
cls_scores
,
bboxes_reg
=
gfl_head_outs
bboxes
=
paddle
.
concat
(
bboxes_reg
,
axis
=
1
)
mlvl_scores
=
paddle
.
concat
(
cls_scores
,
axis
=
1
)
mlvl_scores
=
mlvl_scores
.
transpose
([
0
,
2
,
1
])
def
_generate_anchors
(
self
,
feats
=
None
):
# just use in eval time
anchor_points
=
[]
stride_tensor
=
[]
for
i
,
stride
in
enumerate
(
self
.
fpn_stride
):
if
feats
is
not
None
:
_
,
_
,
h
,
w
=
feats
[
i
].
shape
else
:
h
=
math
.
ceil
(
self
.
eval_size
[
0
]
/
stride
)
w
=
math
.
ceil
(
self
.
eval_size
[
1
]
/
stride
)
shift_x
=
paddle
.
arange
(
end
=
w
)
+
self
.
cell_offset
shift_y
=
paddle
.
arange
(
end
=
h
)
+
self
.
cell_offset
shift_y
,
shift_x
=
paddle
.
meshgrid
(
shift_y
,
shift_x
)
anchor_point
=
paddle
.
cast
(
paddle
.
stack
(
[
shift_x
,
shift_y
],
axis
=-
1
),
dtype
=
'float32'
)
anchor_points
.
append
(
anchor_point
.
reshape
([
-
1
,
2
]))
stride_tensor
.
append
(
paddle
.
full
(
[
h
*
w
,
1
],
stride
,
dtype
=
'float32'
))
anchor_points
=
paddle
.
concat
(
anchor_points
)
stride_tensor
=
paddle
.
concat
(
stride_tensor
)
return
anchor_points
,
stride_tensor
def
post_process
(
self
,
head_outs
,
scale_factor
,
export_nms
=
True
):
pred_scores
,
pred_bboxes
=
head_outs
if
not
export_nms
:
return
bboxes
,
mlvl
_scores
return
pred_bboxes
,
pred
_scores
else
:
# rescale: [h_scale, w_scale] -> [w_scale, h_scale, w_scale, h_scale]
im_scale
=
scale_factor
.
flip
([
1
]).
tile
([
1
,
2
]).
unsqueeze
(
1
)
bboxes
/=
im_scale
bbox_pred
,
bbox_num
,
_
=
self
.
nms
(
bboxes
,
mlvl_scores
)
scale_y
,
scale_x
=
paddle
.
split
(
scale_factor
,
2
,
axis
=-
1
)
scale_factor
=
paddle
.
concat
(
[
scale_x
,
scale_y
,
scale_x
,
scale_y
],
axis
=-
1
).
reshape
([
-
1
,
1
,
4
])
# scale bbox to origin image size.
pred_bboxes
/=
scale_factor
bbox_pred
,
bbox_num
,
_
=
self
.
nms
(
pred_bboxes
,
pred_scores
)
return
bbox_pred
,
bbox_num
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录