pico_head.py 25.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
G
Guanghua Yu 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import math
import numpy as np
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle import ParamAttr
from paddle.nn.initializer import Normal, Constant
26
from paddle.fluid.dygraph import parallel_helper
G
Guanghua Yu 已提交
27

28 29 30 31
from ppdet.modeling.ops import get_static_shape
from ..initializer import normal_
from ..assigners.utils import generate_anchors_for_grid_cell
from ..bbox_utils import bbox_center, batch_distance2bbox, bbox2distance
G
Guanghua Yu 已提交
32 33
from ppdet.core.workspace import register
from ppdet.modeling.layers import ConvNormLayer
34
from .simota_head import OTAVFLHead
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
from .gfl_head import Integral, GFLHead
from ppdet.modeling.necks.csp_pan import DPModule

eps = 1e-9

__all__ = ['PicoHead', 'PicoHeadV2', 'PicoFeat']


class PicoSE(nn.Layer):
    def __init__(self, feat_channels):
        super(PicoSE, self).__init__()
        self.fc = nn.Conv2D(feat_channels, feat_channels, 1)
        self.conv = ConvNormLayer(feat_channels, feat_channels, 1, 1)

        self._init_weights()

    def _init_weights(self):
        normal_(self.fc.weight, std=0.001)

    def forward(self, feat, avg_feat):
        weight = F.sigmoid(self.fc(avg_feat))
        out = self.conv(feat * weight)
        return out
G
Guanghua Yu 已提交
58 59 60 61 62 63 64 65 66 67 68 69


@register
class PicoFeat(nn.Layer):
    """
    PicoFeat of PicoDet

    Args:
        feat_in (int): The channel number of input Tensor.
        feat_out (int): The channel number of output Tensor.
        num_convs (int): The convolution number of the LiteGFLFeat.
        norm_type (str): Normalization type, 'bn'/'sync_bn'/'gn'.
70 71 72
        share_cls_reg (bool): Whether to share the cls and reg output.
        act (str): The act of per layers.
        use_se (bool): Whether to use se module.
G
Guanghua Yu 已提交
73 74 75 76 77 78 79 80
    """

    def __init__(self,
                 feat_in=256,
                 feat_out=96,
                 num_fpn_stride=3,
                 num_convs=2,
                 norm_type='bn',
81
                 share_cls_reg=False,
82 83
                 act='hard_swish',
                 use_se=False):
G
Guanghua Yu 已提交
84 85 86 87
        super(PicoFeat, self).__init__()
        self.num_convs = num_convs
        self.norm_type = norm_type
        self.share_cls_reg = share_cls_reg
88
        self.act = act
89
        self.use_se = use_se
G
Guanghua Yu 已提交
90 91
        self.cls_convs = []
        self.reg_convs = []
92 93 94 95
        if use_se:
            assert share_cls_reg == True, \
                'In the case of using se, share_cls_reg is not supported'
            self.se = nn.LayerList()
G
Guanghua Yu 已提交
96 97 98 99 100 101 102 103 104 105
        for stage_idx in range(num_fpn_stride):
            cls_subnet_convs = []
            reg_subnet_convs = []
            for i in range(self.num_convs):
                in_c = feat_in if i == 0 else feat_out
                cls_conv_dw = self.add_sublayer(
                    'cls_conv_dw{}.{}'.format(stage_idx, i),
                    ConvNormLayer(
                        ch_in=in_c,
                        ch_out=feat_out,
G
Guanghua Yu 已提交
106
                        filter_size=5,
G
Guanghua Yu 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
                        stride=1,
                        groups=feat_out,
                        norm_type=norm_type,
                        bias_on=False,
                        lr_scale=2.))
                cls_subnet_convs.append(cls_conv_dw)
                cls_conv_pw = self.add_sublayer(
                    'cls_conv_pw{}.{}'.format(stage_idx, i),
                    ConvNormLayer(
                        ch_in=in_c,
                        ch_out=feat_out,
                        filter_size=1,
                        stride=1,
                        norm_type=norm_type,
                        bias_on=False,
                        lr_scale=2.))
                cls_subnet_convs.append(cls_conv_pw)

                if not self.share_cls_reg:
                    reg_conv_dw = self.add_sublayer(
                        'reg_conv_dw{}.{}'.format(stage_idx, i),
                        ConvNormLayer(
                            ch_in=in_c,
                            ch_out=feat_out,
G
Guanghua Yu 已提交
131
                            filter_size=5,
G
Guanghua Yu 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
                            stride=1,
                            groups=feat_out,
                            norm_type=norm_type,
                            bias_on=False,
                            lr_scale=2.))
                    reg_subnet_convs.append(reg_conv_dw)
                    reg_conv_pw = self.add_sublayer(
                        'reg_conv_pw{}.{}'.format(stage_idx, i),
                        ConvNormLayer(
                            ch_in=in_c,
                            ch_out=feat_out,
                            filter_size=1,
                            stride=1,
                            norm_type=norm_type,
                            bias_on=False,
                            lr_scale=2.))
                    reg_subnet_convs.append(reg_conv_pw)
            self.cls_convs.append(cls_subnet_convs)
            self.reg_convs.append(reg_subnet_convs)
151 152
            if use_se:
                self.se.append(PicoSE(feat_out))
G
Guanghua Yu 已提交
153

154 155 156 157 158 159 160
    def act_func(self, x):
        if self.act == "leaky_relu":
            x = F.leaky_relu(x)
        elif self.act == "hard_swish":
            x = F.hardswish(x)
        return x

G
Guanghua Yu 已提交
161 162 163 164 165
    def forward(self, fpn_feat, stage_idx):
        assert stage_idx < len(self.cls_convs)
        cls_feat = fpn_feat
        reg_feat = fpn_feat
        for i in range(len(self.cls_convs[stage_idx])):
166
            cls_feat = self.act_func(self.cls_convs[stage_idx][i](cls_feat))
167
            reg_feat = cls_feat
G
Guanghua Yu 已提交
168
            if not self.share_cls_reg:
169
                reg_feat = self.act_func(self.reg_convs[stage_idx][i](reg_feat))
170 171 172 173
        if self.use_se:
            avg_feat = F.adaptive_avg_pool2d(cls_feat, (1, 1))
            se_feat = self.act_func(self.se[stage_idx](cls_feat, avg_feat))
            return cls_feat, se_feat
G
Guanghua Yu 已提交
174 175 176 177
        return cls_feat, reg_feat


@register
178
class PicoHead(OTAVFLHead):
G
Guanghua Yu 已提交
179 180 181
    """
    PicoHead
    Args:
182
        conv_feat (object): Instance of 'PicoFeat'
G
Guanghua Yu 已提交
183 184 185
        num_classes (int): Number of classes
        fpn_stride (list): The stride of each FPN Layer
        prior_prob (float): Used to set the bias init for the class prediction layer
186 187 188 189
        loss_class (object): Instance of VariFocalLoss.
        loss_dfl (object): Instance of DistributionFocalLoss.
        loss_bbox (object): Instance of bbox loss.
        assigner (object): Instance of label assigner.
G
Guanghua Yu 已提交
190
        reg_max: Max value of integral set :math: `{0, ..., reg_max}`
191
                n QFL setting. Default: 7.
G
Guanghua Yu 已提交
192 193
    """
    __inject__ = [
194 195
        'conv_feat', 'dgqp_module', 'loss_class', 'loss_dfl', 'loss_bbox',
        'assigner', 'nms'
G
Guanghua Yu 已提交
196 197 198 199 200 201 202 203 204
    ]
    __shared__ = ['num_classes']

    def __init__(self,
                 conv_feat='PicoFeat',
                 dgqp_module=None,
                 num_classes=80,
                 fpn_stride=[8, 16, 32],
                 prior_prob=0.01,
205
                 loss_class='VariFocalLoss',
G
Guanghua Yu 已提交
206 207
                 loss_dfl='DistributionFocalLoss',
                 loss_bbox='GIoULoss',
208
                 assigner='SimOTAAssigner',
G
Guanghua Yu 已提交
209 210 211 212 213 214 215 216 217 218 219
                 reg_max=16,
                 feat_in_chan=96,
                 nms=None,
                 nms_pre=1000,
                 cell_offset=0):
        super(PicoHead, self).__init__(
            conv_feat=conv_feat,
            dgqp_module=dgqp_module,
            num_classes=num_classes,
            fpn_stride=fpn_stride,
            prior_prob=prior_prob,
220
            loss_class=loss_class,
G
Guanghua Yu 已提交
221 222
            loss_dfl=loss_dfl,
            loss_bbox=loss_bbox,
223
            assigner=assigner,
G
Guanghua Yu 已提交
224 225 226 227 228 229 230 231 232
            reg_max=reg_max,
            feat_in_chan=feat_in_chan,
            nms=nms,
            nms_pre=nms_pre,
            cell_offset=cell_offset)
        self.conv_feat = conv_feat
        self.num_classes = num_classes
        self.fpn_stride = fpn_stride
        self.prior_prob = prior_prob
233
        self.loss_vfl = loss_class
G
Guanghua Yu 已提交
234 235
        self.loss_dfl = loss_dfl
        self.loss_bbox = loss_bbox
236
        self.assigner = assigner
G
Guanghua Yu 已提交
237 238 239 240 241
        self.reg_max = reg_max
        self.feat_in_chan = feat_in_chan
        self.nms = nms
        self.nms_pre = nms_pre
        self.cell_offset = cell_offset
242 243

        self.use_sigmoid = self.loss_vfl.use_sigmoid
G
Guanghua Yu 已提交
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
        if self.use_sigmoid:
            self.cls_out_channels = self.num_classes
        else:
            self.cls_out_channels = self.num_classes + 1
        bias_init_value = -math.log((1 - self.prior_prob) / self.prior_prob)
        # Clear the super class initialization
        self.gfl_head_cls = None
        self.gfl_head_reg = None
        self.scales_regs = None

        self.head_cls_list = []
        self.head_reg_list = []
        for i in range(len(fpn_stride)):
            head_cls = self.add_sublayer(
                "head_cls" + str(i),
                nn.Conv2D(
                    in_channels=self.feat_in_chan,
                    out_channels=self.cls_out_channels + 4 * (self.reg_max + 1)
                    if self.conv_feat.share_cls_reg else self.cls_out_channels,
                    kernel_size=1,
                    stride=1,
                    padding=0,
                    weight_attr=ParamAttr(initializer=Normal(
                        mean=0., std=0.01)),
                    bias_attr=ParamAttr(
                        initializer=Constant(value=bias_init_value))))
            self.head_cls_list.append(head_cls)
            if not self.conv_feat.share_cls_reg:
                head_reg = self.add_sublayer(
                    "head_reg" + str(i),
                    nn.Conv2D(
                        in_channels=self.feat_in_chan,
                        out_channels=4 * (self.reg_max + 1),
                        kernel_size=1,
                        stride=1,
                        padding=0,
                        weight_attr=ParamAttr(initializer=Normal(
                            mean=0., std=0.01)),
                        bias_attr=ParamAttr(initializer=Constant(value=0))))
                self.head_reg_list.append(head_reg)

285
    def forward(self, fpn_feats, export_post_process=True):
G
Guanghua Yu 已提交
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
        assert len(fpn_feats) == len(
            self.fpn_stride
        ), "The size of fpn_feats is not equal to size of fpn_stride"
        cls_logits_list = []
        bboxes_reg_list = []
        for i, fpn_feat in enumerate(fpn_feats):
            conv_cls_feat, conv_reg_feat = self.conv_feat(fpn_feat, i)
            if self.conv_feat.share_cls_reg:
                cls_logits = self.head_cls_list[i](conv_cls_feat)
                cls_score, bbox_pred = paddle.split(
                    cls_logits,
                    [self.cls_out_channels, 4 * (self.reg_max + 1)],
                    axis=1)
            else:
                cls_score = self.head_cls_list[i](conv_cls_feat)
                bbox_pred = self.head_reg_list[i](conv_reg_feat)
302

G
Guanghua Yu 已提交
303 304 305 306
            if self.dgqp_module:
                quality_score = self.dgqp_module(bbox_pred)
                cls_score = F.sigmoid(cls_score) * quality_score

307
            if not export_post_process:
308 309 310 311 312 313 314
                # Now only supports batch size = 1 in deploy
                # TODO(ygh): support batch size > 1
                cls_score = F.sigmoid(cls_score).reshape(
                    [1, self.cls_out_channels, -1]).transpose([0, 2, 1])
                bbox_pred = bbox_pred.reshape([1, (self.reg_max + 1) * 4,
                                               -1]).transpose([0, 2, 1])
            elif not self.training:
G
Guanghua Yu 已提交
315
                cls_score = F.sigmoid(cls_score.transpose([0, 2, 3, 1]))
G
Guanghua Yu 已提交
316
                bbox_pred = bbox_pred.transpose([0, 2, 3, 1])
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
                stride = self.fpn_stride[i]
                b, cell_h, cell_w, _ = paddle.shape(cls_score)
                y, x = self.get_single_level_center_point(
                    [cell_h, cell_w], stride, cell_offset=self.cell_offset)
                center_points = paddle.stack([x, y], axis=-1)
                cls_score = cls_score.reshape([b, -1, self.cls_out_channels])
                bbox_pred = self.distribution_project(bbox_pred) * stride
                bbox_pred = bbox_pred.reshape([b, cell_h * cell_w, 4])

                # NOTE: If keep_ratio=False and image shape value that 
                # multiples of 32, distance2bbox not set max_shapes parameter
                # to speed up model prediction. If need to set max_shapes,
                # please use inputs['im_shape']. 
                bbox_pred = batch_distance2bbox(
                    center_points, bbox_pred, max_shapes=None)
G
Guanghua Yu 已提交
332 333 334 335 336

            cls_logits_list.append(cls_score)
            bboxes_reg_list.append(bbox_pred)

        return (cls_logits_list, bboxes_reg_list)
337

338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
    def post_process(self,
                     gfl_head_outs,
                     im_shape,
                     scale_factor,
                     export_nms=True):
        cls_scores, bboxes_reg = gfl_head_outs
        bboxes = paddle.concat(bboxes_reg, axis=1)
        mlvl_scores = paddle.concat(cls_scores, axis=1)
        mlvl_scores = mlvl_scores.transpose([0, 2, 1])
        if not export_nms:
            return bboxes, mlvl_scores
        else:
            # rescale: [h_scale, w_scale] -> [w_scale, h_scale, w_scale, h_scale]
            im_scale = scale_factor.flip([1]).tile([1, 2]).unsqueeze(1)
            bboxes /= im_scale
            bbox_pred, bbox_num, _ = self.nms(bboxes, mlvl_scores)
            return bbox_pred, bbox_num

356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480

@register
class PicoHeadV2(GFLHead):
    """
    PicoHeadV2
    Args:
        conv_feat (object): Instance of 'PicoFeat'
        num_classes (int): Number of classes
        fpn_stride (list): The stride of each FPN Layer
        prior_prob (float): Used to set the bias init for the class prediction layer
        loss_class (object): Instance of VariFocalLoss.
        loss_dfl (object): Instance of DistributionFocalLoss.
        loss_bbox (object): Instance of bbox loss.
        assigner (object): Instance of label assigner.
        reg_max: Max value of integral set :math: `{0, ..., reg_max}`
                n QFL setting. Default: 7.
    """
    __inject__ = [
        'conv_feat', 'dgqp_module', 'loss_class', 'loss_dfl', 'loss_bbox',
        'static_assigner', 'assigner', 'nms'
    ]
    __shared__ = ['num_classes']

    def __init__(
            self,
            conv_feat='PicoFeatV2',
            dgqp_module=None,
            num_classes=80,
            fpn_stride=[8, 16, 32],
            prior_prob=0.01,
            use_align_head=True,
            loss_class='VariFocalLoss',
            loss_dfl='DistributionFocalLoss',
            loss_bbox='GIoULoss',
            static_assigner_epoch=60,
            static_assigner='ATSSAssigner',
            assigner='TaskAlignedAssigner',
            reg_max=16,
            feat_in_chan=96,
            nms=None,
            nms_pre=1000,
            cell_offset=0,
            act='hard_swish',
            grid_cell_scale=5.0, ):
        super(PicoHeadV2, self).__init__(
            conv_feat=conv_feat,
            dgqp_module=dgqp_module,
            num_classes=num_classes,
            fpn_stride=fpn_stride,
            prior_prob=prior_prob,
            loss_class=loss_class,
            loss_dfl=loss_dfl,
            loss_bbox=loss_bbox,
            reg_max=reg_max,
            feat_in_chan=feat_in_chan,
            nms=nms,
            nms_pre=nms_pre,
            cell_offset=cell_offset, )
        self.conv_feat = conv_feat
        self.num_classes = num_classes
        self.fpn_stride = fpn_stride
        self.prior_prob = prior_prob
        self.loss_vfl = loss_class
        self.loss_dfl = loss_dfl
        self.loss_bbox = loss_bbox

        self.static_assigner_epoch = static_assigner_epoch
        self.static_assigner = static_assigner
        self.assigner = assigner

        self.reg_max = reg_max
        self.feat_in_chan = feat_in_chan
        self.nms = nms
        self.nms_pre = nms_pre
        self.cell_offset = cell_offset
        self.act = act
        self.grid_cell_scale = grid_cell_scale
        self.use_align_head = use_align_head
        self.cls_out_channels = self.num_classes

        bias_init_value = -math.log((1 - self.prior_prob) / self.prior_prob)
        # Clear the super class initialization
        self.gfl_head_cls = None
        self.gfl_head_reg = None
        self.scales_regs = None

        self.head_cls_list = []
        self.head_reg_list = []
        self.cls_align = nn.LayerList()

        for i in range(len(fpn_stride)):
            head_cls = self.add_sublayer(
                "head_cls" + str(i),
                nn.Conv2D(
                    in_channels=self.feat_in_chan,
                    out_channels=self.cls_out_channels,
                    kernel_size=1,
                    stride=1,
                    padding=0,
                    weight_attr=ParamAttr(initializer=Normal(
                        mean=0., std=0.01)),
                    bias_attr=ParamAttr(
                        initializer=Constant(value=bias_init_value))))
            self.head_cls_list.append(head_cls)
            head_reg = self.add_sublayer(
                "head_reg" + str(i),
                nn.Conv2D(
                    in_channels=self.feat_in_chan,
                    out_channels=4 * (self.reg_max + 1),
                    kernel_size=1,
                    stride=1,
                    padding=0,
                    weight_attr=ParamAttr(initializer=Normal(
                        mean=0., std=0.01)),
                    bias_attr=ParamAttr(initializer=Constant(value=0))))
            self.head_reg_list.append(head_reg)
            if self.use_align_head:
                self.cls_align.append(
                    DPModule(
                        self.feat_in_chan,
                        1,
                        5,
                        act=self.act,
                        use_act_in_out=False))

G
Guanghua Yu 已提交
481
    def forward(self, fpn_feats, export_post_process=True):
482 483 484 485 486
        assert len(fpn_feats) == len(
            self.fpn_stride
        ), "The size of fpn_feats is not equal to size of fpn_stride"

        cls_score_list, reg_list, box_list = [], [], []
487
        for i, (fpn_feat, stride) in enumerate(zip(fpn_feats, self.fpn_stride)):
488 489 490 491 492 493 494 495
            b, _, h, w = get_static_shape(fpn_feat)
            # task decomposition
            conv_cls_feat, se_feat = self.conv_feat(fpn_feat, i)
            cls_logit = self.head_cls_list[i](se_feat)
            reg_pred = self.head_reg_list[i](se_feat)

            # cls prediction and alignment
            if self.use_align_head:
496
                cls_prob = F.sigmoid(self.cls_align[i](conv_cls_feat))
497 498 499 500
                cls_score = (F.sigmoid(cls_logit) * cls_prob + eps).sqrt()
            else:
                cls_score = F.sigmoid(cls_logit)

G
Guanghua Yu 已提交
501 502
            if not export_post_process and not self.training:
                # Now only supports batch size = 1 in deploy
503
                cls_score_list.append(
G
Guanghua Yu 已提交
504 505 506 507 508
                    cls_score.reshape([1, self.cls_out_channels, -1]).transpose(
                        [0, 2, 1]))
                box_list.append(
                    reg_pred.reshape([1, (self.reg_max + 1) * 4, -1]).transpose(
                        [0, 2, 1]))
509
            else:
G
Guanghua Yu 已提交
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
                cls_score_out = cls_score.transpose([0, 2, 3, 1])
                bbox_pred = reg_pred.transpose([0, 2, 3, 1])
                b, cell_h, cell_w, _ = paddle.shape(cls_score_out)
                y, x = self.get_single_level_center_point(
                    [cell_h, cell_w], stride, cell_offset=self.cell_offset)
                center_points = paddle.stack([x, y], axis=-1)
                cls_score_out = cls_score_out.reshape(
                    [b, -1, self.cls_out_channels])
                bbox_pred = self.distribution_project(bbox_pred) * stride
                bbox_pred = bbox_pred.reshape([b, cell_h * cell_w, 4])
                bbox_pred = batch_distance2bbox(
                    center_points, bbox_pred, max_shapes=None)
                if not self.training:
                    cls_score_list.append(cls_score_out)
                    box_list.append(bbox_pred)
                else:
                    cls_score_list.append(
                        cls_score.flatten(2).transpose([0, 2, 1]))
                    reg_list.append(reg_pred.flatten(2).transpose([0, 2, 1]))
                    box_list.append(bbox_pred / stride)
530 531 532 533 534 535 536

        if not self.training:
            return cls_score_list, box_list
        else:
            cls_score_list = paddle.concat(cls_score_list, axis=1)
            box_list = paddle.concat(box_list, axis=1)
            reg_list = paddle.concat(reg_list, axis=1)
G
Guanghua Yu 已提交
537
            return cls_score_list, reg_list, box_list, fpn_feats
538 539

    def get_loss(self, head_outs, gt_meta):
G
Guanghua Yu 已提交
540
        pred_scores, pred_regs, pred_bboxes, fpn_feats = head_outs
541 542 543 544 545 546
        gt_labels = gt_meta['gt_class']
        gt_bboxes = gt_meta['gt_bbox']
        gt_scores = gt_meta['gt_score'] if 'gt_score' in gt_meta else None
        num_imgs = gt_meta['im_id'].shape[0]
        pad_gt_mask = gt_meta['pad_gt_mask']

G
Guanghua Yu 已提交
547 548 549
        anchors, _, num_anchors_list, stride_tensor_list = generate_anchors_for_grid_cell(
            fpn_feats, self.fpn_stride, self.grid_cell_scale, self.cell_offset)

550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
        centers = bbox_center(anchors)

        # label assignment
        if gt_meta['epoch_id'] < self.static_assigner_epoch:
            assigned_labels, assigned_bboxes, assigned_scores = self.static_assigner(
                anchors,
                num_anchors_list,
                gt_labels,
                gt_bboxes,
                pad_gt_mask,
                bg_index=self.num_classes,
                gt_scores=gt_scores,
                pred_bboxes=pred_bboxes.detach() * stride_tensor_list)

        else:
            assigned_labels, assigned_bboxes, assigned_scores = self.assigner(
                pred_scores.detach(),
                pred_bboxes.detach() * stride_tensor_list,
                centers,
                num_anchors_list,
                gt_labels,
                gt_bboxes,
                pad_gt_mask,
                bg_index=self.num_classes,
                gt_scores=gt_scores)

        assigned_bboxes /= stride_tensor_list

        centers_shape = centers.shape
        flatten_centers = centers.expand(
            [num_imgs, centers_shape[0], centers_shape[1]]).reshape([-1, 2])
        flatten_strides = stride_tensor_list.expand(
            [num_imgs, centers_shape[0], 1]).reshape([-1, 1])
        flatten_cls_preds = pred_scores.reshape([-1, self.num_classes])
        flatten_regs = pred_regs.reshape([-1, 4 * (self.reg_max + 1)])
        flatten_bboxes = pred_bboxes.reshape([-1, 4])
        flatten_bbox_targets = assigned_bboxes.reshape([-1, 4])
        flatten_labels = assigned_labels.reshape([-1])
        flatten_assigned_scores = assigned_scores.reshape(
            [-1, self.num_classes])

        pos_inds = paddle.nonzero(
            paddle.logical_and((flatten_labels >= 0),
                               (flatten_labels < self.num_classes)),
            as_tuple=False).squeeze(1)

        num_total_pos = len(pos_inds)

        if num_total_pos > 0:
            pos_bbox_targets = paddle.gather(
                flatten_bbox_targets, pos_inds, axis=0)
            pos_decode_bbox_pred = paddle.gather(
                flatten_bboxes, pos_inds, axis=0)
            pos_reg = paddle.gather(flatten_regs, pos_inds, axis=0)
            pos_strides = paddle.gather(flatten_strides, pos_inds, axis=0)
            pos_centers = paddle.gather(
                flatten_centers, pos_inds, axis=0) / pos_strides

            weight_targets = flatten_assigned_scores.detach()
            weight_targets = paddle.gather(
                weight_targets.max(axis=1, keepdim=True), pos_inds, axis=0)

            pred_corners = pos_reg.reshape([-1, self.reg_max + 1])
            target_corners = bbox2distance(pos_centers, pos_bbox_targets,
                                           self.reg_max).reshape([-1])
            # regression loss
            loss_bbox = paddle.sum(
                self.loss_bbox(pos_decode_bbox_pred,
                               pos_bbox_targets) * weight_targets)

            # dfl loss
            loss_dfl = self.loss_dfl(
                pred_corners,
                target_corners,
                weight=weight_targets.expand([-1, 4]).reshape([-1]),
                avg_factor=4.0)
        else:
            loss_bbox = paddle.zeros([1])
            loss_dfl = paddle.zeros([1])

        avg_factor = flatten_assigned_scores.sum()
        if paddle.fluid.core.is_compiled_with_dist(
        ) and parallel_helper._is_parallel_ctx_initialized():
            paddle.distributed.all_reduce(avg_factor)
            avg_factor = paddle.clip(
                avg_factor / paddle.distributed.get_world_size(), min=1)
        loss_vfl = self.loss_vfl(
            flatten_cls_preds, flatten_assigned_scores, avg_factor=avg_factor)

        loss_bbox = loss_bbox / avg_factor
        loss_dfl = loss_dfl / avg_factor

        loss_states = dict(
            loss_vfl=loss_vfl, loss_bbox=loss_bbox, loss_dfl=loss_dfl)

        return loss_states
646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663

    def post_process(self,
                     gfl_head_outs,
                     im_shape,
                     scale_factor,
                     export_nms=True):
        cls_scores, bboxes_reg = gfl_head_outs
        bboxes = paddle.concat(bboxes_reg, axis=1)
        mlvl_scores = paddle.concat(cls_scores, axis=1)
        mlvl_scores = mlvl_scores.transpose([0, 2, 1])
        if not export_nms:
            return bboxes, mlvl_scores
        else:
            # rescale: [h_scale, w_scale] -> [w_scale, h_scale, w_scale, h_scale]
            im_scale = scale_factor.flip([1]).tile([1, 2]).unsqueeze(1)
            bboxes /= im_scale
            bbox_pred, bbox_num, _ = self.nms(bboxes, mlvl_scores)
            return bbox_pred, bbox_num