test_imperative_optimizer.py 7.9 KB
Newer Older
M
minqiyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

M
minqiyang 已提交
15 16
from __future__ import print_function

M
minqiyang 已提交
17 18 19
import contextlib
import unittest
import numpy as np
M
minqiyang 已提交
20
import six
M
minqiyang 已提交
21

M
minqiyang 已提交
22
import paddle
M
minqiyang 已提交
23 24
import paddle.fluid as fluid
from paddle.fluid import core
25
from paddle.fluid.optimizer import SGDOptimizer, Adam
26
from paddle.fluid.imperative.nn import FC
27
from paddle.fluid.imperative.base import to_variable
M
minqiyang 已提交
28
from test_imperative_base import new_program_scope
29 30


31
class MLP(fluid.imperative.Layer):
M
minqiyang 已提交
32 33 34 35 36
    def __init__(self, name_scope, param_attr=None, bias_attr=None):
        super(MLP, self).__init__(name_scope)

        self._fc1 = FC(self.full_name(), 10)
        self._fc2 = FC(self.full_name(), 10)
37

38 39 40 41
    def forward(self, inputs):
        y = self._fc1(inputs)
        y = self._fc2(y)
        return y
42

M
minqiyang 已提交
43

44 45
class TestImperativeOptimizerBase(unittest.TestCase):
    def setUp(self):
M
minqiyang 已提交
46
        self.batch_num = 20
M
minqiyang 已提交
47

48
    def get_optimizer(self):
49
        raise NotImplementedError()
M
minqiyang 已提交
50

51
    def _check_mlp(self):
M
minqiyang 已提交
52
        seed = 90
M
minqiyang 已提交
53
        with fluid.imperative.guard():
M
minqiyang 已提交
54 55 56
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed

M
minqiyang 已提交
57 58
            mlp = MLP('mlp')
            optimizer = self.get_optimizer()
M
minqiyang 已提交
59
            train_reader = paddle.batch(
M
minqiyang 已提交
60
                paddle.dataset.mnist.train(), batch_size=128, drop_last=True)
M
minqiyang 已提交
61

M
minqiyang 已提交
62
            dy_param_init_value = {}
M
minqiyang 已提交
63
            for batch_id, data in enumerate(train_reader()):
64
                if batch_id >= self.batch_num:
M
minqiyang 已提交
65 66
                    break

M
minqiyang 已提交
67
                dy_x_data = np.array(
M
minqiyang 已提交
68 69 70
                    [x[0].reshape(1, 28, 28) for x in data]).astype('float32')
                y_data = np.array([x[1] for x in data]).astype('int64').reshape(
                    128, 1)
71

M
minqiyang 已提交
72
                img = to_variable(dy_x_data)
73 74 75
                label = to_variable(y_data)
                label._stop_gradient = True

76 77
                cost = mlp(img)
                avg_loss = fluid.layers.reduce_mean(cost)
M
minqiyang 已提交
78
                dy_out = avg_loss._numpy()
M
minqiyang 已提交
79

M
minqiyang 已提交
80
                if batch_id == 0:
81
                    for param in mlp.parameters():
M
minqiyang 已提交
82 83
                        dy_param_init_value[param.name] = param._numpy()

M
minqiyang 已提交
84
                avg_loss._backward()
M
minqiyang 已提交
85
                optimizer.minimize(avg_loss)
86
                mlp.clear_gradients()
M
minqiyang 已提交
87
                dy_param_value = {}
88
                for param in mlp.parameters():
M
minqiyang 已提交
89
                    dy_param_value[param.name] = param._numpy()
M
minqiyang 已提交
90 91 92 93 94

        with new_program_scope():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed

M
minqiyang 已提交
95 96
            exe = fluid.Executor(fluid.CPUPlace(
            ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
M
minqiyang 已提交
97

98
            mlp = MLP('mlp')
M
minqiyang 已提交
99
            optimizer = self.get_optimizer()
M
minqiyang 已提交
100
            train_reader = paddle.batch(
M
minqiyang 已提交
101
                paddle.dataset.mnist.train(), batch_size=128, drop_last=True)
M
minqiyang 已提交
102 103 104 105

            img = fluid.layers.data(
                name='pixel', shape=[1, 28, 28], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
106
            cost = mlp(img)
107
            avg_loss = fluid.layers.reduce_mean(cost)
M
minqiyang 已提交
108
            optimizer.minimize(avg_loss)
M
minqiyang 已提交
109 110

            # initialize params and fetch them
M
minqiyang 已提交
111
            static_param_init_value = {}
M
minqiyang 已提交
112
            static_param_name_list = []
113
            for param in mlp.parameters():
M
minqiyang 已提交
114 115 116 117 118 119
                static_param_name_list.append(param.name)

            out = exe.run(fluid.default_startup_program(),
                          fetch_list=static_param_name_list)

            for i in range(len(static_param_name_list)):
M
minqiyang 已提交
120
                static_param_init_value[static_param_name_list[i]] = out[i]
M
minqiyang 已提交
121 122

            for batch_id, data in enumerate(train_reader()):
123
                if batch_id >= self.batch_num:
M
minqiyang 已提交
124 125
                    break

M
minqiyang 已提交
126
                static_x_data = np.array(
M
minqiyang 已提交
127 128 129 130
                    [x[0].reshape(1, 28, 28) for x in data]).astype('float32')
                y_data = np.array([x[1] for x in data]).astype('int64').reshape(
                    [128, 1])

M
minqiyang 已提交
131
                fetch_list = [avg_loss.name]
M
minqiyang 已提交
132 133
                fetch_list.extend(static_param_name_list)
                out = exe.run(fluid.default_main_program(),
M
minqiyang 已提交
134
                              feed={"pixel": static_x_data,
M
minqiyang 已提交
135 136 137 138 139 140 141 142 143
                                    "label": y_data},
                              fetch_list=fetch_list)

                static_param_value = {}
                static_out = out[0]
                for i in range(1, len(out)):
                    static_param_value[static_param_name_list[i - 1]] = out[i]

        for key, value in six.iteritems(static_param_init_value):
M
minqiyang 已提交
144
            self.assertTrue(np.allclose(value, dy_param_init_value[key]))
M
minqiyang 已提交
145

M
minqiyang 已提交
146
        self.assertTrue(np.allclose(static_out, dy_out))
M
minqiyang 已提交
147

M
minqiyang 已提交
148
        for key, value in six.iteritems(static_param_value):
M
minqiyang 已提交
149
            self.assertTrue(np.allclose(value, dy_param_value[key]))
M
minqiyang 已提交
150 151


152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
class TestImperativeOptimizerPiecewiseDecay(TestImperativeOptimizerBase):
    def get_optimizer(self):
        bd = [3, 6, 9]
        optimizer = SGDOptimizer(learning_rate=fluid.layers.piecewise_decay(
            boundaries=bd, values=[0.1 * (0.1**i) for i in range(len(bd) + 1)]))
        return optimizer

    def test_sgd(self):
        self._check_mlp()


class TestImperativeOptimizerNaturalExpDecay(TestImperativeOptimizerBase):
    def get_optimizer(self):
        optimizer = SGDOptimizer(learning_rate=fluid.layers.natural_exp_decay(
            learning_rate=0.1,
            decay_steps=10000,
            decay_rate=0.5,
            staircase=True))
        return optimizer

    def test_sgd(self):
        self._check_mlp()


class TestImperativeOptimizerExponentialDecay(TestImperativeOptimizerBase):
    def get_optimizer(self):
        optimizer = SGDOptimizer(learning_rate=fluid.layers.exponential_decay(
            learning_rate=0.1,
            decay_steps=10000,
            decay_rate=0.5,
            staircase=True))
        return optimizer

    def test_sgd(self):
        self._check_mlp()


class TestImperativeOptimizerInverseTimeDecay(TestImperativeOptimizerBase):
    def get_optimizer(self):
        optimizer = Adam(learning_rate=fluid.layers.inverse_time_decay(
            learning_rate=0.1,
            decay_steps=10000,
            decay_rate=0.5,
            staircase=True))
        return optimizer

    def test_adam(self):
        self._check_mlp()


class TestImperativeOptimizerPolynomialDecay(TestImperativeOptimizerBase):
    def get_optimizer(self):
        optimizer = SGDOptimizer(learning_rate=fluid.layers.polynomial_decay(
            learning_rate=0.1, decay_steps=5, cycle=self.cycle))
        return optimizer

    def test_sgd_cycle(self):
        self.cycle = True
        self._check_mlp()

    def test_sgd(self):
        self.cycle = False
        self._check_mlp()


M
minqiyang 已提交
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
class TestImperativeOptimizerCosineDecay(TestImperativeOptimizerBase):
    def get_optimizer(self):
        optimizer = SGDOptimizer(learning_rate=fluid.layers.cosine_decay(
            learning_rate=0.1, step_each_epoch=10000, epochs=120))
        return optimizer

    def test_sgd(self):
        self._check_mlp()


class TestImperativeOptimizerNoamDecay(TestImperativeOptimizerBase):
    def get_optimizer(self):
        optimizer = SGDOptimizer(learning_rate=fluid.layers.noam_decay(
            d_model=512, warmup_steps=8000))
        return optimizer

    def test_sgd(self):
        self._check_mlp()


M
minqiyang 已提交
237 238
if __name__ == '__main__':
    unittest.main()