test_imperative_optimizer.py 6.7 KB
Newer Older
M
minqiyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import contextlib
import unittest
import numpy as np
M
minqiyang 已提交
18
import six
M
minqiyang 已提交
19

M
minqiyang 已提交
20
import paddle
M
minqiyang 已提交
21 22
import paddle.fluid as fluid
from paddle.fluid import core
M
minqiyang 已提交
23
from paddle.fluid.optimizer import SGDOptimizer
24 25
from paddle.fluid.imperative.nn import Conv2D, Pool2D, FC
from paddle.fluid.imperative.base import to_variable
M
minqiyang 已提交
26
from test_imperative_base import new_program_scope
27 28 29 30 31 32


class SimpleImgConvPool(fluid.imperative.PyLayer):
    def __init__(self,
                 num_channels,
                 filter_size,
33
                 num_filters,
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
                 pool_size,
                 pool_stride,
                 pool_padding=0,
                 pool_type='max',
                 global_pooling=False,
                 conv_stride=1,
                 conv_padding=0,
                 conv_dilation=1,
                 conv_groups=1,
                 act=None,
                 use_cudnn=False,
                 param_attr=None,
                 bias_attr=None):
        super(SimpleImgConvPool, self).__init__()

        self._conv2d = Conv2D(
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=filter_size,
            stride=conv_stride,
            padding=conv_padding,
            dilation=conv_dilation,
            groups=conv_groups,
            param_attr=None,
            bias_attr=None,
            use_cudnn=use_cudnn)

        self._pool2d = Pool2D(
            pool_size=pool_size,
            pool_type=pool_type,
            pool_stride=pool_stride,
            pool_padding=pool_padding,
            global_pooling=global_pooling,
            use_cudnn=use_cudnn)
M
minqiyang 已提交
68

69 70 71 72
    def forward(self, inputs):
        x = self._conv2d(inputs)
        x = self._pool2d(x)
        return x
M
minqiyang 已提交
73 74 75


class MNIST(fluid.imperative.PyLayer):
76 77
    def __init__(self, param_attr=None, bias_attr=None):
        super(MNIST, self).__init__(param_attr=param_attr, bias_attr=bias_attr)
M
minqiyang 已提交
78

79
        self._simple_img_conv_pool_1 = SimpleImgConvPool(
80
            1, 5, 20, 2, 2, act="relu")
81 82

        self._simple_img_conv_pool_2 = SimpleImgConvPool(
83 84 85 86 87 88 89 90 91 92
            20, 5, 50, 2, 2, act="relu")

        pool_2_shape = 50 * 8 * 8
        SIZE = 10
        scale = (2.0 / (pool_2_shape**2 * SIZE))**0.5
        self._fc = FC(-1,
                      10,
                      param_attr=fluid.param_attr.ParamAttr(
                          initializer=fluid.initializer.NormalInitializer(
                              loc=0.0, scale=scale)))
M
minqiyang 已提交
93 94

    def forward(self, inputs):
95 96
        x = self._simple_img_conv_pool_1(inputs)
        x = self._simple_img_conv_pool_2(x)
97
        x = self._fc(x)
M
minqiyang 已提交
98 99 100 101 102
        return x


class TestImperativeMnist(unittest.TestCase):
    def test_mnist_cpu_float32(self):
M
minqiyang 已提交
103 104
        seed = 90

M
minqiyang 已提交
105
        with fluid.imperative.guard():
M
minqiyang 已提交
106 107 108 109
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed

            mnist = Conv2D(1, 20, 5)
M
minqiyang 已提交
110
            sgd = SGDOptimizer(learning_rate=1e-3)
M
minqiyang 已提交
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
            train_reader = paddle.batch(
                paddle.dataset.mnist.train(), batch_size=128)

            dy_param_value = {}
            for param in fluid.default_main_program().global_block(
            ).all_parameters():
                dy_param_value[param.name] = param._numpy()

            for batch_id, data in enumerate(train_reader()):
                if batch_id >= 1:
                    break

                x_data = np.array(
                    [x[0].reshape(1, 28, 28) for x in data]).astype('float32')
                y_data = np.array([x[1] for x in data]).astype('int64').reshape(
                    128, 1)
127 128 129 130 131

                img = to_variable(x_data)
                label = to_variable(y_data)
                label._stop_gradient = True

M
minqiyang 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
                cost = mnist(img)
                loss = fluid.layers.reduce_mean(cost)
                dy_out = loss._numpy()

                loss._backward()
                sgd.minimize(loss)
                dy_filter_param = mnist._filter_param._numpy()

        with new_program_scope():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed

            exe = fluid.Executor(fluid.CPUPlace())

            mnist = Conv2D(1, 20, 5)
            sgd = SGDOptimizer(learning_rate=1e-3)
            train_reader = paddle.batch(
                paddle.dataset.mnist.train(), batch_size=128)

            img = fluid.layers.data(
                name='pixel', shape=[1, 28, 28], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            cost = mnist(img)
            loss = fluid.layers.reduce_mean(cost)
            sgd.minimize(loss)

            # initialize params and fetch them
            static_param_value = {}
            static_param_name_list = []
            for param in fluid.default_startup_program().global_block(
            ).all_parameters():
                static_param_name_list.append(param.name)

            out = exe.run(fluid.default_startup_program(),
                          fetch_list=static_param_name_list)

            for i in range(len(static_param_name_list)):
                static_param_value[static_param_name_list[i]] = out[i]

            for batch_id, data in enumerate(train_reader()):
                if batch_id >= 1:
                    break

                x_data = np.array(
                    [x[0].reshape(1, 28, 28) for x in data]).astype('float32')
                y_data = np.array([x[1] for x in data]).astype('int64').reshape(
                    [128, 1])
                static_out, static_filter_param = exe.run(
                    fluid.default_main_program(),
                    feed={"pixel": x_data,
                          "label": y_data},
                    fetch_list=[loss.name, mnist._filter_param.name])

        for key, value in six.iteritems(static_param_value):
            self.assertTrue(np.allclose(value.all(), dy_param_value[key].all()))
        self.assertTrue(np.allclose(static_out.all(), dy_out.all()))
        self.assertTrue(
            np.allclose(static_filter_param.all(), dy_filter_param.all()))
M
minqiyang 已提交
190 191 192 193


if __name__ == '__main__':
    unittest.main()