Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
1e0a7855
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
1e0a7855
编写于
1月 29, 2019
作者:
M
minqiyang
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of
https://github.com/PaddlePaddle/Paddle
into imperative_lr_scheduler
上级
0ec53f98
245b1f05
变更
49
隐藏空白更改
内联
并排
Showing
49 changed file
with
1478 addition
and
245 deletion
+1478
-245
CMakeLists.txt
CMakeLists.txt
+1
-1
paddle/fluid/API.spec
paddle/fluid/API.spec
+1
-0
paddle/fluid/imperative/layer.cc
paddle/fluid/imperative/layer.cc
+2
-0
paddle/fluid/imperative/layer.h
paddle/fluid/imperative/layer.h
+13
-4
paddle/fluid/imperative/tracer.cc
paddle/fluid/imperative/tracer.cc
+5
-2
paddle/fluid/inference/analysis/argument.h
paddle/fluid/inference/analysis/argument.h
+1
-1
paddle/fluid/inference/analysis/helper.h
paddle/fluid/inference/analysis/helper.h
+1
-1
paddle/fluid/inference/analysis/ir_pass_manager.cc
paddle/fluid/inference/analysis/ir_pass_manager.cc
+1
-1
paddle/fluid/inference/analysis/passes/memory_optimize_pass.h
...le/fluid/inference/analysis/passes/memory_optimize_pass.h
+3
-1
paddle/fluid/inference/api/analysis_config.cc
paddle/fluid/inference/api/analysis_config.cc
+25
-25
paddle/fluid/inference/api/analysis_predictor.cc
paddle/fluid/inference/api/analysis_predictor.cc
+4
-5
paddle/fluid/inference/api/analysis_predictor.h
paddle/fluid/inference/api/analysis_predictor.h
+1
-2
paddle/fluid/inference/api/analysis_predictor_tester.cc
paddle/fluid/inference/api/analysis_predictor_tester.cc
+0
-1
paddle/fluid/inference/api/api_impl_tester.cc
paddle/fluid/inference/api/api_impl_tester.cc
+1
-1
paddle/fluid/inference/api/demo_ci/trt_mobilenet_demo.cc
paddle/fluid/inference/api/demo_ci/trt_mobilenet_demo.cc
+1
-1
paddle/fluid/inference/api/demo_ci/vis_demo.cc
paddle/fluid/inference/api/demo_ci/vis_demo.cc
+0
-1
paddle/fluid/inference/api/paddle_analysis_config.h
paddle/fluid/inference/api/paddle_analysis_config.h
+0
-6
paddle/fluid/inference/api/paddle_api.h
paddle/fluid/inference/api/paddle_api.h
+1
-1
paddle/fluid/inference/tensorrt/trt_int8_calibrator.h
paddle/fluid/inference/tensorrt/trt_int8_calibrator.h
+4
-4
paddle/fluid/inference/tests/api/CMakeLists.txt
paddle/fluid/inference/tests/api/CMakeLists.txt
+5
-0
paddle/fluid/inference/tests/api/analyzer_bert_tester.cc
paddle/fluid/inference/tests/api/analyzer_bert_tester.cc
+223
-0
paddle/fluid/inference/tests/api/analyzer_dam_tester.cc
paddle/fluid/inference/tests/api/analyzer_dam_tester.cc
+5
-6
paddle/fluid/inference/tests/api/analyzer_lac_tester.cc
paddle/fluid/inference/tests/api/analyzer_lac_tester.cc
+0
-2
paddle/fluid/inference/tests/api/analyzer_mm_dnn_tester.cc
paddle/fluid/inference/tests/api/analyzer_mm_dnn_tester.cc
+4
-5
paddle/fluid/inference/tests/api/analyzer_ner_tester.cc
paddle/fluid/inference/tests/api/analyzer_ner_tester.cc
+4
-5
paddle/fluid/inference/tests/api/analyzer_pyramid_dnn_tester.cc
.../fluid/inference/tests/api/analyzer_pyramid_dnn_tester.cc
+4
-5
paddle/fluid/inference/tests/api/analyzer_rnn1_tester.cc
paddle/fluid/inference/tests/api/analyzer_rnn1_tester.cc
+4
-5
paddle/fluid/inference/tests/api/analyzer_vis_tester.cc
paddle/fluid/inference/tests/api/analyzer_vis_tester.cc
+0
-1
paddle/fluid/inference/tests/api/config_printer.h
paddle/fluid/inference/tests/api/config_printer.h
+2
-3
paddle/fluid/inference/tests/api/tester_helper.h
paddle/fluid/inference/tests/api/tester_helper.h
+3
-3
paddle/fluid/inference/tests/api/trt_models_tester.cc
paddle/fluid/inference/tests/api/trt_models_tester.cc
+12
-12
paddle/fluid/inference/utils/CMakeLists.txt
paddle/fluid/inference/utils/CMakeLists.txt
+2
-2
paddle/fluid/memory/allocation/legacy_allocator.cc
paddle/fluid/memory/allocation/legacy_allocator.cc
+19
-0
paddle/fluid/operators/detection/multiclass_nms_op.cc
paddle/fluid/operators/detection/multiclass_nms_op.cc
+183
-78
paddle/fluid/pybind/inference_api.cc
paddle/fluid/pybind/inference_api.cc
+0
-1
python/paddle/fluid/framework.py
python/paddle/fluid/framework.py
+10
-2
python/paddle/fluid/imperative/layers.py
python/paddle/fluid/imperative/layers.py
+18
-1
python/paddle/fluid/imperative/nn.py
python/paddle/fluid/imperative/nn.py
+95
-18
python/paddle/fluid/layer_helper.py
python/paddle/fluid/layer_helper.py
+11
-0
python/paddle/fluid/layers/detection.py
python/paddle/fluid/layers/detection.py
+120
-1
python/paddle/fluid/optimizer.py
python/paddle/fluid/optimizer.py
+1
-1
python/paddle/fluid/tests/test_detection.py
python/paddle/fluid/tests/test_detection.py
+11
-0
python/paddle/fluid/tests/unittests/CMakeLists.txt
python/paddle/fluid/tests/unittests/CMakeLists.txt
+3
-0
python/paddle/fluid/tests/unittests/test_imperative.py
python/paddle/fluid/tests/unittests/test_imperative.py
+157
-0
python/paddle/fluid/tests/unittests/test_imperative_optimizer.py
...paddle/fluid/tests/unittests/test_imperative_optimizer.py
+10
-10
python/paddle/fluid/tests/unittests/test_imperative_ptb_rnn.py
...n/paddle/fluid/tests/unittests/test_imperative_ptb_rnn.py
+353
-0
python/paddle/fluid/tests/unittests/test_imperative_resnet.py
...on/paddle/fluid/tests/unittests/test_imperative_resnet.py
+1
-0
python/paddle/fluid/tests/unittests/test_layers.py
python/paddle/fluid/tests/unittests/test_layers.py
+2
-1
python/paddle/fluid/tests/unittests/test_multiclass_nms_op.py
...on/paddle/fluid/tests/unittests/test_multiclass_nms_op.py
+151
-25
未找到文件。
CMakeLists.txt
浏览文件 @
1e0a7855
...
...
@@ -212,7 +212,7 @@ endif()
if
(
WITH_JEMALLOC
)
find_package
(
JeMalloc REQUIRED
)
include_directories
(
${
JEMALLOC_INCLUDE_DIR
}
)
add_definitions
(
-DWITH_JEMALLOC
)
add_definitions
(
-D
PADDLE_
WITH_JEMALLOC
)
endif
()
include
(
generic
)
# simplify cmake module
...
...
paddle/fluid/API.spec
浏览文件 @
1e0a7855
...
...
@@ -325,6 +325,7 @@ paddle.fluid.layers.iou_similarity ArgSpec(args=['x', 'y', 'name'], varargs=None
paddle.fluid.layers.box_coder ArgSpec(args=['prior_box', 'prior_box_var', 'target_box', 'code_type', 'box_normalized', 'name'], varargs=None, keywords=None, defaults=('encode_center_size', True, None))
paddle.fluid.layers.polygon_box_transform ArgSpec(args=['input', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.yolov3_loss ArgSpec(args=['x', 'gtbox', 'gtlabel', 'anchors', 'class_num', 'ignore_thresh', 'loss_weight_xy', 'loss_weight_wh', 'loss_weight_conf_target', 'loss_weight_conf_notarget', 'loss_weight_class', 'name'], varargs=None, keywords=None, defaults=(None, None, None, None, None, None))
paddle.fluid.layers.multiclass_nms ArgSpec(args=['bboxes', 'scores', 'score_threshold', 'nms_top_k', 'keep_top_k', 'nms_threshold', 'normalized', 'nms_eta', 'background_label', 'name'], varargs=None, keywords=None, defaults=(0.3, True, 1.0, 0, None))
paddle.fluid.layers.accuracy ArgSpec(args=['input', 'label', 'k', 'correct', 'total'], varargs=None, keywords=None, defaults=(1, None, None))
paddle.fluid.layers.auc ArgSpec(args=['input', 'label', 'curve', 'num_thresholds', 'topk', 'slide_steps'], varargs=None, keywords=None, defaults=('ROC', 4095, 1, 1))
paddle.fluid.layers.exponential_decay ArgSpec(args=['learning_rate', 'decay_steps', 'decay_rate', 'staircase'], varargs=None, keywords=None, defaults=(False,))
...
...
paddle/fluid/imperative/layer.cc
浏览文件 @
1e0a7855
...
...
@@ -156,6 +156,8 @@ class Autograd {
for
(
auto
it
:
candidate
->
pre_ops_
)
{
for
(
OpBase
*
pre_op
:
it
.
second
)
{
if
(
!
pre_op
)
continue
;
VLOG
(
5
)
<<
"op dep "
<<
candidate
->
op_desc_
->
Type
()
<<
" <---- "
<<
it
.
first
<<
" <---- "
<<
pre_op
->
op_desc_
->
Type
();
if
(
visited
.
find
(
pre_op
)
==
visited
.
end
())
{
visited
.
insert
(
pre_op
);
queue
.
push_back
(
pre_op
);
...
...
paddle/fluid/imperative/layer.h
浏览文件 @
1e0a7855
...
...
@@ -28,6 +28,7 @@
#include "paddle/fluid/framework/var_desc.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/imperative/type_defs.h"
...
...
@@ -140,16 +141,24 @@ class VarBase {
void
RunBackward
();
void
TrackPreOp
(
OpBase
*
pre_op
,
const
std
::
string
&
pre_op_out_name
,
int
pre_op_out_idx
,
bool
stop_gradient
)
{
int
pre_op_out_idx
,
bool
pre_op_
stop_gradient
)
{
pre_op_
=
pre_op
;
pre_op_out_name_
=
pre_op_out_name
;
pre_op_out_idx_
=
pre_op_out_idx
;
stop_gradient_
=
stop_gradient
;
if
(
pre_op_stop_gradient
)
{
stop_gradient_
=
pre_op_stop_gradient
;
}
}
void
ClearGradient
()
{
delete
grads_
;
grads_
=
new
VarBase
(
true
);
VLOG
(
1
)
<<
"clear gradient of "
<<
var_desc_
->
Name
();
if
(
grads_
&&
grads_
->
var_
&&
grads_
->
var_
->
IsInitialized
())
{
auto
grads_t
=
grads_
->
var_
->
GetMutable
<
framework
::
LoDTensor
>
();
operators
::
math
::
set_constant
(
*
(
platform
::
DeviceContextPool
::
Instance
().
Get
(
grads_
->
var_
->
Get
<
framework
::
LoDTensor
>
().
place
())),
grads_t
,
0.0
);
}
}
framework
::
LoDTensor
&
GradValue
();
...
...
paddle/fluid/imperative/tracer.cc
浏览文件 @
1e0a7855
...
...
@@ -31,6 +31,7 @@ void CreateGradOp(const framework::OpDesc& op_desc,
framework
::
OpInfoMap
::
Instance
()
.
Get
(
op_desc
.
Type
())
.
GradOpMaker
()(
op_desc
,
no_grad_set
,
grad_to_var
,
grad_sub_block
);
for
(
auto
&
desc
:
descs
)
{
grad_op_descs
->
emplace_back
(
desc
.
release
());
}
...
...
@@ -84,11 +85,12 @@ void Tracer::Trace(OpBase* op, const VarBasePtrMap& inputs,
op
->
input_vars_
=
inputs
;
for
(
auto
it
:
op
->
input_vars_
)
{
auto
&
invars
=
invars_map
[
it
.
first
];
invars
.
reserve
(
it
.
second
.
size
());
for
(
VarBase
*
inp
:
it
.
second
)
{
PADDLE_ENFORCE_NOT_NULL
(
inp
->
var_
,
"op %s input %s nullptr"
,
op
->
op_desc_
->
Type
(),
inp
->
var_desc_
->
Name
());
invars
.
push
_back
(
inp
->
var_
);
invars
.
emplace
_back
(
inp
->
var_
);
vars
[
inp
->
var_desc_
->
Name
()]
=
inp
;
if
(
inp
->
PreOp
())
{
op
->
pre_ops_
[
it
.
first
].
push_back
(
inp
->
PreOp
());
...
...
@@ -105,9 +107,10 @@ void Tracer::Trace(OpBase* op, const VarBasePtrMap& inputs,
for
(
auto
it
:
op
->
output_vars_
)
{
auto
&
outvars
=
outvars_map
[
it
.
first
];
const
std
::
vector
<
VarBase
*>&
outputs
=
it
.
second
;
outvars
.
reserve
(
outputs
.
size
());
for
(
size_t
i
=
0
;
i
<
outputs
.
size
();
++
i
)
{
VarBase
*
out
=
outputs
[
i
];
outvars
.
push
_back
(
out
->
var_
);
outvars
.
emplace
_back
(
out
->
var_
);
vars
[
out
->
var_desc_
->
Name
()]
=
out
;
framework
::
VarDesc
*
var_desc
=
block
->
FindVar
(
out
->
var_desc_
->
Name
());
...
...
paddle/fluid/inference/analysis/argument.h
浏览文件 @
1e0a7855
...
...
@@ -132,7 +132,7 @@ struct Argument {
DECL_ARGUMENT_FIELD
(
tensorrt_workspace_size
,
TensorRtWorkspaceSize
,
int
);
DECL_ARGUMENT_FIELD
(
tensorrt_min_subgraph_size
,
TensorRtMinSubgraphSize
,
int
);
DECL_ARGUMENT_FIELD
(
tensorrt_precision_mode
,
TensorRtPrecisionMode
,
contrib
::
AnalysisConfig
::
Precision
);
AnalysisConfig
::
Precision
);
// Memory optimized related.
DECL_ARGUMENT_FIELD
(
enable_memory_optim
,
EnableMemoryOptim
,
bool
);
...
...
paddle/fluid/inference/analysis/helper.h
浏览文件 @
1e0a7855
...
...
@@ -32,7 +32,7 @@ limitations under the License. */
#ifdef _WIN32
#include <direct.h>
#include <io.h>
#define GCC_ATTRIBUTE(attr__)
;
#define GCC_ATTRIBUTE(attr__)
#define MKDIR(path) _mkdir(path)
#else
#include <unistd.h>
...
...
paddle/fluid/inference/analysis/ir_pass_manager.cc
浏览文件 @
1e0a7855
...
...
@@ -71,7 +71,7 @@ void IRPassManager::CreatePasses(Argument *argument,
new
framework
::
ProgramDesc
*
(
&
argument
->
main_program
()));
bool
enable_int8
=
argument
->
tensorrt_precision_mode
()
==
contrib
::
AnalysisConfig
::
Precision
::
kInt8
;
AnalysisConfig
::
Precision
::
kInt8
;
pass
->
Set
(
"enable_int8"
,
new
bool
(
enable_int8
));
std
::
string
model_opt_cache_dir
=
...
...
paddle/fluid/inference/analysis/passes/memory_optimize_pass.h
浏览文件 @
1e0a7855
...
...
@@ -13,7 +13,9 @@
// limitations under the License.
#pragma once
#include <string>
#include <utility>
#include <vector>
#include "paddle/fluid/inference/analysis/analysis_pass.h"
#include "paddle/fluid/platform/port.h"
...
...
paddle/fluid/inference/api/analysis_config.cc
浏览文件 @
1e0a7855
...
...
@@ -22,7 +22,7 @@
namespace
paddle
{
PassStrategy
*
contrib
::
AnalysisConfig
::
pass_builder
()
const
{
PassStrategy
*
AnalysisConfig
::
pass_builder
()
const
{
if
(
!
pass_builder_
.
get
())
{
if
(
use_gpu_
)
{
LOG
(
INFO
)
<<
"Create GPU IR passes"
;
...
...
@@ -42,27 +42,27 @@ PassStrategy *contrib::AnalysisConfig::pass_builder() const {
return
pass_builder_
.
get
();
}
contrib
::
AnalysisConfig
::
AnalysisConfig
(
const
std
::
string
&
model_dir
)
{
AnalysisConfig
::
AnalysisConfig
(
const
std
::
string
&
model_dir
)
{
model_dir_
=
model_dir
;
Update
();
}
contrib
::
AnalysisConfig
::
AnalysisConfig
(
const
std
::
string
&
prog_file
,
const
std
::
string
&
params_file
)
{
AnalysisConfig
::
AnalysisConfig
(
const
std
::
string
&
prog_file
,
const
std
::
string
&
params_file
)
{
prog_file_
=
prog_file
;
params_file_
=
params_file
;
Update
();
}
void
contrib
::
AnalysisConfig
::
SetModel
(
const
std
::
string
&
prog_file_path
,
const
std
::
string
&
params_file_path
)
{
void
AnalysisConfig
::
SetModel
(
const
std
::
string
&
prog_file_path
,
const
std
::
string
&
params_file_path
)
{
prog_file_
=
prog_file_path
;
params_file_
=
params_file_path
;
Update
();
}
void
contrib
::
AnalysisConfig
::
EnableUseGpu
(
uint64_t
memory_pool_init_size_mb
,
int
device_id
)
{
void
AnalysisConfig
::
EnableUseGpu
(
uint64_t
memory_pool_init_size_mb
,
int
device_id
)
{
#ifdef PADDLE_WITH_CUDA
use_gpu_
=
true
;
memory_pool_init_size_mb_
=
memory_pool_init_size_mb
;
...
...
@@ -74,13 +74,13 @@ void contrib::AnalysisConfig::EnableUseGpu(uint64_t memory_pool_init_size_mb,
Update
();
}
void
contrib
::
AnalysisConfig
::
DisableGpu
()
{
void
AnalysisConfig
::
DisableGpu
()
{
use_gpu_
=
false
;
Update
();
}
contrib
::
AnalysisConfig
::
AnalysisConfig
(
const
contrib
::
AnalysisConfig
&
other
)
{
AnalysisConfig
::
AnalysisConfig
(
const
AnalysisConfig
&
other
)
{
#define CP_MEMBER(member__) member__ = other.member__;
// Model related.
...
...
@@ -130,7 +130,7 @@ contrib::AnalysisConfig::AnalysisConfig(const contrib::AnalysisConfig &other) {
Update
();
}
void
contrib
::
AnalysisConfig
::
EnableMKLDNN
()
{
void
AnalysisConfig
::
EnableMKLDNN
()
{
#ifdef PADDLE_WITH_MKLDNN
pass_builder
()
->
EnableMKLDNN
();
use_mkldnn_
=
true
;
...
...
@@ -142,9 +142,9 @@ void contrib::AnalysisConfig::EnableMKLDNN() {
Update
();
}
void
contrib
::
AnalysisConfig
::
EnableTensorRtEngine
(
void
AnalysisConfig
::
EnableTensorRtEngine
(
int
workspace_size
,
int
max_batch_size
,
int
min_subgraph_size
,
contrib
::
AnalysisConfig
::
Precision
precision_mode
)
{
AnalysisConfig
::
Precision
precision_mode
)
{
#ifdef PADDLE_WITH_CUDA
if
(
!
use_gpu
())
{
LOG
(
ERROR
)
<<
"To use TensorRT engine, please call EnableGpu() first"
;
...
...
@@ -165,7 +165,7 @@ void contrib::AnalysisConfig::EnableTensorRtEngine(
}
// TODO(Superjomn) refactor this, buggy.
void
contrib
::
AnalysisConfig
::
Update
()
{
void
AnalysisConfig
::
Update
()
{
auto
info
=
SerializeInfoCache
();
if
(
info
==
serialized_info_cache_
)
return
;
...
...
@@ -225,7 +225,7 @@ void contrib::AnalysisConfig::Update() {
}
}
std
::
string
contrib
::
AnalysisConfig
::
SerializeInfoCache
()
{
std
::
string
AnalysisConfig
::
SerializeInfoCache
()
{
std
::
stringstream
ss
;
ss
<<
model_dir_
;
ss
<<
prog_file_
;
...
...
@@ -260,14 +260,14 @@ std::string contrib::AnalysisConfig::SerializeInfoCache() {
return
ss
.
str
();
}
void
contrib
::
AnalysisConfig
::
SetCpuMathLibraryNumThreads
(
void
AnalysisConfig
::
SetCpuMathLibraryNumThreads
(
int
cpu_math_library_num_threads
)
{
cpu_math_library_num_threads_
=
cpu_math_library_num_threads
;
Update
();
}
float
contrib
::
AnalysisConfig
::
fraction_of_gpu_memory_for_pool
()
const
{
float
AnalysisConfig
::
fraction_of_gpu_memory_for_pool
()
const
{
#ifdef PADDLE_WITH_CUDA
// Get the GPU memory details and calculate the fraction of memory for the
// GPU memory pool.
...
...
@@ -282,8 +282,8 @@ float contrib::AnalysisConfig::fraction_of_gpu_memory_for_pool() const {
#endif
}
void
contrib
::
AnalysisConfig
::
EnableMemoryOptim
(
bool
static_optim
,
bool
force_update_static_cache
)
{
void
AnalysisConfig
::
EnableMemoryOptim
(
bool
static_optim
,
bool
force_update_static_cache
)
{
enable_memory_optim_
=
true
;
static_memory_optim_
=
static_optim
;
static_memory_optim_force_update_
=
force_update_static_cache
;
...
...
@@ -291,14 +291,14 @@ void contrib::AnalysisConfig::EnableMemoryOptim(
Update
();
}
bool
contrib
::
AnalysisConfig
::
enable_memory_optim
()
const
{
bool
AnalysisConfig
::
enable_memory_optim
()
const
{
return
enable_memory_optim_
;
}
void
contrib
::
AnalysisConfig
::
SetModelBuffer
(
const
char
*
prog_buffer
,
size_t
prog_buffer_size
,
const
char
*
param_buffer
,
size_t
param_buffer_size
)
{
void
AnalysisConfig
::
SetModelBuffer
(
const
char
*
prog_buffer
,
size_t
prog_buffer_size
,
const
char
*
param_buffer
,
size_t
param_buffer_size
)
{
prog_file_
=
std
::
string
(
prog_buffer
,
prog_buffer
+
prog_buffer_size
);
params_file_
=
std
::
string
(
param_buffer
,
param_buffer
+
param_buffer_size
);
model_from_memory_
=
true
;
...
...
@@ -306,7 +306,7 @@ void contrib::AnalysisConfig::SetModelBuffer(const char *prog_buffer,
Update
();
}
NativeConfig
contrib
::
AnalysisConfig
::
ToNativeConfig
()
const
{
NativeConfig
AnalysisConfig
::
ToNativeConfig
()
const
{
NativeConfig
config
;
config
.
model_dir
=
model_dir_
;
config
.
prog_file
=
prog_file_
;
...
...
paddle/fluid/inference/api/analysis_predictor.cc
浏览文件 @
1e0a7855
...
...
@@ -47,7 +47,6 @@ DECLARE_bool(profile);
namespace
paddle
{
using
contrib
::
AnalysisConfig
;
using
inference
::
Singleton
;
#if PADDLE_WITH_TENSORRT
using
inference
::
tensorrt
::
TRTInt8Calibrator
;
...
...
@@ -731,10 +730,10 @@ std::string AnalysisPredictor::GetSeriazlizedProgram() const {
}
template
<
>
std
::
unique_ptr
<
PaddlePredictor
>
CreatePaddlePredictor
<
contrib
::
AnalysisConfig
>
(
const
contrib
::
AnalysisConfig
&
config
)
{
return
CreatePaddlePredictor
<
contrib
::
AnalysisConfig
,
PaddleEngineKind
::
kAnalysis
>
(
config
);
std
::
unique_ptr
<
PaddlePredictor
>
CreatePaddlePredictor
<
AnalysisConfig
>
(
const
AnalysisConfig
&
config
)
{
return
CreatePaddlePredictor
<
AnalysisConfig
,
PaddleEngineKind
::
kAnalysis
>
(
config
);
}
}
// namespace paddle
...
...
paddle/fluid/inference/api/analysis_predictor.h
浏览文件 @
1e0a7855
...
...
@@ -33,7 +33,6 @@ using inference::analysis::Argument;
using
inference
::
analysis
::
Analyzer
;
using
framework
::
proto
::
ProgramDesc
;
using
framework
::
NaiveExecutor
;
using
contrib
::
AnalysisConfig
;
/** \brief This predictor is based on the original native predictor with IR and
* Analysis support.
...
...
@@ -123,7 +122,7 @@ class AnalysisPredictor : public PaddlePredictor {
#endif
private:
contrib
::
AnalysisConfig
config_
;
AnalysisConfig
config_
;
Argument
argument_
;
std
::
unique_ptr
<
NaiveExecutor
>
executor_
;
platform
::
Place
place_
;
...
...
paddle/fluid/inference/api/analysis_predictor_tester.cc
浏览文件 @
1e0a7855
...
...
@@ -24,7 +24,6 @@
DEFINE_string
(
dirname
,
""
,
"dirname to tests."
);
namespace
paddle
{
using
contrib
::
AnalysisConfig
;
TEST
(
AnalysisPredictor
,
analysis_off
)
{
AnalysisConfig
config
;
...
...
paddle/fluid/inference/api/api_impl_tester.cc
浏览文件 @
1e0a7855
...
...
@@ -295,7 +295,7 @@ TEST(inference_api_native, image_classification_gpu) {
#endif
TEST
(
PassBuilder
,
Delete
)
{
contrib
::
AnalysisConfig
config
;
AnalysisConfig
config
;
config
.
DisableGpu
();
config
.
pass_builder
()
->
DeletePass
(
"attention_lstm_fuse_pass"
);
const
auto
&
passes
=
config
.
pass_builder
()
->
AllPasses
();
...
...
paddle/fluid/inference/api/demo_ci/trt_mobilenet_demo.cc
浏览文件 @
1e0a7855
...
...
@@ -36,7 +36,7 @@ namespace demo {
*/
void
Main
()
{
std
::
unique_ptr
<
PaddlePredictor
>
predictor
;
paddle
::
contrib
::
AnalysisConfig
config
;
paddle
::
AnalysisConfig
config
;
config
.
EnableUseGpu
(
100
,
0
);
config
.
SetModel
(
FLAGS_modeldir
+
"/__model__"
,
FLAGS_modeldir
+
"/__params__"
);
...
...
paddle/fluid/inference/api/demo_ci/vis_demo.cc
浏览文件 @
1e0a7855
...
...
@@ -34,7 +34,6 @@ DEFINE_bool(use_gpu, false, "Whether use gpu.");
namespace
paddle
{
namespace
demo
{
using
contrib
::
AnalysisConfig
;
/*
* Use the native and analysis fluid engine to inference the demo.
*/
...
...
paddle/fluid/inference/api/paddle_analysis_config.h
浏览文件 @
1e0a7855
...
...
@@ -29,11 +29,6 @@
namespace
paddle
{
class
AnalysisPredictor
;
// ==
//
// -----------------------------------------------------------------------------------
// NOTE: The following APIs are not mature yet, we are still working on them.
namespace
contrib
{
// NOTE WIP, not stable yet.
struct
AnalysisConfig
{
...
...
@@ -260,5 +255,4 @@ struct AnalysisConfig {
mutable
std
::
unique_ptr
<
PassStrategy
>
pass_builder_
;
};
}
// namespace contrib
}
// namespace paddle
paddle/fluid/inference/api/paddle_api.h
浏览文件 @
1e0a7855
...
...
@@ -221,7 +221,7 @@ class PaddlePredictor {
virtual
std
::
string
GetSeriazlizedProgram
()
const
{
assert
(
false
);
// Force raise error.
return
"NotImplemented"
;
}
;
}
/** The common configs for all the predictors.
*/
...
...
paddle/fluid/inference/tensorrt/trt_int8_calibrator.h
浏览文件 @
1e0a7855
...
...
@@ -13,16 +13,16 @@
// limitations under the License.
#pragma once
#include <NvInfer.h>
#include <cuda_runtime_api.h>
#include <atomic>
#include <memory>
#include <mutex>
#include <mutex>
// NOLINT
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
#include <NvInfer.h>
#include <cuda_runtime_api.h>
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/inference/tensorrt/engine.h"
#include "paddle/fluid/platform/place.h"
...
...
paddle/fluid/inference/tests/api/CMakeLists.txt
浏览文件 @
1e0a7855
...
...
@@ -128,6 +128,11 @@ inference_analysis_api_test_with_fake_data(test_analyzer_resnet50
inference_analysis_api_test_with_fake_data
(
test_analyzer_mobilenet_depthwise_conv
"
${
INFERENCE_DEMO_INSTALL_DIR
}
/mobilenet_depthwise_conv"
analyzer_resnet50_tester.cc
"mobilenet_model.tar.gz"
SERIAL
)
# bert, max_len=20
set
(
BERT_INSTALL_DIR
"
${
INFERENCE_DEMO_INSTALL_DIR
}
/bert20"
)
download_model_and_data
(
${
BERT_INSTALL_DIR
}
"bert_model.tar.gz"
"bert_data_len20.txt.tar.gz"
)
inference_analysis_api_test
(
test_analyzer_bert
${
BERT_INSTALL_DIR
}
analyzer_bert_tester.cc SERIAL
)
# anakin
if
(
WITH_ANAKIN AND WITH_MKL
)
# only needed in CI
# anakin rnn1
...
...
paddle/fluid/inference/tests/api/analyzer_bert_tester.cc
0 → 100644
浏览文件 @
1e0a7855
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/inference/tests/api/tester_helper.h"
namespace
paddle
{
namespace
inference
{
using
paddle
::
PaddleTensor
;
template
<
typename
T
>
void
GetValueFromStream
(
std
::
stringstream
*
ss
,
T
*
t
)
{
(
*
ss
)
>>
(
*
t
);
}
template
<
>
void
GetValueFromStream
<
std
::
string
>
(
std
::
stringstream
*
ss
,
std
::
string
*
t
)
{
*
t
=
ss
->
str
();
}
// Split string to vector
template
<
typename
T
>
void
Split
(
const
std
::
string
&
line
,
char
sep
,
std
::
vector
<
T
>
*
v
)
{
std
::
stringstream
ss
;
T
t
;
for
(
auto
c
:
line
)
{
if
(
c
!=
sep
)
{
ss
<<
c
;
}
else
{
GetValueFromStream
<
T
>
(
&
ss
,
&
t
);
v
->
push_back
(
std
::
move
(
t
));
ss
.
str
({});
ss
.
clear
();
}
}
if
(
!
ss
.
str
().
empty
())
{
GetValueFromStream
<
T
>
(
&
ss
,
&
t
);
v
->
push_back
(
std
::
move
(
t
));
ss
.
str
({});
ss
.
clear
();
}
}
template
<
typename
T
>
constexpr
paddle
::
PaddleDType
GetPaddleDType
();
template
<
>
constexpr
paddle
::
PaddleDType
GetPaddleDType
<
int64_t
>
()
{
return
paddle
::
PaddleDType
::
INT64
;
}
template
<
>
constexpr
paddle
::
PaddleDType
GetPaddleDType
<
float
>
()
{
return
paddle
::
PaddleDType
::
FLOAT32
;
}
// Parse tensor from string
template
<
typename
T
>
bool
ParseTensor
(
const
std
::
string
&
field
,
paddle
::
PaddleTensor
*
tensor
)
{
std
::
vector
<
std
::
string
>
data
;
Split
(
field
,
':'
,
&
data
);
if
(
data
.
size
()
<
2
)
return
false
;
std
::
string
shape_str
=
data
[
0
];
std
::
vector
<
int
>
shape
;
Split
(
shape_str
,
' '
,
&
shape
);
std
::
string
mat_str
=
data
[
1
];
std
::
vector
<
T
>
mat
;
Split
(
mat_str
,
' '
,
&
mat
);
tensor
->
shape
=
shape
;
auto
size
=
std
::
accumulate
(
shape
.
begin
(),
shape
.
end
(),
1
,
std
::
multiplies
<
int
>
())
*
sizeof
(
T
);
tensor
->
data
.
Resize
(
size
);
std
::
copy
(
mat
.
begin
(),
mat
.
end
(),
static_cast
<
T
*>
(
tensor
->
data
.
data
()));
tensor
->
dtype
=
GetPaddleDType
<
T
>
();
return
true
;
}
// Parse input tensors from string
bool
ParseLine
(
const
std
::
string
&
line
,
std
::
vector
<
paddle
::
PaddleTensor
>
*
tensors
)
{
std
::
vector
<
std
::
string
>
fields
;
Split
(
line
,
';'
,
&
fields
);
if
(
fields
.
size
()
<
5
)
return
false
;
tensors
->
clear
();
tensors
->
reserve
(
5
);
int
i
=
0
;
// src_id
paddle
::
PaddleTensor
src_id
;
ParseTensor
<
int64_t
>
(
fields
[
i
++
],
&
src_id
);
tensors
->
push_back
(
src_id
);
// pos_id
paddle
::
PaddleTensor
pos_id
;
ParseTensor
<
int64_t
>
(
fields
[
i
++
],
&
pos_id
);
tensors
->
push_back
(
pos_id
);
// segment_id
paddle
::
PaddleTensor
segment_id
;
ParseTensor
<
int64_t
>
(
fields
[
i
++
],
&
segment_id
);
tensors
->
push_back
(
segment_id
);
// self_attention_bias
paddle
::
PaddleTensor
self_attention_bias
;
ParseTensor
<
float
>
(
fields
[
i
++
],
&
self_attention_bias
);
tensors
->
push_back
(
self_attention_bias
);
// next_segment_index
paddle
::
PaddleTensor
next_segment_index
;
ParseTensor
<
int64_t
>
(
fields
[
i
++
],
&
next_segment_index
);
tensors
->
push_back
(
next_segment_index
);
return
true
;
}
bool
LoadInputData
(
std
::
vector
<
std
::
vector
<
paddle
::
PaddleTensor
>>
*
inputs
)
{
if
(
FLAGS_infer_data
.
empty
())
{
LOG
(
ERROR
)
<<
"please set input data path"
;
return
false
;
}
std
::
ifstream
fin
(
FLAGS_infer_data
);
std
::
string
line
;
int
sample
=
0
;
// The unit-test dataset only have 10 samples, each sample have 5 feeds.
while
(
std
::
getline
(
fin
,
line
))
{
std
::
vector
<
paddle
::
PaddleTensor
>
feed_data
;
ParseLine
(
line
,
&
feed_data
);
inputs
->
push_back
(
std
::
move
(
feed_data
));
sample
++
;
if
(
!
FLAGS_test_all_data
&&
sample
==
FLAGS_batch_size
)
break
;
}
LOG
(
INFO
)
<<
"number of samples: "
<<
sample
;
return
true
;
}
void
SetConfig
(
AnalysisConfig
*
config
)
{
config
->
SetModel
(
FLAGS_infer_model
);
}
void
profile
(
bool
use_mkldnn
=
false
)
{
AnalysisConfig
config
;
SetConfig
(
&
config
);
if
(
use_mkldnn
)
{
config
.
EnableMKLDNN
();
}
std
::
vector
<
PaddleTensor
>
outputs
;
std
::
vector
<
std
::
vector
<
PaddleTensor
>>
inputs
;
LoadInputData
(
&
inputs
);
TestPrediction
(
reinterpret_cast
<
const
PaddlePredictor
::
Config
*>
(
&
config
),
inputs
,
&
outputs
,
FLAGS_num_threads
);
}
TEST
(
Analyzer_bert
,
profile
)
{
profile
();
}
#ifdef PADDLE_WITH_MKLDNN
TEST
(
Analyzer_bert
,
profile_mkldnn
)
{
profile
(
true
);
}
#endif
// Check the fuse status
TEST
(
Analyzer_bert
,
fuse_statis
)
{
AnalysisConfig
cfg
;
SetConfig
(
&
cfg
);
int
num_ops
;
auto
predictor
=
CreatePaddlePredictor
<
AnalysisConfig
>
(
cfg
);
auto
fuse_statis
=
GetFuseStatis
(
static_cast
<
AnalysisPredictor
*>
(
predictor
.
get
()),
&
num_ops
);
LOG
(
INFO
)
<<
"num_ops: "
<<
num_ops
;
}
// Compare result of NativeConfig and AnalysisConfig
void
compare
(
bool
use_mkldnn
=
false
)
{
AnalysisConfig
cfg
;
SetConfig
(
&
cfg
);
if
(
use_mkldnn
)
{
cfg
.
EnableMKLDNN
();
}
std
::
vector
<
std
::
vector
<
PaddleTensor
>>
inputs
;
LoadInputData
(
&
inputs
);
CompareNativeAndAnalysis
(
reinterpret_cast
<
const
PaddlePredictor
::
Config
*>
(
&
cfg
),
inputs
);
}
TEST
(
Analyzer_bert
,
compare
)
{
compare
();
}
#ifdef PADDLE_WITH_MKLDNN
TEST
(
Analyzer_bert
,
compare_mkldnn
)
{
compare
(
true
/* use_mkldnn */
);
}
#endif
// Compare Deterministic result
TEST
(
Analyzer_bert
,
compare_determine
)
{
AnalysisConfig
cfg
;
SetConfig
(
&
cfg
);
std
::
vector
<
std
::
vector
<
PaddleTensor
>>
inputs
;
LoadInputData
(
&
inputs
);
CompareDeterministic
(
reinterpret_cast
<
const
PaddlePredictor
::
Config
*>
(
&
cfg
),
inputs
);
}
}
// namespace inference
}
// namespace paddle
paddle/fluid/inference/tests/api/analyzer_dam_tester.cc
浏览文件 @
1e0a7855
...
...
@@ -19,7 +19,6 @@ DEFINE_int32(max_turn_num, 9,
namespace
paddle
{
namespace
inference
{
using
contrib
::
AnalysisConfig
;
constexpr
int32_t
kMaxTurnLen
=
50
;
...
...
@@ -165,7 +164,7 @@ void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data,
input_slots
->
push_back
(
std
::
move
(
response_mask_tensor
));
}
void
SetConfig
(
contrib
::
AnalysisConfig
*
cfg
)
{
void
SetConfig
(
AnalysisConfig
*
cfg
)
{
cfg
->
SetModel
(
FLAGS_infer_model
+
"/__model__"
,
FLAGS_infer_model
+
"/param"
);
cfg
->
SwitchSpecifyInputNames
();
cfg
->
SwitchIrOptim
(
true
);
...
...
@@ -187,7 +186,7 @@ void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) {
// Easy for profiling independently.
void
profile
(
bool
use_mkldnn
=
false
)
{
contrib
::
AnalysisConfig
cfg
;
AnalysisConfig
cfg
;
SetConfig
(
&
cfg
);
if
(
use_mkldnn
)
{
...
...
@@ -223,7 +222,7 @@ TEST(Analyzer_dam, profile_mkldnn) { profile(true /* use_mkldnn */); }
// Check the fuse status
TEST
(
Analyzer_dam
,
fuse_statis
)
{
contrib
::
AnalysisConfig
cfg
;
AnalysisConfig
cfg
;
SetConfig
(
&
cfg
);
int
num_ops
;
...
...
@@ -256,7 +255,7 @@ void compare(bool use_mkldnn = false) {
TEST
(
Analyzer_dam
,
compare_with_static_memory_optim
)
{
// The small dam will core in CI, but works in local.
if
(
FLAGS_max_turn_num
==
9
)
{
contrib
::
AnalysisConfig
cfg
,
cfg1
;
AnalysisConfig
cfg
,
cfg1
;
DataRecord
data
(
FLAGS_infer_data
,
FLAGS_batch_size
);
std
::
vector
<
std
::
vector
<
PaddleTensor
>>
input_slots_all
;
...
...
@@ -282,7 +281,7 @@ TEST(Analyzer_dam, compare_with_static_memory_optim) {
TEST
(
Analyzer_dam
,
compare_with_dynamic_memory_optim
)
{
// The small dam will core in CI, but works in local.
if
(
FLAGS_max_turn_num
==
9
)
{
contrib
::
AnalysisConfig
cfg
,
cfg1
;
AnalysisConfig
cfg
,
cfg1
;
DataRecord
data
(
FLAGS_infer_data
,
FLAGS_batch_size
);
std
::
vector
<
std
::
vector
<
PaddleTensor
>>
input_slots_all
;
...
...
paddle/fluid/inference/tests/api/analyzer_lac_tester.cc
浏览文件 @
1e0a7855
...
...
@@ -18,8 +18,6 @@ namespace paddle {
namespace
inference
{
namespace
analysis
{
using
contrib
::
AnalysisConfig
;
struct
DataRecord
{
std
::
vector
<
int64_t
>
data
;
std
::
vector
<
size_t
>
lod
;
...
...
paddle/fluid/inference/tests/api/analyzer_mm_dnn_tester.cc
浏览文件 @
1e0a7855
...
...
@@ -16,7 +16,6 @@
namespace
paddle
{
namespace
inference
{
using
contrib
::
AnalysisConfig
;
struct
DataRecord
{
std
::
vector
<
std
::
vector
<
int64_t
>>
query
,
title
;
...
...
@@ -75,7 +74,7 @@ void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data,
}
}
void
SetConfig
(
contrib
::
AnalysisConfig
*
cfg
)
{
void
SetConfig
(
AnalysisConfig
*
cfg
)
{
cfg
->
SetModel
(
FLAGS_infer_model
);
cfg
->
DisableGpu
();
cfg
->
SwitchSpecifyInputNames
();
...
...
@@ -95,7 +94,7 @@ void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) {
// Easy for profiling independently.
void
profile
(
bool
use_mkldnn
=
false
)
{
contrib
::
AnalysisConfig
cfg
;
AnalysisConfig
cfg
;
SetConfig
(
&
cfg
);
std
::
vector
<
PaddleTensor
>
outputs
;
...
...
@@ -130,7 +129,7 @@ TEST(Analyzer_MM_DNN, profile_mkldnn) { profile(true /* use_mkldnn */); }
// Check the fuse status
TEST
(
Analyzer_MM_DNN
,
fuse_statis
)
{
contrib
::
AnalysisConfig
cfg
;
AnalysisConfig
cfg
;
SetConfig
(
&
cfg
);
int
num_ops
;
...
...
@@ -141,7 +140,7 @@ TEST(Analyzer_MM_DNN, fuse_statis) {
// Compare result of NativeConfig and AnalysisConfig
void
compare
(
bool
use_mkldnn
=
false
)
{
contrib
::
AnalysisConfig
cfg
;
AnalysisConfig
cfg
;
SetConfig
(
&
cfg
);
if
(
use_mkldnn
)
{
...
...
paddle/fluid/inference/tests/api/analyzer_ner_tester.cc
浏览文件 @
1e0a7855
...
...
@@ -16,7 +16,6 @@
namespace
paddle
{
namespace
inference
{
using
contrib
::
AnalysisConfig
;
struct
DataRecord
{
std
::
vector
<
std
::
vector
<
int64_t
>>
word
,
mention
;
...
...
@@ -76,7 +75,7 @@ void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data) {
}
}
void
SetConfig
(
contrib
::
AnalysisConfig
*
cfg
,
bool
memory_load
=
false
)
{
void
SetConfig
(
AnalysisConfig
*
cfg
,
bool
memory_load
=
false
)
{
if
(
memory_load
)
{
std
::
string
buffer_prog
,
buffer_param
;
ReadBinaryFile
(
FLAGS_infer_model
+
"/__model__"
,
&
buffer_prog
);
...
...
@@ -105,7 +104,7 @@ void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) {
// Easy for profiling independently.
void
profile
(
bool
memory_load
=
false
)
{
contrib
::
AnalysisConfig
cfg
;
AnalysisConfig
cfg
;
SetConfig
(
&
cfg
,
memory_load
);
std
::
vector
<
PaddleTensor
>
outputs
;
...
...
@@ -136,7 +135,7 @@ TEST(Analyzer_Chinese_ner, profile_memory_load) {
// Check the fuse status
TEST
(
Analyzer_Chinese_ner
,
fuse_statis
)
{
contrib
::
AnalysisConfig
cfg
;
AnalysisConfig
cfg
;
SetConfig
(
&
cfg
);
int
num_ops
;
...
...
@@ -152,7 +151,7 @@ TEST(Analyzer_Chinese_ner, fuse_statis) {
// Compare result of NativeConfig and AnalysisConfig
TEST
(
Analyzer_Chinese_ner
,
compare
)
{
contrib
::
AnalysisConfig
cfg
;
AnalysisConfig
cfg
;
SetConfig
(
&
cfg
);
std
::
vector
<
std
::
vector
<
PaddleTensor
>>
input_slots_all
;
...
...
paddle/fluid/inference/tests/api/analyzer_pyramid_dnn_tester.cc
浏览文件 @
1e0a7855
...
...
@@ -16,7 +16,6 @@
namespace
paddle
{
namespace
inference
{
using
contrib
::
AnalysisConfig
;
struct
DataRecord
{
std
::
vector
<
std
::
vector
<
int64_t
>>
query_basic
,
query_phrase
,
title_basic
,
...
...
@@ -103,7 +102,7 @@ void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data,
}
}
void
SetConfig
(
contrib
::
AnalysisConfig
*
cfg
)
{
void
SetConfig
(
AnalysisConfig
*
cfg
)
{
cfg
->
SetModel
(
FLAGS_infer_model
);
cfg
->
DisableGpu
();
cfg
->
SwitchSpecifyInputNames
();
...
...
@@ -123,7 +122,7 @@ void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) {
// Easy for profiling independently.
TEST
(
Analyzer_Pyramid_DNN
,
profile
)
{
contrib
::
AnalysisConfig
cfg
;
AnalysisConfig
cfg
;
SetConfig
(
&
cfg
);
std
::
vector
<
PaddleTensor
>
outputs
;
...
...
@@ -147,7 +146,7 @@ TEST(Analyzer_Pyramid_DNN, profile) {
// Check the fuse status
TEST
(
Analyzer_Pyramid_DNN
,
fuse_statis
)
{
contrib
::
AnalysisConfig
cfg
;
AnalysisConfig
cfg
;
SetConfig
(
&
cfg
);
int
num_ops
;
...
...
@@ -158,7 +157,7 @@ TEST(Analyzer_Pyramid_DNN, fuse_statis) {
// Compare result of NativeConfig and AnalysisConfig
TEST
(
Analyzer_Pyramid_DNN
,
compare
)
{
contrib
::
AnalysisConfig
cfg
;
AnalysisConfig
cfg
;
SetConfig
(
&
cfg
);
std
::
vector
<
std
::
vector
<
PaddleTensor
>>
input_slots_all
;
...
...
paddle/fluid/inference/tests/api/analyzer_rnn1_tester.cc
浏览文件 @
1e0a7855
...
...
@@ -20,7 +20,6 @@ namespace paddle {
namespace
inference
{
using
namespace
framework
;
// NOLINT
using
namespace
contrib
;
// NOLINT
struct
DataRecord
{
std
::
vector
<
std
::
vector
<
std
::
vector
<
float
>>>
link_step_data_all
;
...
...
@@ -223,7 +222,7 @@ void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) {
// Easy for profiling independently.
TEST
(
Analyzer_rnn1
,
profile
)
{
contrib
::
AnalysisConfig
cfg
;
AnalysisConfig
cfg
;
SetConfig
(
&
cfg
);
cfg
.
DisableGpu
();
cfg
.
SwitchIrDebug
();
...
...
@@ -237,7 +236,7 @@ TEST(Analyzer_rnn1, profile) {
// Check the fuse status
TEST
(
Analyzer_rnn1
,
fuse_statis
)
{
contrib
::
AnalysisConfig
cfg
;
AnalysisConfig
cfg
;
SetConfig
(
&
cfg
);
int
num_ops
;
...
...
@@ -254,7 +253,7 @@ TEST(Analyzer_rnn1, fuse_statis) {
// Compare result of NativeConfig and AnalysisConfig
TEST
(
Analyzer_rnn1
,
compare
)
{
contrib
::
AnalysisConfig
cfg
;
AnalysisConfig
cfg
;
SetConfig
(
&
cfg
);
std
::
vector
<
std
::
vector
<
PaddleTensor
>>
input_slots_all
;
...
...
@@ -276,7 +275,7 @@ TEST(Analyzer_rnn1, compare_determine) {
// Test Multi-Thread.
TEST
(
Analyzer_rnn1
,
multi_thread
)
{
contrib
::
AnalysisConfig
cfg
;
AnalysisConfig
cfg
;
SetConfig
(
&
cfg
);
std
::
vector
<
PaddleTensor
>
outputs
;
...
...
paddle/fluid/inference/tests/api/analyzer_vis_tester.cc
浏览文件 @
1e0a7855
...
...
@@ -20,7 +20,6 @@ limitations under the License. */
namespace
paddle
{
namespace
inference
{
namespace
analysis
{
using
contrib
::
AnalysisConfig
;
struct
Record
{
std
::
vector
<
float
>
data
;
...
...
paddle/fluid/inference/tests/api/config_printer.h
浏览文件 @
1e0a7855
...
...
@@ -58,9 +58,8 @@ std::ostream &operator<<(std::ostream &os, const NativeConfig &config) {
return
os
;
}
std
::
ostream
&
operator
<<
(
std
::
ostream
&
os
,
const
contrib
::
AnalysisConfig
&
config
)
{
os
<<
GenSpaces
(
num_spaces
)
<<
"contrib::AnalysisConfig {
\n
"
;
std
::
ostream
&
operator
<<
(
std
::
ostream
&
os
,
const
AnalysisConfig
&
config
)
{
os
<<
GenSpaces
(
num_spaces
)
<<
"AnalysisConfig {
\n
"
;
num_spaces
++
;
os
<<
config
.
ToNativeConfig
();
if
(
!
config
.
model_from_memory
())
{
...
...
paddle/fluid/inference/tests/api/tester_helper.h
浏览文件 @
1e0a7855
...
...
@@ -65,7 +65,7 @@ float Random(float low, float high) {
void
PrintConfig
(
const
PaddlePredictor
::
Config
*
config
,
bool
use_analysis
)
{
const
auto
*
analysis_config
=
reinterpret_cast
<
const
contrib
::
AnalysisConfig
*>
(
config
);
reinterpret_cast
<
const
AnalysisConfig
*>
(
config
);
if
(
use_analysis
)
{
LOG
(
INFO
)
<<
*
analysis_config
;
return
;
...
...
@@ -109,9 +109,9 @@ void CompareResult(const std::vector<PaddleTensor> &outputs,
std
::
unique_ptr
<
PaddlePredictor
>
CreateTestPredictor
(
const
PaddlePredictor
::
Config
*
config
,
bool
use_analysis
=
true
)
{
const
auto
*
analysis_config
=
reinterpret_cast
<
const
contrib
::
AnalysisConfig
*>
(
config
);
reinterpret_cast
<
const
AnalysisConfig
*>
(
config
);
if
(
use_analysis
)
{
return
CreatePaddlePredictor
<
contrib
::
AnalysisConfig
>
(
*
analysis_config
);
return
CreatePaddlePredictor
<
AnalysisConfig
>
(
*
analysis_config
);
}
auto
native_config
=
analysis_config
->
ToNativeConfig
();
return
CreatePaddlePredictor
<
NativeConfig
>
(
native_config
);
...
...
paddle/fluid/inference/tests/api/trt_models_tester.cc
浏览文件 @
1e0a7855
...
...
@@ -42,9 +42,9 @@ void SetConfig(ConfigType* config, std::string model_dir, bool use_gpu,
}
template
<
>
void
SetConfig
<
contrib
::
AnalysisConfig
>
(
contrib
::
AnalysisConfig
*
config
,
std
::
string
model_dir
,
bool
use_gpu
,
bool
use_tensorrt
,
int
batch_size
)
{
void
SetConfig
<
AnalysisConfig
>
(
AnalysisConfig
*
config
,
std
::
string
model_dir
,
bool
use_gpu
,
bool
use_tensorrt
,
int
batch_size
)
{
if
(
!
FLAGS_prog_filename
.
empty
()
&&
!
FLAGS_param_filename
.
empty
())
{
config
->
SetModel
(
model_dir
+
"/"
+
FLAGS_prog_filename
,
model_dir
+
"/"
+
FLAGS_param_filename
);
...
...
@@ -75,11 +75,11 @@ void profile(std::string model_dir, bool use_analysis, bool use_tensorrt) {
std
::
vector
<
PaddleTensor
>
outputs
;
if
(
use_analysis
||
use_tensorrt
)
{
contrib
::
AnalysisConfig
config
;
AnalysisConfig
config
;
config
.
EnableUseGpu
(
100
,
0
);
config
.
pass_builder
()
->
TurnOnDebug
();
SetConfig
<
contrib
::
AnalysisConfig
>
(
&
config
,
model_dir
,
true
,
use_tensorrt
,
FLAGS_batch_size
);
SetConfig
<
AnalysisConfig
>
(
&
config
,
model_dir
,
true
,
use_tensorrt
,
FLAGS_batch_size
);
TestPrediction
(
reinterpret_cast
<
PaddlePredictor
::
Config
*>
(
&
config
),
inputs_all
,
&
outputs
,
FLAGS_num_threads
,
true
);
}
else
{
...
...
@@ -99,18 +99,18 @@ void compare(std::string model_dir, bool use_tensorrt) {
SetFakeImageInput
(
&
inputs_all
,
model_dir
,
false
,
"__model__"
,
""
);
}
contrib
::
AnalysisConfig
analysis_config
;
SetConfig
<
contrib
::
AnalysisConfig
>
(
&
analysis_config
,
model_dir
,
true
,
use_tensorrt
,
FLAGS_batch_size
);
AnalysisConfig
analysis_config
;
SetConfig
<
AnalysisConfig
>
(
&
analysis_config
,
model_dir
,
true
,
use_tensorrt
,
FLAGS_batch_size
);
CompareNativeAndAnalysis
(
reinterpret_cast
<
const
PaddlePredictor
::
Config
*>
(
&
analysis_config
),
inputs_all
);
}
void
compare_continuous_input
(
std
::
string
model_dir
,
bool
use_tensorrt
)
{
contrib
::
AnalysisConfig
analysis_config
;
SetConfig
<
contrib
::
AnalysisConfig
>
(
&
analysis_config
,
model_dir
,
true
,
use_tensorrt
,
FLAGS_batch_size
);
AnalysisConfig
analysis_config
;
SetConfig
<
AnalysisConfig
>
(
&
analysis_config
,
model_dir
,
true
,
use_tensorrt
,
FLAGS_batch_size
);
auto
config
=
reinterpret_cast
<
const
PaddlePredictor
::
Config
*>
(
&
analysis_config
);
auto
native_pred
=
CreateTestPredictor
(
config
,
false
);
...
...
paddle/fluid/inference/utils/CMakeLists.txt
浏览文件 @
1e0a7855
cc_library
(
benchmark SRCS benchmark.cc DEPS enforce
)
cc_test
(
test_benchmark SRCS benchmark_tester.cc DEPS benchmark
)
cc_binary
(
visualizer SRCS visualizer.cc DEPS analysis
paddle_pass_builder ir_pass_manager pass graph_viz_pass analysis_passes
)
#
cc_binary(visualizer SRCS visualizer.cc DEPS analysis
#
paddle_pass_builder ir_pass_manager pass graph_viz_pass analysis_passes)
paddle/fluid/memory/allocation/legacy_allocator.cc
浏览文件 @
1e0a7855
...
...
@@ -13,9 +13,15 @@
// limitations under the License.
#include "paddle/fluid/memory/allocation/legacy_allocator.h"
#include <string>
#include <utility>
#include <vector>
#ifdef PADDLE_WITH_JEMALLOC
#include <jemalloc/jemalloc.h>
#endif
#include "glog/logging.h"
#include "paddle/fluid/memory/detail/buddy_allocator.h"
#include "paddle/fluid/memory/detail/system_allocator.h"
...
...
@@ -95,7 +101,11 @@ struct NaiveAllocator {
template
<
>
void
*
Alloc
<
platform
::
CPUPlace
>
(
const
platform
::
CPUPlace
&
place
,
size_t
size
)
{
VLOG
(
10
)
<<
"Allocate "
<<
size
<<
" bytes on "
<<
platform
::
Place
(
place
);
#ifdef PADDLE_WITH_JEMALLOC
void
*
p
=
malloc
(
size
);
#else
void
*
p
=
GetCPUBuddyAllocator
()
->
Alloc
(
size
);
#endif
if
(
FLAGS_init_allocated_mem
)
{
memset
(
p
,
0xEF
,
size
);
}
...
...
@@ -107,12 +117,21 @@ template <>
void
Free
<
platform
::
CPUPlace
>
(
const
platform
::
CPUPlace
&
place
,
void
*
p
,
size_t
size
)
{
VLOG
(
10
)
<<
"Free pointer="
<<
p
<<
" on "
<<
platform
::
Place
(
place
);
#ifdef PADDLE_WITH_JEMALLOC
free
(
p
);
#else
GetCPUBuddyAllocator
()
->
Free
(
p
);
#endif
}
template
<
>
size_t
Used
<
platform
::
CPUPlace
>
(
const
platform
::
CPUPlace
&
place
)
{
#ifdef PADDLE_WITH_JEMALLOC
// fake the result of used memory when PADDLE_WITH_JEMALLOC is ON
return
0U
;
#else
return
GetCPUBuddyAllocator
()
->
Used
();
#endif
}
#ifdef PADDLE_WITH_CUDA
...
...
paddle/fluid/operators/detection/multiclass_nms_op.cc
浏览文件 @
1e0a7855
...
...
@@ -9,9 +9,9 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
limitations under the License. */
#include <glog/logging.h>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/detection/poly_util.h"
...
...
@@ -35,30 +35,45 @@ class MultiClassNMSOp : public framework::OperatorWithKernel {
auto
box_dims
=
ctx
->
GetInputDim
(
"BBoxes"
);
auto
score_dims
=
ctx
->
GetInputDim
(
"Scores"
);
auto
score_size
=
score_dims
.
size
();
if
(
ctx
->
IsRuntime
())
{
PADDLE_ENFORCE
(
score_size
==
2
||
score_size
==
3
,
"The rank of Input(Scores) must be 2 or 3"
);
PADDLE_ENFORCE_EQ
(
box_dims
.
size
(),
3
,
"The rank of Input(BBoxes) must be 3."
);
PADDLE_ENFORCE_EQ
(
score_dims
.
size
(),
3
,
"The rank of Input(Scores) must be 3."
);
PADDLE_ENFORCE
(
box_dims
[
2
]
==
4
||
box_dims
[
2
]
==
8
||
box_dims
[
2
]
==
16
||
box_dims
[
2
]
==
24
||
box_dims
[
2
]
==
32
,
"The 2nd dimension of Input(BBoxes) must be 4 or 8, "
"represents the layout of coordinate "
"[xmin, ymin, xmax, ymax] or "
"4 points: [x1, y1, x2, y2, x3, y3, x4, y4] or "
"8 points: [xi, yi] i= 1,2,...,8 or "
"12 points: [xi, yi] i= 1,2,...,12 or "
"16 points: [xi, yi] i= 1,2,...,16"
);
PADDLE_ENFORCE_EQ
(
box_dims
[
1
],
score_dims
[
2
],
"The 1st dimensiong of Input(BBoxes) must be equal to "
"3rd dimension of Input(Scores), which represents the "
"predicted bboxes."
);
"The rank of Input(BBoxes) must be 3"
);
if
(
score_size
==
3
)
{
PADDLE_ENFORCE
(
box_dims
[
2
]
==
4
||
box_dims
[
2
]
==
8
||
box_dims
[
2
]
==
16
||
box_dims
[
2
]
==
24
||
box_dims
[
2
]
==
32
,
"The last dimension of Input(BBoxes) must be 4 or 8, "
"represents the layout of coordinate "
"[xmin, ymin, xmax, ymax] or "
"4 points: [x1, y1, x2, y2, x3, y3, x4, y4] or "
"8 points: [xi, yi] i= 1,2,...,8 or "
"12 points: [xi, yi] i= 1,2,...,12 or "
"16 points: [xi, yi] i= 1,2,...,16"
);
PADDLE_ENFORCE_EQ
(
box_dims
[
1
],
score_dims
[
2
],
"The 2nd dimension of Input(BBoxes) must be equal to "
"last dimension of Input(Scores), which represents the "
"predicted bboxes."
);
}
else
{
PADDLE_ENFORCE
(
box_dims
[
2
]
==
4
,
"The last dimension of Input(BBoxes) must be 4"
);
PADDLE_ENFORCE_EQ
(
box_dims
[
1
],
score_dims
[
1
],
"The 2nd dimension of Input(BBoxes)"
"must be equal to the 2nd dimension"
" of Input(Scores)"
);
}
}
// Here the box_dims[0] is not the real dimension of output.
// It will be rewritten in the computing kernel.
ctx
->
SetOutputDim
(
"Out"
,
{
box_dims
[
1
],
box_dims
[
2
]
+
2
});
if
(
score_size
==
3
)
{
ctx
->
SetOutputDim
(
"Out"
,
{
box_dims
[
1
],
box_dims
[
2
]
+
2
});
}
else
{
ctx
->
SetOutputDim
(
"Out"
,
{
-
1
,
box_dims
[
2
]
+
2
});
}
}
protected:
...
...
@@ -123,8 +138,9 @@ static inline T JaccardOverlap(const T* box1, const T* box2,
const
T
inter_ymin
=
std
::
max
(
box1
[
1
],
box2
[
1
]);
const
T
inter_xmax
=
std
::
min
(
box1
[
2
],
box2
[
2
]);
const
T
inter_ymax
=
std
::
min
(
box1
[
3
],
box2
[
3
]);
const
T
inter_w
=
inter_xmax
-
inter_xmin
;
const
T
inter_h
=
inter_ymax
-
inter_ymin
;
T
norm
=
normalized
?
static_cast
<
T
>
(
0.
)
:
static_cast
<
T
>
(
1.
);
T
inter_w
=
inter_xmax
-
inter_xmin
+
norm
;
T
inter_h
=
inter_ymax
-
inter_ymin
+
norm
;
const
T
inter_area
=
inter_w
*
inter_h
;
const
T
bbox1_area
=
BBoxArea
<
T
>
(
box1
,
normalized
);
const
T
bbox2_area
=
BBoxArea
<
T
>
(
box2
,
normalized
);
...
...
@@ -139,7 +155,7 @@ T PolyIoU(const T* box1, const T* box2, const size_t box_size,
T
bbox2_area
=
PolyArea
<
T
>
(
box2
,
box_size
,
normalized
);
T
inter_area
=
PolyOverlapArea
<
T
>
(
box1
,
box2
,
box_size
,
normalized
);
if
(
bbox1_area
==
0
||
bbox2_area
==
0
||
inter_area
==
0
)
{
// If coordinate values are i
s i
nvalid
// If coordinate values are invalid
// if area size <= 0, return 0.
return
T
(
0.
);
}
else
{
...
...
@@ -147,12 +163,35 @@ T PolyIoU(const T* box1, const T* box2, const size_t box_size,
}
}
template
<
class
T
>
void
SliceOneClass
(
const
platform
::
DeviceContext
&
ctx
,
const
framework
::
Tensor
&
items
,
const
int
class_id
,
framework
::
Tensor
*
one_class_item
)
{
T
*
item_data
=
one_class_item
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
const
T
*
items_data
=
items
.
data
<
T
>
();
const
int64_t
num_item
=
items
.
dims
()[
0
];
const
int
class_num
=
items
.
dims
()[
1
];
if
(
items
.
dims
().
size
()
==
3
)
{
int
item_size
=
items
.
dims
()[
2
];
for
(
int
i
=
0
;
i
<
num_item
;
++
i
)
{
std
::
memcpy
(
item_data
+
i
*
item_size
,
items_data
+
i
*
class_num
*
item_size
+
class_id
*
item_size
,
sizeof
(
T
)
*
item_size
);
}
}
else
{
for
(
int
i
=
0
;
i
<
num_item
;
++
i
)
{
item_data
[
i
]
=
items_data
[
i
*
class_num
+
class_id
];
}
}
}
template
<
typename
T
>
class
MultiClassNMSKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
NMSFast
(
const
Tensor
&
bbox
,
const
Tensor
&
scores
,
const
T
score_threshold
,
const
T
nms_threshold
,
const
T
eta
,
const
int64_t
top_k
,
std
::
vector
<
int
>*
selected_indices
)
const
{
const
int64_t
top_k
,
std
::
vector
<
int
>*
selected_indices
,
const
bool
normalized
)
const
{
// The total boxes for each instance.
int64_t
num_boxes
=
bbox
.
dims
()[
0
];
// 4: [xmin ymin xmax ymax]
...
...
@@ -178,15 +217,16 @@ class MultiClassNMSKernel : public framework::OpKernel<T> {
T
overlap
=
T
(
0.
);
// 4: [xmin ymin xmax ymax]
if
(
box_size
==
4
)
{
overlap
=
JaccardOverlap
<
T
>
(
bbox_data
+
idx
*
box_size
,
bbox_data
+
kept_idx
*
box_size
,
true
);
overlap
=
JaccardOverlap
<
T
>
(
bbox_data
+
idx
*
box_size
,
bbox_data
+
kept_idx
*
box_size
,
normalized
);
}
// 8: [x1 y1 x2 y2 x3 y3 x4 y4] or 16, 24, 32
if
(
box_size
==
8
||
box_size
==
16
||
box_size
==
24
||
box_size
==
32
)
{
overlap
=
PolyIoU
<
T
>
(
bbox_data
+
idx
*
box_size
,
bbox_data
+
kept_idx
*
box_size
,
box_size
,
true
);
overlap
=
PolyIoU
<
T
>
(
bbox_data
+
idx
*
box_size
,
bbox_data
+
kept_idx
*
box_size
,
box_size
,
normalized
);
}
keep
=
overlap
<=
adaptive_threshold
;
}
else
{
...
...
@@ -205,37 +245,58 @@ class MultiClassNMSKernel : public framework::OpKernel<T> {
void
MultiClassNMS
(
const
framework
::
ExecutionContext
&
ctx
,
const
Tensor
&
scores
,
const
Tensor
&
bboxes
,
const
int
scores_size
,
std
::
map
<
int
,
std
::
vector
<
int
>>*
indices
,
int
*
num_nmsed_out
)
const
{
int64_t
background_label
=
ctx
.
Attr
<
int
>
(
"background_label"
);
int64_t
nms_top_k
=
ctx
.
Attr
<
int
>
(
"nms_top_k"
);
int64_t
keep_top_k
=
ctx
.
Attr
<
int
>
(
"keep_top_k"
);
bool
normalized
=
ctx
.
Attr
<
bool
>
(
"normalized"
);
T
nms_threshold
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"nms_threshold"
));
T
nms_eta
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"nms_eta"
));
T
score_threshold
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"score_threshold"
));
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
CPUDeviceContext
>();
int64_t
class_num
=
scores
.
dims
()[
0
];
int64_t
predict_dim
=
scores
.
dims
()[
1
];
int
num_det
=
0
;
int64_t
class_num
=
scores_size
==
3
?
scores
.
dims
()[
0
]
:
scores
.
dims
()[
1
];
Tensor
bbox_slice
,
score_slice
;
for
(
int64_t
c
=
0
;
c
<
class_num
;
++
c
)
{
if
(
c
==
background_label
)
continue
;
Tensor
score
=
scores
.
Slice
(
c
,
c
+
1
);
NMSFast
(
bboxes
,
score
,
score_threshold
,
nms_threshold
,
nms_eta
,
nms_top_k
,
&
((
*
indices
)[
c
]));
if
(
scores_size
==
3
)
{
score_slice
=
scores
.
Slice
(
c
,
c
+
1
);
bbox_slice
=
bboxes
;
}
else
{
score_slice
.
Resize
({
scores
.
dims
()[
0
],
1
});
bbox_slice
.
Resize
({
scores
.
dims
()[
0
],
4
});
SliceOneClass
<
T
>
(
dev_ctx
,
scores
,
c
,
&
score_slice
);
SliceOneClass
<
T
>
(
dev_ctx
,
bboxes
,
c
,
&
bbox_slice
);
}
NMSFast
(
bbox_slice
,
score_slice
,
score_threshold
,
nms_threshold
,
nms_eta
,
nms_top_k
,
&
((
*
indices
)[
c
]),
normalized
);
if
(
scores_size
==
2
)
{
std
::
stable_sort
((
*
indices
)[
c
].
begin
(),
(
*
indices
)[
c
].
end
());
}
num_det
+=
(
*
indices
)[
c
].
size
();
}
*
num_nmsed_out
=
num_det
;
const
T
*
scores_data
=
scores
.
data
<
T
>
();
if
(
keep_top_k
>
-
1
&&
num_det
>
keep_top_k
)
{
const
T
*
sdata
;
std
::
vector
<
std
::
pair
<
float
,
std
::
pair
<
int
,
int
>>>
score_index_pairs
;
for
(
const
auto
&
it
:
*
indices
)
{
int
label
=
it
.
first
;
const
T
*
sdata
=
scores_data
+
label
*
predict_dim
;
if
(
scores_size
==
3
)
{
sdata
=
scores_data
+
label
*
scores
.
dims
()[
1
];
}
else
{
score_slice
.
Resize
({
scores
.
dims
()[
0
],
1
});
SliceOneClass
<
T
>
(
dev_ctx
,
scores
,
label
,
&
score_slice
);
sdata
=
score_slice
.
data
<
T
>
();
}
const
std
::
vector
<
int
>&
label_indices
=
it
.
second
;
for
(
size_t
j
=
0
;
j
<
label_indices
.
size
();
++
j
)
{
int
idx
=
label_indices
[
j
];
PADDLE_ENFORCE_LT
(
idx
,
predict_dim
);
score_index_pairs
.
push_back
(
std
::
make_pair
(
sdata
[
idx
],
std
::
make_pair
(
label
,
idx
)));
}
...
...
@@ -252,31 +313,55 @@ class MultiClassNMSKernel : public framework::OpKernel<T> {
int
idx
=
score_index_pairs
[
j
].
second
.
second
;
new_indices
[
label
].
push_back
(
idx
);
}
if
(
scores_size
==
2
)
{
for
(
const
auto
&
it
:
new_indices
)
{
int
label
=
it
.
first
;
std
::
stable_sort
(
new_indices
[
label
].
begin
(),
new_indices
[
label
].
end
());
}
}
new_indices
.
swap
(
*
indices
);
*
num_nmsed_out
=
keep_top_k
;
}
}
void
MultiClassOutput
(
const
Tensor
&
scores
,
const
Tensor
&
bboxes
,
void
MultiClassOutput
(
const
platform
::
DeviceContext
&
ctx
,
const
Tensor
&
scores
,
const
Tensor
&
bboxes
,
const
std
::
map
<
int
,
std
::
vector
<
int
>>&
selected_indices
,
Tensor
*
outs
)
const
{
const
int
scores_size
,
Tensor
*
outs
)
const
{
int64_t
class_num
=
scores
.
dims
()[
1
];
int64_t
predict_dim
=
scores
.
dims
()[
1
];
int64_t
box_size
=
bboxes
.
dims
()[
1
];
int64_t
out_dim
=
bboxes
.
dims
()[
1
]
+
2
;
if
(
scores_size
==
2
)
{
box_size
=
bboxes
.
dims
()[
2
];
}
int64_t
out_dim
=
box_size
+
2
;
auto
*
scores_data
=
scores
.
data
<
T
>
();
auto
*
bboxes_data
=
bboxes
.
data
<
T
>
();
auto
*
odata
=
outs
->
data
<
T
>
();
const
T
*
sdata
;
Tensor
bbox
;
bbox
.
Resize
({
scores
.
dims
()[
0
],
box_size
});
int
count
=
0
;
for
(
const
auto
&
it
:
selected_indices
)
{
int
label
=
it
.
first
;
const
T
*
sdata
=
scores_data
+
label
*
predict_dim
;
const
std
::
vector
<
int
>&
indices
=
it
.
second
;
if
(
scores_size
==
2
)
{
SliceOneClass
<
T
>
(
ctx
,
bboxes
,
label
,
&
bbox
);
}
else
{
sdata
=
scores_data
+
label
*
predict_dim
;
}
for
(
size_t
j
=
0
;
j
<
indices
.
size
();
++
j
)
{
int
idx
=
indices
[
j
];
const
T
*
bdata
=
bboxes_data
+
idx
*
box_size
;
odata
[
count
*
out_dim
]
=
label
;
// label
odata
[
count
*
out_dim
+
1
]
=
sdata
[
idx
];
// score
odata
[
count
*
out_dim
]
=
label
;
// label
const
T
*
bdata
;
if
(
scores_size
==
3
)
{
bdata
=
bboxes_data
+
idx
*
box_size
;
odata
[
count
*
out_dim
+
1
]
=
sdata
[
idx
];
// score
}
else
{
bdata
=
bbox
.
data
<
T
>
()
+
idx
*
box_size
;
odata
[
count
*
out_dim
+
1
]
=
*
(
scores_data
+
idx
*
class_num
+
label
);
}
// xmin, ymin, xmax, ymax or multi-points coordinates
std
::
memcpy
(
odata
+
count
*
out_dim
+
2
,
bdata
,
box_size
*
sizeof
(
T
));
count
++
;
...
...
@@ -285,52 +370,64 @@ class MultiClassNMSKernel : public framework::OpKernel<T> {
}
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
boxes
=
ctx
.
Input
<
Tensor
>
(
"BBoxes"
);
auto
*
scores
=
ctx
.
Input
<
Tensor
>
(
"Scores"
);
auto
*
boxes
=
ctx
.
Input
<
LoD
Tensor
>
(
"BBoxes"
);
auto
*
scores
=
ctx
.
Input
<
LoD
Tensor
>
(
"Scores"
);
auto
*
outs
=
ctx
.
Output
<
LoDTensor
>
(
"Out"
);
auto
score_dims
=
scores
->
dims
();
int64_t
batch_size
=
score_dims
[
0
];
int64_t
class_num
=
score_dims
[
1
];
int64_t
predict_dim
=
score_dims
[
2
];
int64_t
box_dim
=
boxes
->
dims
()[
2
];
int64_t
out_dim
=
boxes
->
dims
()[
2
]
+
2
;
auto
score_size
=
score_dims
.
size
();
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
CPUDeviceContext
>();
std
::
vector
<
std
::
map
<
int
,
std
::
vector
<
int
>>>
all_indices
;
std
::
vector
<
size_t
>
batch_starts
=
{
0
};
for
(
int64_t
i
=
0
;
i
<
batch_size
;
++
i
)
{
Tensor
ins_score
=
scores
->
Slice
(
i
,
i
+
1
);
ins_score
.
Resize
({
class_num
,
predict_dim
});
Tensor
ins_boxes
=
boxes
->
Slice
(
i
,
i
+
1
);
ins_boxes
.
Resize
({
predict_dim
,
box_dim
});
int64_t
batch_size
=
score_dims
[
0
];
int64_t
box_dim
=
boxes
->
dims
()[
2
];
int64_t
out_dim
=
box_dim
+
2
;
int
num_nmsed_out
=
0
;
Tensor
boxes_slice
,
scores_slice
;
int
n
=
score_size
==
3
?
batch_size
:
boxes
->
lod
().
back
().
size
()
-
1
;
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
if
(
score_size
==
3
)
{
scores_slice
=
scores
->
Slice
(
i
,
i
+
1
);
scores_slice
.
Resize
({
score_dims
[
1
],
score_dims
[
2
]});
boxes_slice
=
boxes
->
Slice
(
i
,
i
+
1
);
boxes_slice
.
Resize
({
score_dims
[
2
],
box_dim
});
}
else
{
auto
boxes_lod
=
boxes
->
lod
().
back
();
scores_slice
=
scores
->
Slice
(
boxes_lod
[
i
],
boxes_lod
[
i
+
1
]);
boxes_slice
=
boxes
->
Slice
(
boxes_lod
[
i
],
boxes_lod
[
i
+
1
]);
}
std
::
map
<
int
,
std
::
vector
<
int
>>
indices
;
int
num_nmsed_out
=
0
;
MultiClassNMS
(
ctx
,
ins_score
,
ins_boxes
,
&
indices
,
&
num_nmsed_out
);
MultiClassNMS
(
ctx
,
scores_slice
,
boxes_slice
,
score_size
,
&
indices
,
&
num_nmsed_out
);
all_indices
.
push_back
(
indices
);
batch_starts
.
push_back
(
batch_starts
.
back
()
+
num_nmsed_out
);
}
int
num_kept
=
batch_starts
.
back
();
if
(
num_kept
==
0
)
{
T
*
od
=
outs
->
mutable_data
<
T
>
({
1
},
ctx
.
GetPlace
());
T
*
od
=
outs
->
mutable_data
<
T
>
({
1
,
1
},
ctx
.
GetPlace
());
od
[
0
]
=
-
1
;
batch_starts
=
{
0
,
1
};
}
else
{
outs
->
mutable_data
<
T
>
({
num_kept
,
out_dim
},
ctx
.
GetPlace
());
for
(
int64_t
i
=
0
;
i
<
batch_size
;
++
i
)
{
Tensor
ins_score
=
scores
->
Slice
(
i
,
i
+
1
);
ins_score
.
Resize
({
class_num
,
predict_dim
});
Tensor
ins_boxes
=
boxes
->
Slice
(
i
,
i
+
1
);
ins_boxes
.
Resize
({
predict_dim
,
box_dim
});
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
if
(
score_size
==
3
)
{
scores_slice
=
scores
->
Slice
(
i
,
i
+
1
);
boxes_slice
=
boxes
->
Slice
(
i
,
i
+
1
);
scores_slice
.
Resize
({
score_dims
[
1
],
score_dims
[
2
]});
boxes_slice
.
Resize
({
score_dims
[
2
],
box_dim
});
}
else
{
auto
boxes_lod
=
boxes
->
lod
().
back
();
scores_slice
=
scores
->
Slice
(
boxes_lod
[
i
],
boxes_lod
[
i
+
1
]);
boxes_slice
=
boxes
->
Slice
(
boxes_lod
[
i
],
boxes_lod
[
i
+
1
]);
}
int64_t
s
=
batch_starts
[
i
];
int64_t
e
=
batch_starts
[
i
+
1
];
if
(
e
>
s
)
{
Tensor
out
=
outs
->
Slice
(
s
,
e
);
MultiClassOutput
(
ins_score
,
ins_boxes
,
all_indices
[
i
],
&
out
);
MultiClassOutput
(
dev_ctx
,
scores_slice
,
boxes_slice
,
all_indices
[
i
],
score_dims
.
size
(),
&
out
);
}
}
}
...
...
@@ -346,17 +443,24 @@ class MultiClassNMSOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void
Make
()
override
{
AddInput
(
"BBoxes"
,
"(Tensor) A 3-D Tensor with shape "
"Two types of bboxes are supported:"
"1. (Tensor) A 3-D Tensor with shape "
"[N, M, 4 or 8 16 24 32] represents the "
"predicted locations of M bounding bboxes, N is the batch size. "
"Each bounding box has four coordinate values and the layout is "
"[xmin, ymin, xmax, ymax], when box size equals to 4."
);
"[xmin, ymin, xmax, ymax], when box size equals to 4."
"2. (LoDTensor) A 3-D Tensor with shape [M, C, 4]"
"M is the number of bounding boxes, C is the class number"
);
AddInput
(
"Scores"
,
"(Tensor) A 3-D Tensor with shape [N, C, M] represents the "
"Two types of scores are supported:"
"1. (Tensor) A 3-D Tensor with shape [N, C, M] represents the "
"predicted confidence predictions. N is the batch size, C is the "
"class number, M is number of bounding boxes. For each category "
"there are total M scores which corresponding M bounding boxes. "
" Please note, M is equal to the 1st dimension of BBoxes. "
);
" Please note, M is equal to the 2nd dimension of BBoxes. "
"2. (LoDTensor) A 2-D LoDTensor with shape [M, C]. "
"M is the number of bbox, C is the class number. In this case, "
"Input BBoxes should be the second case with shape [M, C, 4]."
);
AddAttr
<
int
>
(
"background_label"
,
"(int, defalut: 0) "
...
...
@@ -384,6 +488,10 @@ class MultiClassNMSOpMaker : public framework::OpProtoAndCheckerMaker {
"(int64_t) "
"Number of total bboxes to be kept per image after NMS "
"step. -1 means keeping all bboxes after NMS step."
);
AddAttr
<
bool
>
(
"normalized"
,
"(bool, default true) "
"Whether detections are normalized."
)
.
SetDefault
(
true
);
AddOutput
(
"Out"
,
"(LoDTensor) A 2-D LoDTensor with shape [No, 6] represents the "
"detections. Each row has 6 values: "
...
...
@@ -399,24 +507,21 @@ class MultiClassNMSOpMaker : public framework::OpProtoAndCheckerMaker {
AddComment
(
R"DOC(
This operator is to do multi-class non maximum suppression (NMS) on a batched
of boxes and scores.
In the NMS step, this operator greedily selects a subset of detection bounding
boxes that have high scores larger than score_threshold, if providing this
threshold, then selects the largest nms_top_k confidences scores if nms_top_k
is larger than -1. Then this operator pruns away boxes that have high IOU
(intersection over union) overlap with already selected boxes by adaptive
threshold NMS based on parameters of nms_threshold and nms_eta.
Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
per image if keep_top_k is larger than -1.
This operator support multi-class and batched inputs. It applying NMS
independently for each class. The outputs is a 2-D LoDTenosr, for each
image, the offsets in first dimension of LoDTensor are called LoD, the number
of offset is N + 1, where N is the batch size. If LoD[i + 1] - LoD[i] == 0,
means there is no detected bbox for this image. If there is no detected boxes
for all images, all the elements in LoD are
0, and the Out only contains one
value which is -1.
for all images, all the elements in LoD are
set to {1}, and the Out only
contains one
value which is -1.
)DOC"
);
}
};
...
...
paddle/fluid/pybind/inference_api.cc
浏览文件 @
1e0a7855
...
...
@@ -33,7 +33,6 @@ using paddle::PaddlePredictor;
using
paddle
::
NativeConfig
;
using
paddle
::
NativePaddlePredictor
;
using
paddle
::
AnalysisPredictor
;
using
paddle
::
contrib
::
AnalysisConfig
;
static
void
BindPaddleDType
(
py
::
module
*
m
);
static
void
BindPaddleBuf
(
py
::
module
*
m
);
...
...
python/paddle/fluid/framework.py
浏览文件 @
1e0a7855
...
...
@@ -445,11 +445,16 @@ class Variable(object):
@
property
def
_stop_gradient
(
self
):
return
self
.
_ivar
.
stop_gradient
if
_in_imperative_mode
():
return
self
.
_ivar
.
stop_gradient
else
:
return
self
.
stop_gradient
@
_stop_gradient
.
setter
def
_stop_gradient
(
self
,
s
):
self
.
_ivar
.
stop_gradient
=
s
if
_in_imperative_mode
():
self
.
_ivar
.
stop_gradient
=
s
self
.
stop_gradient
=
s
@
property
def
persistable
(
self
):
...
...
@@ -1310,6 +1315,9 @@ class Block(object):
outputs
=
kwargs
.
get
(
"outputs"
,
None
),
attrs
=
kwargs
.
get
(
"attrs"
,
None
))
self
.
ops
.
append
(
op
)
# TODO(minqiyang): add stop_gradient support in static mode too.
# currently, we only support stop_gradient in imperative mode.
self
.
_trace_op
(
op
,
kwargs
.
get
(
"stop_gradient"
,
False
))
return
op
...
...
python/paddle/fluid/imperative/layers.py
浏览文件 @
1e0a7855
...
...
@@ -15,6 +15,7 @@
import
contextlib
import
sys
import
numpy
as
np
import
collections
from
paddle.fluid
import
core
from
paddle.fluid
import
framework
...
...
@@ -31,7 +32,23 @@ class Layer(core.Layer):
self
.
_dtype
=
dtype
def
parameters
(
self
):
return
[]
params
=
[]
for
key
in
self
.
__dict__
.
keys
():
value
=
self
.
__dict__
[
key
]
if
isinstance
(
value
,
framework
.
Parameter
):
params
.
append
(
value
)
elif
isinstance
(
value
,
core
.
Layer
):
params
.
extend
(
value
.
parameters
())
elif
isinstance
(
value
,
collections
.
Container
):
if
len
(
value
)
==
0
:
continue
if
isinstance
(
value
[
0
],
framework
.
Parameter
):
params
.
extend
(
value
)
elif
isinstance
(
value
[
0
],
core
.
Layer
):
for
v
in
value
:
params
.
extend
(
v
.
parameters
())
return
params
def
clear_gradients
(
self
):
for
p
in
self
.
parameters
():
...
...
python/paddle/fluid/imperative/nn.py
浏览文件 @
1e0a7855
...
...
@@ -22,13 +22,7 @@ from . import layers
from
..framework
import
Variable
,
OpProtoHolder
from
..param_attr
import
ParamAttr
from
..initializer
import
Normal
,
Constant
__all__
=
[
'Conv2D'
,
'Pool2D'
,
'FC'
,
'BatchNorm'
,
]
__all__
=
[
'Conv2D'
,
'Pool2D'
,
'FC'
,
'BatchNorm'
,
'Embedding'
]
class
Conv2D
(
layers
.
Layer
):
...
...
@@ -332,21 +326,16 @@ class BatchNorm(layers.Layer):
shape
=
param_shape
,
dtype
=
self
.
_dtype
,
default_initializer
=
Constant
(
1.0
))
# TODO(minqiyang): change stop_gradient sign to trainable to align with static graph
# # setting stop_gradient=True to reduce computation
# if use_global_stats and self._helper.param_attr.learning_rate == 0.:
# self._scale.stop_gradient = True
if
use_global_stats
and
self
.
_helper
.
param_attr
.
learning_rate
==
0.
:
self
.
_scale
.
_stop_gradient
=
True
self
.
_bias
=
self
.
_helper
.
create_parameter
(
attr
=
self
.
_helper
.
bias_attr
,
shape
=
param_shape
,
dtype
=
self
.
_dtype
,
is_bias
=
True
)
# TODO(minqiyang): change stop_gradient sign to trainable to align with static graph
# # setting stop_gradient=True to reduce computation
# if use_global_stats and self._helper.bias_attr.learning_rate == 0.:
# self._bias.stop_gradient = True
if
use_global_stats
and
self
.
_helper
.
bias_attr
.
learning_rate
==
0.
:
self
.
_bias
.
_stop_gradient
=
True
self
.
_mean
=
self
.
_helper
.
create_parameter
(
attr
=
ParamAttr
(
...
...
@@ -356,7 +345,7 @@ class BatchNorm(layers.Layer):
do_model_average
=
do_model_average_for_mean_and_var
),
shape
=
param_shape
,
dtype
=
self
.
_dtype
)
self
.
_mean
.
stop_gradient
=
True
self
.
_mean
.
_
stop_gradient
=
True
self
.
_variance
=
self
.
_helper
.
create_parameter
(
attr
=
ParamAttr
(
...
...
@@ -366,7 +355,7 @@ class BatchNorm(layers.Layer):
do_model_average
=
do_model_average_for_mean_and_var
),
shape
=
param_shape
,
dtype
=
self
.
_dtype
)
self
.
_variance
.
stop_gradient
=
True
self
.
_variance
.
_
stop_gradient
=
True
self
.
_in_place
=
in_place
self
.
_momentum
=
momentum
...
...
@@ -419,3 +408,91 @@ class BatchNorm(layers.Layer):
# Currently, we don't support inplace in imperative mode
return
self
.
_helper
.
append_activation
(
batch_norm_out
)
class
Embedding
(
layers
.
Layer
):
"""
**Embedding Layer**
This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
a lookup table. The result of this lookup is the embedding of each ID in the
:attr:`input`.
All the input variables are passed in as local variables to the LayerHelper
constructor.
Args:
size(tuple|list): The shape of the look up table parameter. It should
have two elements which indicate the size of the dictionary of
embeddings and the size of each embedding vector respectively.
is_sparse(bool): The flag indicating whether to use sparse update.
is_distributed(bool): Whether to run lookup table from remote parameter server.
padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
Otherwise the given :attr:`padding_idx` indicates padding the output
with zeros whenever lookup encounters it in :attr:`input`. If
:math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
:math:`size[0] + dim`.
param_attr(ParamAttr): Parameters for this layer
dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Returns:
Variable: The tensor variable storing the embeddings of the
\
supplied inputs.
Examples:
.. code-block:: python
dict_size = len(dataset.ids)
input = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
embedding = fluid.imperative.Embedding(size=[dict_size, 16])
fc = embedding(input)
"""
def
__init__
(
self
,
size
,
is_sparse
=
False
,
is_distributed
=
False
,
padding_idx
=
None
,
param_attr
=
None
,
dtype
=
'float32'
):
super
(
Embedding
,
self
).
__init__
()
self
.
_size
=
size
self
.
_is_sparse
=
is_sparse
self
.
_is_distributed
=
is_distributed
self
.
_padding_idx
=
-
1
if
padding_idx
is
None
else
padding_idx
if
padding_idx
>=
0
else
(
size
[
0
]
+
padding_idx
)
self
.
_param_attr
=
param_attr
self
.
_dtype
=
dtype
self
.
_remote_prefetch
=
self
.
_is_sparse
and
(
not
self
.
_is_distributed
)
if
self
.
_remote_prefetch
:
assert
self
.
_is_sparse
is
True
and
self
.
_is_distributed
is
False
from
..layer_helper
import
LayerHelper
self
.
_helper
=
LayerHelper
(
'embedding'
,
param_attr
=
param_attr
)
self
.
_w
=
self
.
_helper
.
create_parameter
(
attr
=
self
.
_param_attr
,
shape
=
self
.
_size
,
dtype
=
self
.
_dtype
,
is_bias
=
False
)
def
parameters
(
self
):
return
[
self
.
_w
]
def
forward
(
self
,
input
):
out
=
self
.
_helper
.
create_variable_for_type_inference
(
self
.
_dtype
)
self
.
_helper
.
append_op
(
type
=
'lookup_table'
,
inputs
=
{
'Ids'
:
input
,
'W'
:
self
.
_w
},
outputs
=
{
'Out'
:
out
},
attrs
=
{
'is_sparse'
:
self
.
_is_sparse
,
'is_distributed'
:
self
.
_is_distributed
,
'remote_prefetch'
:
self
.
_remote_prefetch
,
'padding_idx'
:
self
.
_padding_idx
})
return
out
python/paddle/fluid/layer_helper.py
浏览文件 @
1e0a7855
...
...
@@ -300,6 +300,17 @@ class LayerHelper(object):
attr
.
name
=
unique_name
.
generate
(
"."
.
join
([
self
.
name
,
suffix
]))
if
default_initializer
is
None
and
attr
.
initializer
is
None
:
if
isinstance
(
dtype
,
core
.
VarDesc
.
VarType
):
if
dtype
!=
core
.
VarDesc
.
VarType
.
FP32
and
\
dtype
!=
core
.
VarDesc
.
VarType
.
FP64
:
raise
TypeError
(
"Can not create parameter with default initializer when dtype is not float type. Set default_initializer to fit the parameter dtype!"
)
else
:
if
not
(
dtype
.
startswith
(
"float"
)
or
dtype
==
"double"
):
raise
TypeError
(
"Can not create parameter with default initializer when dtype is not float type. Set default_initializer to fit the parameter dtype!"
)
if
is_bias
:
attr
.
_set_default_bias_initializer
()
else
:
...
...
python/paddle/fluid/layers/detection.py
浏览文件 @
1e0a7855
...
...
@@ -49,6 +49,7 @@ __all__ = [
'box_coder'
,
'polygon_box_transform'
,
'yolov3_loss'
,
'multiclass_nms'
,
]
...
...
@@ -262,8 +263,10 @@ def detection_output(loc,
number is N + 1, N is the batch size. The i-th image has
`LoD[i + 1] - LoD[i]` detected results, if it is 0, the i-th image
has no detected results. If all images have not detected results,
all the elements in LoD are 0
, and output tensor only contains one
LoD will be set to {1}
, and output tensor only contains one
value, which is -1.
(After version 1.3, when no boxes detected, the lod is changed
from {0} to {1}.)
Examples:
.. code-block:: python
...
...
@@ -1960,3 +1963,119 @@ def generate_proposals(scores,
rpn_roi_probs
.
stop_gradient
=
True
return
rpn_rois
,
rpn_roi_probs
def
multiclass_nms
(
bboxes
,
scores
,
score_threshold
,
nms_top_k
,
keep_top_k
,
nms_threshold
=
0.3
,
normalized
=
True
,
nms_eta
=
1.
,
background_label
=
0
,
name
=
None
):
"""
**Multiclass NMS**
This operator is to do multi-class non maximum suppression (NMS) on
boxes and scores.
In the NMS step, this operator greedily selects a subset of detection bounding
boxes that have high scores larger than score_threshold, if providing this
threshold, then selects the largest nms_top_k confidences scores if nms_top_k
is larger than -1. Then this operator pruns away boxes that have high IOU
(intersection over union) overlap with already selected boxes by adaptive
threshold NMS based on parameters of nms_threshold and nms_eta.
Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
per image if keep_top_k is larger than -1.
Args:
bboxes (Variable): Two types of bboxes are supported:
1. (Tensor) A 3-D Tensor with shape
[N, M, 4 or 8 16 24 32] represents the
predicted locations of M bounding bboxes,
N is the batch size. Each bounding box has four
coordinate values and the layout is
[xmin, ymin, xmax, ymax], when box size equals to 4.
2. (LoDTensor) A 3-D Tensor with shape [M, C, 4]
M is the number of bounding boxes, C is the
class number
scores (Variable): Two types of scores are supported:
1. (Tensor) A 3-D Tensor with shape [N, C, M]
represents the predicted confidence predictions.
N is the batch size, C is the class number, M is
number of bounding boxes. For each category there
are total M scores which corresponding M bounding
boxes. Please note, M is equal to the 2nd dimension
of BBoxes.
2. (LoDTensor) A 2-D LoDTensor with shape [M, C].
M is the number of bbox, C is the class number.
In this case, input BBoxes should be the second
case with shape [M, C, 4].
background_label (int): The index of background label, the background
label will be ignored. If set to -1, then all
categories will be considered. Default: 0
score_threshold (float): Threshold to filter out bounding boxes with
low confidence score. If not provided,
consider all boxes.
nms_top_k (int): Maximum number of detections to be kept according to
the confidences aftern the filtering detections based
on score_threshold.
nms_threshold (float): The threshold to be used in NMS. Default: 0.3
nms_eta (float): The threshold to be used in NMS. Default: 1.0
keep_top_k (int): Number of total bboxes to be kept per image after NMS
step. -1 means keeping all bboxes after NMS step.
normalized (bool): Whether detections are normalized. Default: True
name(str): Name of the multiclass nms op. Default: None.
Returns:
Out: A 2-D LoDTensor with shape [No, 6] represents the detections.
Each row has 6 values: [label, confidence, xmin, ymin, xmax, ymax]
or A 2-D LoDTensor with shape [No, 10] represents the detections.
Each row has 10 values:
[label, confidence, x1, y1, x2, y2, x3, y3, x4, y4]. No is the
total number of detections. If there is no detected boxes for all
images, lod will be set to {1} and Out only contains one value
which is -1.
(After version 1.3, when no boxes detected, the lod is changed
from {0} to {1})
Examples:
.. code-block:: python
boxes = fluid.layers.data(name='bboxes', shape=[81, 4],
dtype='float32', lod_level=1)
scores = fluid.layers.data(name='scores', shape=[81],
dtype='float32', lod_level=1)
out = fluid.layers.multiclass_nms(bboxes=boxes,
scores=scores,
background_label=0,
score_threshold=0.5,
nms_top_k=400,
nms_threshold=0.3,
keep_top_k=200,
normalized=False)
"""
helper
=
LayerHelper
(
'multiclass_nms'
,
**
locals
())
output
=
helper
.
create_variable_for_type_inference
(
dtype
=
bboxes
.
dtype
)
helper
.
append_op
(
type
=
"multiclass_nms"
,
inputs
=
{
'BBoxes'
:
bboxes
,
'Scores'
:
scores
},
attrs
=
{
'background_label'
:
background_label
,
'score_threshold'
:
score_threshold
,
'nms_top_k'
:
nms_top_k
,
'nms_threshold'
:
nms_threshold
,
'nms_eta'
:
nms_eta
,
'keep_top_k'
:
keep_top_k
,
'nms_eta'
:
nms_eta
,
'normalized'
:
normalized
},
outputs
=
{
'Out'
:
output
})
output
.
stop_gradient
=
True
return
output
python/paddle/fluid/optimizer.py
浏览文件 @
1e0a7855
...
...
@@ -406,7 +406,7 @@ class Optimizer(object):
params_grads
=
[]
for
param
in
parameters
:
if
param
.
stop_gradient
:
if
param
.
stop_gradient
or
not
param
.
trainable
:
continue
# create gradient variable
grad_var
=
Variable
(
...
...
python/paddle/fluid/tests/test_detection.py
浏览文件 @
1e0a7855
...
...
@@ -469,5 +469,16 @@ class TestYoloDetection(unittest.TestCase):
self
.
assertIsNotNone
(
loss
)
class
TestMulticlassNMS
(
unittest
.
TestCase
):
def
test_multiclass_nms
(
self
):
program
=
Program
()
with
program_guard
(
program
):
bboxes
=
layers
.
data
(
name
=
'bboxes'
,
shape
=
[
-
1
,
10
,
4
],
dtype
=
'float32'
)
scores
=
layers
.
data
(
name
=
'scores'
,
shape
=
[
-
1
,
10
],
dtype
=
'float32'
)
output
=
layers
.
multiclass_nms
(
bboxes
,
scores
,
0.3
,
400
,
200
,
0.7
)
self
.
assertIsNotNone
(
output
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/CMakeLists.txt
浏览文件 @
1e0a7855
...
...
@@ -85,6 +85,7 @@ list(REMOVE_ITEM TEST_OPS test_image_classification_resnet)
list
(
REMOVE_ITEM TEST_OPS test_bilinear_interp_op
)
list
(
REMOVE_ITEM TEST_OPS test_nearest_interp_op
)
list
(
REMOVE_ITEM TEST_OPS test_imperative_resnet
)
list
(
REMOVE_ITEM TEST_OPS test_imperative_optimizer
)
foreach
(
TEST_OP
${
TEST_OPS
}
)
py_test_modules
(
${
TEST_OP
}
MODULES
${
TEST_OP
}
)
endforeach
(
TEST_OP
)
...
...
@@ -94,6 +95,8 @@ py_test_modules(test_bilinear_interp_op MODULES test_bilinear_interp_op SERIAL)
py_test_modules
(
test_nearest_interp_op MODULES test_nearest_interp_op SERIAL
)
py_test_modules
(
test_imperative_resnet MODULES test_imperative_resnet ENVS
FLAGS_cudnn_deterministic=1
)
py_test_modules
(
test_imperative_optimizer MODULES test_imperative_optimizer ENVS
FLAGS_cudnn_deterministic=1
)
if
(
WITH_DISTRIBUTE
)
py_test_modules
(
test_dist_train MODULES test_dist_train SERIAL
)
set_tests_properties
(
test_listen_and_serv_op PROPERTIES TIMEOUT 20
)
...
...
python/paddle/fluid/tests/unittests/test_imperative.py
浏览文件 @
1e0a7855
...
...
@@ -66,6 +66,128 @@ class MLP(fluid.imperative.Layer):
return
x
class
SimpleRNNCell
(
fluid
.
imperative
.
Layer
):
def
__init__
(
self
,
step_input_size
,
hidden_size
,
output_size
,
param_attr
):
super
(
SimpleRNNCell
,
self
).
__init__
()
self
.
step_input_size
=
step_input_size
self
.
hidden_size
=
hidden_size
self
.
output_size
=
output_size
self
.
_dype
=
core
.
VarDesc
.
VarType
.
FP32
from
paddle.fluid.layer_helper
import
LayerHelper
self
.
_helper
=
LayerHelper
(
'SimpleRNNCell'
,
act
=
"tanh"
,
param_attr
=
param_attr
)
def
_build_once
(
self
,
inputs
,
pre_hidden
):
i2h_param_shape
=
[
self
.
step_input_size
,
self
.
hidden_size
]
h2h_param_shape
=
[
self
.
hidden_size
,
self
.
hidden_size
]
h2o_param_shape
=
[
self
.
output_size
,
self
.
hidden_size
]
self
.
_i2h_w
=
self
.
_helper
.
create_parameter
(
attr
=
self
.
_helper
.
param_attr
,
shape
=
i2h_param_shape
,
dtype
=
self
.
_dtype
,
is_bias
=
False
)
self
.
_h2h_w
=
self
.
_helper
.
create_parameter
(
attr
=
self
.
_helper
.
param_attr
,
shape
=
h2h_param_shape
,
dtype
=
self
.
_dtype
,
is_bias
=
False
)
self
.
_h2o_w
=
self
.
_helper
.
create_parameter
(
attr
=
self
.
_helper
.
param_attr
,
shape
=
h2o_param_shape
,
dtype
=
self
.
_dtype
,
is_bias
=
False
)
def
forward
(
self
,
input
,
pre_hidden
):
tmp_i2h
=
self
.
_helper
.
create_variable_for_type_inference
(
self
.
_dtype
)
tmp_h2h
=
self
.
_helper
.
create_variable_for_type_inference
(
self
.
_dtype
)
hidden
=
self
.
_helper
.
create_variable_for_type_inference
(
self
.
_dype
)
out
=
self
.
_helper
.
create_variable_for_type_inference
(
self
.
_dype
)
softmax_out
=
self
.
_helper
.
create_variable_for_type_inference
(
self
.
_dtype
)
reduce_out
=
self
.
_helper
.
create_variable_for_type_inference
(
self
.
_dtype
)
self
.
_helper
.
append_op
(
type
=
"mul"
,
inputs
=
{
"X"
:
input
,
"Y"
:
self
.
_i2h_w
},
outputs
=
{
"Out"
:
tmp_i2h
},
attrs
=
{
"x_num_col_dims"
:
1
,
"y_num_col_dims"
:
1
})
self
.
_helper
.
append_op
(
type
=
"mul"
,
inputs
=
{
"X"
:
pre_hidden
,
"Y"
:
self
.
_h2h_w
},
outputs
=
{
"Out"
:
tmp_h2h
},
attrs
=
{
"x_num_col_dims"
:
1
,
"y_num_col_dims"
:
1
})
self
.
_helper
.
append_op
(
type
=
"elementwise_add"
,
inputs
=
{
'X'
:
tmp_h2h
,
'Y'
:
tmp_i2h
},
outputs
=
{
'Out'
:
hidden
},
attrs
=
{
'axis'
:
-
1
,
'use_mkldnn'
:
False
})
hidden
=
self
.
_helper
.
append_activation
(
hidden
)
self
.
_helper
.
append_op
(
type
=
"mul"
,
inputs
=
{
"X"
:
hidden
,
"Y"
:
self
.
_h2o_w
},
outputs
=
{
"Out"
:
out
},
attrs
=
{
"x_num_col_dims"
:
1
,
"y_num_col_dims"
:
1
})
self
.
_helper
.
append_op
(
type
=
"softmax"
,
inputs
=
{
"X"
:
out
},
outputs
=
{
"Out"
:
softmax_out
},
attrs
=
{
"use_cudnn"
:
False
})
self
.
_helper
.
append_op
(
type
=
'reduce_sum'
,
inputs
=
{
'X'
:
softmax_out
},
outputs
=
{
'Out'
:
reduce_out
},
attrs
=
{
'dim'
:
None
,
'keep_dim'
:
False
,
'reduce_all'
:
True
})
return
reduce_out
,
hidden
class
SimpleRNN
(
fluid
.
imperative
.
Layer
):
def
__init__
(
self
):
super
(
SimpleRNN
,
self
).
__init__
()
self
.
seq_len
=
4
self
.
_cell
=
SimpleRNNCell
(
3
,
3
,
3
,
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.1
)))
def
forward
(
self
,
inputs
):
outs
=
list
()
pre_hiddens
=
list
()
init_hidden
=
fluid
.
layers
.
tensor
.
create_parameter
(
attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.1
)),
shape
=
[
1
,
3
],
dtype
=
'float32'
,
is_bias
=
False
)
pre_hidden
=
init_hidden
for
i
in
range
(
self
.
seq_len
):
input
=
fluid
.
layers
.
slice
(
inputs
,
axes
=
[
1
],
starts
=
[
i
],
ends
=
[
i
+
1
])
input
=
fluid
.
layers
.
reshape
(
input
,
shape
=
[
1
,
3
])
out_softmax
,
pre_hidden
=
self
.
_cell
(
input
,
pre_hidden
)
outs
.
append
(
out_softmax
)
return
outs
,
pre_hiddens
class
TestImperative
(
unittest
.
TestCase
):
def
test_sum_op
(
self
):
x
=
np
.
ones
([
2
,
2
],
np
.
float32
)
...
...
@@ -211,6 +333,41 @@ class TestImperative(unittest.TestCase):
self
.
assertTrue
(
np
.
allclose
(
dy_out
,
static_out
))
self
.
assertTrue
(
np
.
allclose
(
dy_grad
,
static_grad
))
def
test_rnn
(
self
):
np_inp
=
np
.
array
([[
1.0
,
2.0
,
3.0
],
[
4.0
,
5.0
,
6.0
],
[
7.0
,
8.0
,
9.0
],
[
10.0
,
11.0
,
12.0
]])
np_inp
=
np_inp
.
reshape
((
1
,
4
,
3
))
np_inp
=
np_inp
.
astype
(
np
.
float32
)
with
fluid
.
imperative
.
guard
():
var_inp
=
fluid
.
imperative
.
base
.
to_variable
(
np_inp
)
var_inp
=
fluid
.
layers
.
reshape
(
var_inp
,
shape
=
[
1
,
4
,
3
])
simple_rnn
=
SimpleRNN
()
outs
,
pre_hiddens
=
simple_rnn
.
forward
(
var_inp
)
dy_out
=
outs
[
3
].
_numpy
()
outs
[
3
].
_backward
()
dy_grad_h2o
=
simple_rnn
.
_cell
.
_h2o_w
.
_gradient
()
dy_grad_h2h
=
simple_rnn
.
_cell
.
_h2h_w
.
_gradient
()
dy_grad_i2h
=
simple_rnn
.
_cell
.
_i2h_w
.
_gradient
()
with
new_program_scope
():
inp
=
fluid
.
layers
.
data
(
name
=
"inp"
,
shape
=
[
1
,
4
,
3
],
append_batch_size
=
False
)
simple_rnn
=
SimpleRNN
()
outs
,
pre_hiddens
=
simple_rnn
(
inp
)
param_grads
=
fluid
.
backward
.
append_backward
(
outs
[
3
])
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
())
exe
.
run
(
fluid
.
default_startup_program
())
static_out
,
static_grad_h2o
,
static_grad_h2h
,
static_grad_i2h
=
exe
.
run
(
feed
=
{
inp
.
name
:
np_inp
},
fetch_list
=
[
outs
[
3
].
name
,
param_grads
[
0
][
1
].
name
,
param_grads
[
1
][
1
].
name
,
param_grads
[
2
][
1
].
name
])
self
.
assertTrue
(
np
.
allclose
(
dy_out
,
static_out
))
self
.
assertTrue
(
np
.
allclose
(
dy_grad_h2o
,
static_grad_h2o
))
self
.
assertTrue
(
np
.
allclose
(
dy_grad_h2h
,
static_grad_h2h
))
self
.
assertTrue
(
np
.
allclose
(
dy_grad_i2h
,
static_grad_i2h
))
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_imperative_optimizer.py
浏览文件 @
1e0a7855
...
...
@@ -46,7 +46,6 @@ class TestImperativeOptimizerBase(unittest.TestCase):
def
test_optimizer_float32
(
self
):
seed
=
90
with
fluid
.
imperative
.
guard
():
fluid
.
default_startup_program
().
random_seed
=
seed
fluid
.
default_main_program
().
random_seed
=
seed
...
...
@@ -61,12 +60,12 @@ class TestImperativeOptimizerBase(unittest.TestCase):
if
batch_id
>=
self
.
batch_num
:
break
x_data
=
np
.
array
(
dy_
x_data
=
np
.
array
(
[
x
[
0
].
reshape
(
1
,
28
,
28
)
for
x
in
data
]).
astype
(
'float32'
)
y_data
=
np
.
array
([
x
[
1
]
for
x
in
data
]).
astype
(
'int64'
).
reshape
(
128
,
1
)
img
=
to_variable
(
x_data
)
img
=
to_variable
(
dy_
x_data
)
label
=
to_variable
(
y_data
)
label
.
_stop_gradient
=
True
...
...
@@ -81,7 +80,7 @@ class TestImperativeOptimizerBase(unittest.TestCase):
avg_loss
.
_backward
()
self
.
optimizer
.
minimize
(
avg_loss
)
mlp
.
clear_gradients
()
dy_param_value
=
{}
for
param
in
fluid
.
default_main_program
().
global_block
(
).
all_parameters
():
...
...
@@ -123,7 +122,7 @@ class TestImperativeOptimizerBase(unittest.TestCase):
if
batch_id
>=
self
.
batch_num
:
break
x_data
=
np
.
array
(
static_
x_data
=
np
.
array
(
[
x
[
0
].
reshape
(
1
,
28
,
28
)
for
x
in
data
]).
astype
(
'float32'
)
y_data
=
np
.
array
([
x
[
1
]
for
x
in
data
]).
astype
(
'int64'
).
reshape
(
[
128
,
1
])
...
...
@@ -131,7 +130,7 @@ class TestImperativeOptimizerBase(unittest.TestCase):
fetch_list
=
[
avg_loss
.
name
]
fetch_list
.
extend
(
static_param_name_list
)
out
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
"pixel"
:
x_data
,
feed
=
{
"pixel"
:
static_
x_data
,
"label"
:
y_data
},
fetch_list
=
fetch_list
)
...
...
@@ -141,11 +140,12 @@ class TestImperativeOptimizerBase(unittest.TestCase):
static_param_value
[
static_param_name_list
[
i
-
1
]]
=
out
[
i
]
for
key
,
value
in
six
.
iteritems
(
static_param_init_value
):
self
.
assertTrue
(
np
.
allclose
(
value
.
all
(),
dy_param_init_value
[
key
].
all
()))
self
.
assertTrue
(
np
.
allclose
(
static_out
.
all
(),
dy_out
.
all
()))
self
.
assertTrue
(
np
.
allclose
(
value
,
dy_param_init_value
[
key
]))
self
.
assertTrue
(
np
.
allclose
(
static_out
,
dy_out
))
for
key
,
value
in
six
.
iteritems
(
static_param_value
):
self
.
assertTrue
(
np
.
allclose
(
value
.
all
(),
dy_param_value
[
key
].
all
()
))
self
.
assertTrue
(
np
.
allclose
(
value
,
dy_param_value
[
key
]
))
if
__name__
==
'__main__'
:
...
...
python/paddle/fluid/tests/unittests/test_imperative_ptb_rnn.py
0 → 100644
浏览文件 @
1e0a7855
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
paddle.fluid
as
fluid
from
paddle.fluid.imperative.nn
import
Embedding
import
paddle.fluid.framework
as
framework
from
paddle.fluid.optimizer
import
SGDOptimizer
from
paddle.fluid.imperative.base
import
to_variable
from
test_imperative_base
import
new_program_scope
import
numpy
as
np
import
six
from
paddle.fluid.backward
import
append_backward
class
SimpleLSTMRNN
(
fluid
.
imperative
.
Layer
):
def
__init__
(
self
,
hidden_size
,
num_steps
,
num_layers
=
2
,
init_scale
=
0.1
,
dropout
=
None
):
super
(
SimpleLSTMRNN
,
self
).
__init__
()
self
.
_hidden_size
=
hidden_size
self
.
_num_layers
=
num_layers
self
.
_init_scale
=
init_scale
self
.
_dropout
=
dropout
self
.
_input
=
None
self
.
_num_steps
=
num_steps
def
_build_once
(
self
,
input_embedding
,
init_hidden
=
None
,
init_cell
=
None
):
self
.
weight_1_arr
=
[]
self
.
weight_2_arr
=
[]
self
.
bias_arr
=
[]
self
.
hidden_array
=
[]
self
.
cell_array
=
[]
self
.
mask_array
=
[]
for
i
in
range
(
self
.
_num_layers
):
weight_1
=
fluid
.
layers
.
create_parameter
(
shape
=
[
self
.
_hidden_size
*
2
,
self
.
_hidden_size
*
4
],
dtype
=
"float32"
,
name
=
"fc_weight1_"
+
str
(
i
),
default_initializer
=
fluid
.
initializer
.
UniformInitializer
(
low
=-
self
.
_init_scale
,
high
=
self
.
_init_scale
))
self
.
weight_1_arr
.
append
(
weight_1
)
bias_1
=
fluid
.
layers
.
create_parameter
(
[
self
.
_hidden_size
*
4
],
dtype
=
"float32"
,
name
=
"fc_bias1_"
+
str
(
i
),
default_initializer
=
fluid
.
initializer
.
Constant
(
0.0
))
self
.
bias_arr
.
append
(
bias_1
)
pre_hidden
=
fluid
.
layers
.
slice
(
init_hidden
,
axes
=
[
0
],
starts
=
[
i
],
ends
=
[
i
+
1
])
pre_cell
=
fluid
.
layers
.
slice
(
init_cell
,
axes
=
[
0
],
starts
=
[
i
],
ends
=
[
i
+
1
])
pre_hidden
=
fluid
.
layers
.
reshape
(
pre_hidden
,
shape
=
[
-
1
,
self
.
_hidden_size
])
pre_cell
=
fluid
.
layers
.
reshape
(
pre_cell
,
shape
=
[
-
1
,
self
.
_hidden_size
])
self
.
hidden_array
.
append
(
pre_hidden
)
self
.
cell_array
.
append
(
pre_cell
)
def
parameters
(
self
):
parameters
=
list
()
for
param
in
self
.
weight_1_arr
:
parameters
.
append
(
param
)
for
param
in
self
.
weight_2_arr
:
parameters
.
append
(
param
)
for
bias
in
self
.
bias_arr
:
parameters
.
append
(
bias
)
return
parameters
def
forward
(
self
,
input_embedding
,
init_hidden
=
None
,
init_cell
=
None
):
res
=
[]
for
index
in
range
(
self
.
_num_steps
):
self
.
_input
=
fluid
.
layers
.
slice
(
input_embedding
,
axes
=
[
1
],
starts
=
[
index
],
ends
=
[
index
+
1
])
self
.
_input
=
fluid
.
layers
.
reshape
(
self
.
_input
,
shape
=
[
-
1
,
self
.
_hidden_size
])
for
k
in
range
(
self
.
_num_layers
):
pre_hidden
=
self
.
hidden_array
[
k
]
pre_cell
=
self
.
cell_array
[
k
]
weight_1
=
self
.
weight_1_arr
[
k
]
bias
=
self
.
bias_arr
[
k
]
nn
=
fluid
.
layers
.
concat
([
self
.
_input
,
pre_hidden
],
1
)
gate_input
=
fluid
.
layers
.
matmul
(
x
=
nn
,
y
=
weight_1
)
gate_input
=
fluid
.
layers
.
elementwise_add
(
gate_input
,
bias
)
i
,
j
,
f
,
o
=
fluid
.
layers
.
split
(
gate_input
,
num_or_sections
=
4
,
dim
=-
1
)
c
=
pre_cell
*
fluid
.
layers
.
sigmoid
(
f
)
+
fluid
.
layers
.
sigmoid
(
i
)
*
fluid
.
layers
.
tanh
(
j
)
m
=
fluid
.
layers
.
tanh
(
c
)
*
fluid
.
layers
.
sigmoid
(
o
)
self
.
hidden_array
[
k
]
=
m
self
.
cell_array
[
k
]
=
c
self
.
_input
=
m
if
self
.
_dropout
is
not
None
and
self
.
_dropout
>
0.0
:
self
.
_input
=
fluid
.
layers
.
dropout
(
self
.
_input
,
dropout_prob
=
self
.
_dropout
,
dropout_implementation
=
'upscale_in_train'
)
res
.
append
(
fluid
.
layers
.
reshape
(
self
.
_input
,
shape
=
[
1
,
-
1
,
self
.
_hidden_size
]))
real_res
=
fluid
.
layers
.
concat
(
res
,
0
)
real_res
=
fluid
.
layers
.
transpose
(
x
=
real_res
,
perm
=
[
1
,
0
,
2
])
last_hidden
=
fluid
.
layers
.
concat
(
self
.
hidden_array
,
1
)
last_hidden
=
fluid
.
layers
.
reshape
(
last_hidden
,
shape
=
[
-
1
,
self
.
_num_layers
,
self
.
_hidden_size
])
last_hidden
=
fluid
.
layers
.
transpose
(
x
=
last_hidden
,
perm
=
[
1
,
0
,
2
])
last_cell
=
fluid
.
layers
.
concat
(
self
.
cell_array
,
1
)
last_cell
=
fluid
.
layers
.
reshape
(
last_cell
,
shape
=
[
-
1
,
self
.
_num_layers
,
self
.
_hidden_size
])
last_cell
=
fluid
.
layers
.
transpose
(
x
=
last_cell
,
perm
=
[
1
,
0
,
2
])
return
real_res
,
last_hidden
,
last_cell
class
PtbModel
(
fluid
.
imperative
.
Layer
):
def
__init__
(
self
,
hidden_size
,
vocab_size
,
num_layers
=
2
,
num_steps
=
20
,
init_scale
=
0.1
,
dropout
=
None
):
super
(
PtbModel
,
self
).
__init__
()
self
.
hidden_size
=
hidden_size
self
.
vocab_size
=
vocab_size
self
.
init_scale
=
init_scale
self
.
num_layers
=
num_layers
self
.
num_steps
=
num_steps
self
.
dropout
=
dropout
self
.
simple_lstm_rnn
=
SimpleLSTMRNN
(
hidden_size
,
num_steps
,
num_layers
=
num_layers
,
init_scale
=
init_scale
,
dropout
=
dropout
)
self
.
embedding
=
Embedding
(
size
=
[
vocab_size
,
hidden_size
],
dtype
=
'float32'
,
is_sparse
=
False
,
param_attr
=
fluid
.
ParamAttr
(
name
=
'embedding_para'
,
initializer
=
fluid
.
initializer
.
UniformInitializer
(
low
=-
init_scale
,
high
=
init_scale
)))
self
.
softmax_weight
=
fluid
.
layers
.
create_parameter
(
[
self
.
hidden_size
,
self
.
vocab_size
],
dtype
=
"float32"
,
name
=
"softmax_weight"
,
default_initializer
=
fluid
.
initializer
.
UniformInitializer
(
low
=-
self
.
init_scale
,
high
=
self
.
init_scale
))
self
.
softmax_bias
=
fluid
.
layers
.
create_parameter
(
[
self
.
vocab_size
],
dtype
=
"float32"
,
name
=
'softmax_bias'
,
default_initializer
=
fluid
.
initializer
.
UniformInitializer
(
low
=-
self
.
init_scale
,
high
=
self
.
init_scale
))
def
_build_once
(
self
,
input
,
label
,
init_hidden
,
init_cell
):
pass
def
parameters
(
self
):
parameters
=
self
.
simple_lstm_rnn
.
parameters
()
+
[
self
.
softmax_weight
,
self
.
softmax_bias
]
+
self
.
embedding
.
parameters
()
return
parameters
def
forward
(
self
,
input
,
label
,
init_hidden
,
init_cell
):
init_h
=
fluid
.
layers
.
reshape
(
init_hidden
,
shape
=
[
self
.
num_layers
,
-
1
,
self
.
hidden_size
])
init_c
=
fluid
.
layers
.
reshape
(
init_cell
,
shape
=
[
self
.
num_layers
,
-
1
,
self
.
hidden_size
])
x_emb
=
self
.
embedding
(
input
)
x_emb
=
fluid
.
layers
.
reshape
(
x_emb
,
shape
=
[
-
1
,
self
.
num_steps
,
self
.
hidden_size
])
if
self
.
dropout
is
not
None
and
self
.
dropout
>
0.0
:
x_emb
=
fluid
.
layers
.
dropout
(
x_emb
,
dropout_prob
=
self
.
drop_out
,
dropout_implementation
=
'upscale_in_train'
)
rnn_out
,
last_hidden
,
last_cell
=
self
.
simple_lstm_rnn
(
x_emb
,
init_h
,
init_c
)
rnn_out
=
fluid
.
layers
.
reshape
(
rnn_out
,
shape
=
[
-
1
,
self
.
num_steps
,
self
.
hidden_size
])
projection
=
fluid
.
layers
.
matmul
(
rnn_out
,
self
.
softmax_weight
)
projection
=
fluid
.
layers
.
elementwise_add
(
projection
,
self
.
softmax_bias
)
projection
=
fluid
.
layers
.
reshape
(
projection
,
shape
=
[
-
1
,
self
.
vocab_size
])
projection
=
fluid
.
layers
.
reshape
(
projection
,
shape
=
[
-
1
,
self
.
vocab_size
])
loss
=
fluid
.
layers
.
softmax_with_cross_entropy
(
logits
=
projection
,
label
=
label
,
soft_label
=
False
)
loss
=
fluid
.
layers
.
reshape
(
loss
,
shape
=
[
-
1
,
self
.
num_steps
])
loss
=
fluid
.
layers
.
reduce_mean
(
loss
,
dim
=
[
0
])
loss
=
fluid
.
layers
.
reduce_sum
(
loss
)
loss
.
permissions
=
True
return
loss
,
last_hidden
,
last_cell
class
TestImperativePtbRnn
(
unittest
.
TestCase
):
def
test_ptb_rnn_cpu_float32
(
self
):
seed
=
90
hidden_size
=
10
vocab_size
=
1000
num_layers
=
1
num_steps
=
3
init_scale
=
0.1
batch_size
=
4
with
fluid
.
imperative
.
guard
():
fluid
.
default_startup_program
().
random_seed
=
seed
fluid
.
default_main_program
().
random_seed
=
seed
# TODO: marsyang1993 Change seed to
ptb_model
=
PtbModel
(
hidden_size
=
hidden_size
,
vocab_size
=
vocab_size
,
num_layers
=
num_layers
,
num_steps
=
num_steps
,
init_scale
=
init_scale
)
sgd
=
SGDOptimizer
(
learning_rate
=
1e-3
)
dy_param_updated
=
dict
()
dy_param_init
=
dict
()
dy_loss
=
None
last_hidden
=
None
last_cell
=
None
for
i
in
range
(
2
):
x_data
=
np
.
arange
(
12
).
reshape
(
4
,
3
).
astype
(
'int64'
)
y_data
=
np
.
arange
(
1
,
13
).
reshape
(
4
,
3
).
astype
(
'int64'
)
x_data
=
x_data
.
reshape
((
-
1
,
num_steps
,
1
))
y_data
=
y_data
.
reshape
((
-
1
,
1
))
init_hidden_data
=
np
.
zeros
(
(
num_layers
,
batch_size
,
hidden_size
),
dtype
=
'float32'
)
init_cell_data
=
np
.
zeros
(
(
num_layers
,
batch_size
,
hidden_size
),
dtype
=
'float32'
)
x
=
to_variable
(
x_data
)
y
=
to_variable
(
y_data
)
init_hidden
=
to_variable
(
init_hidden_data
)
init_cell
=
to_variable
(
init_cell_data
)
dy_loss
,
last_hidden
,
last_cell
=
ptb_model
(
x
,
y
,
init_hidden
,
init_cell
)
if
i
==
0
:
for
param
in
ptb_model
.
parameters
():
dy_param_init
[
param
.
name
]
=
param
.
_numpy
()
dy_loss
.
_backward
()
sgd
.
minimize
(
dy_loss
)
for
param
in
ptb_model
.
parameters
():
dy_param_updated
[
param
.
name
]
=
param
.
_numpy
()
# print("dy_loss is {}".format(dy_loss._numpy()))
# print("last_hidden is {}".format(last_hidden._numpy()))
# print("last_cell is {}".format(last_cell._numpy()))
with
new_program_scope
():
fluid
.
default_startup_program
().
random_seed
=
seed
fluid
.
default_main_program
().
random_seed
=
seed
# TODO: marsyang1993 Change seed to
ptb_model
=
PtbModel
(
hidden_size
=
hidden_size
,
vocab_size
=
vocab_size
,
num_layers
=
num_layers
,
num_steps
=
num_steps
,
init_scale
=
init_scale
)
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
())
sgd
=
SGDOptimizer
(
learning_rate
=
1e-3
)
x
=
fluid
.
layers
.
data
(
name
=
"x"
,
shape
=
[
-
1
,
3
,
1
],
dtype
=
'int64'
)
y
=
fluid
.
layers
.
data
(
name
=
"y"
,
shape
=
[
-
1
,
1
],
dtype
=
'float32'
)
init_hidden
=
fluid
.
layers
.
data
(
name
=
"init_hidden"
,
shape
=
[
1
],
dtype
=
'float32'
)
init_cell
=
fluid
.
layers
.
data
(
name
=
"init_cell"
,
shape
=
[
1
],
dtype
=
'float32'
)
static_loss
,
static_last_hidden
,
static_last_cell
=
ptb_model
(
x
,
y
,
init_hidden
,
init_cell
)
sgd
.
minimize
(
static_loss
)
static_param_updated
=
dict
()
static_param_init
=
dict
()
static_param_name_list
=
list
()
for
param
in
ptb_model
.
parameters
():
static_param_name_list
.
append
(
param
.
name
)
out
=
exe
.
run
(
framework
.
default_startup_program
(),
fetch_list
=
static_param_name_list
)
for
i
in
range
(
len
(
static_param_name_list
)):
static_param_init
[
static_param_name_list
[
i
]]
=
out
[
i
]
static_loss_value
=
None
static_last_cell_value
=
None
static_last_hidden_value
=
None
for
i
in
range
(
2
):
x_data
=
np
.
arange
(
12
).
reshape
(
4
,
3
).
astype
(
'int64'
)
y_data
=
np
.
arange
(
1
,
13
).
reshape
(
4
,
3
).
astype
(
'int64'
)
x_data
=
x_data
.
reshape
((
-
1
,
num_steps
,
1
))
y_data
=
y_data
.
reshape
((
-
1
,
1
))
init_hidden_data
=
np
.
zeros
(
(
num_layers
,
batch_size
,
hidden_size
),
dtype
=
'float32'
)
init_cell_data
=
np
.
zeros
(
(
num_layers
,
batch_size
,
hidden_size
),
dtype
=
'float32'
)
fetch_list
=
[
static_loss
,
static_last_hidden
,
static_last_cell
]
fetch_list
.
extend
(
static_param_name_list
)
out
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
"x"
:
x_data
,
"y"
:
y_data
,
"init_hidden"
:
init_hidden_data
,
"init_cell"
:
init_cell_data
},
fetch_list
=
fetch_list
)
static_loss_value
=
out
[
0
]
static_last_cell_value
=
out
[
1
]
static_last_hidden_value
=
out
[
2
]
for
k
in
range
(
3
,
len
(
out
)):
static_param_updated
[
static_param_name_list
[
k
-
3
]]
=
out
[
k
]
self
.
assertTrue
(
np
.
allclose
(
static_loss_value
.
all
(),
dy_loss
.
_numpy
().
all
()))
self
.
assertTrue
(
np
.
allclose
(
static_last_cell_value
.
all
(),
last_cell
.
_numpy
().
all
()))
self
.
assertTrue
(
np
.
allclose
(
static_last_hidden_value
.
all
(),
last_hidden
.
_numpy
().
all
()))
for
key
,
value
in
six
.
iteritems
(
static_param_init
):
self
.
assertTrue
(
np
.
allclose
(
value
.
all
(),
dy_param_init
[
key
].
all
()))
for
key
,
value
in
six
.
iteritems
(
static_param_updated
):
self
.
assertTrue
(
np
.
allclose
(
value
.
all
(),
dy_param_updated
[
key
].
all
()))
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_imperative_resnet.py
浏览文件 @
1e0a7855
...
...
@@ -264,6 +264,7 @@ class TestImperativeResnet(unittest.TestCase):
)]
=
np_array
optimizer
.
minimize
(
avg_loss
)
resnet
.
clear_gradients
()
dy_param_value
=
{}
for
param
in
fluid
.
default_main_program
().
global_block
(
...
...
python/paddle/fluid/tests/unittests/test_layers.py
浏览文件 @
1e0a7855
...
...
@@ -58,7 +58,8 @@ class TestBook(unittest.TestCase):
def
test_simple_conv2d
(
self
):
program
=
Program
()
with
program_guard
(
program
,
startup_program
=
Program
()):
images
=
layers
.
data
(
name
=
'pixel'
,
shape
=
[
3
,
48
,
48
],
dtype
=
'int32'
)
images
=
layers
.
data
(
name
=
'pixel'
,
shape
=
[
3
,
48
,
48
],
dtype
=
'float32'
)
layers
.
conv2d
(
input
=
images
,
num_filters
=
3
,
filter_size
=
[
4
,
4
])
print
(
str
(
program
))
...
...
python/paddle/fluid/tests/unittests/test_multiclass_nms_op.py
浏览文件 @
1e0a7855
...
...
@@ -19,7 +19,7 @@ import copy
from
op_test
import
OpTest
def
iou
(
box_a
,
box_b
):
def
iou
(
box_a
,
box_b
,
norm
):
"""Apply intersection-over-union overlap between box_a and box_b
"""
xmin_a
=
min
(
box_a
[
0
],
box_a
[
2
])
...
...
@@ -32,8 +32,10 @@ def iou(box_a, box_b):
xmax_b
=
max
(
box_b
[
0
],
box_b
[
2
])
ymax_b
=
max
(
box_b
[
1
],
box_b
[
3
])
area_a
=
(
ymax_a
-
ymin_a
)
*
(
xmax_a
-
xmin_a
)
area_b
=
(
ymax_b
-
ymin_b
)
*
(
xmax_b
-
xmin_b
)
area_a
=
(
ymax_a
-
ymin_a
+
(
norm
==
False
))
*
(
xmax_a
-
xmin_a
+
(
norm
==
False
))
area_b
=
(
ymax_b
-
ymin_b
+
(
norm
==
False
))
*
(
xmax_b
-
xmin_b
+
(
norm
==
False
))
if
area_a
<=
0
and
area_b
<=
0
:
return
0.0
...
...
@@ -42,17 +44,21 @@ def iou(box_a, box_b):
xb
=
min
(
xmax_a
,
xmax_b
)
yb
=
min
(
ymax_a
,
ymax_b
)
inter_area
=
max
(
xb
-
xa
,
0.0
)
*
max
(
yb
-
ya
,
0.0
)
box_a_area
=
(
box_a
[
2
]
-
box_a
[
0
])
*
(
box_a
[
3
]
-
box_a
[
1
])
box_b_area
=
(
box_b
[
2
]
-
box_b
[
0
])
*
(
box_b
[
3
]
-
box_b
[
1
])
inter_area
=
max
(
xb
-
xa
+
(
norm
==
False
),
0.0
)
*
max
(
yb
-
ya
+
(
norm
==
False
),
0.0
)
iou_ratio
=
inter_area
/
(
area_a
+
area_b
-
inter_area
)
return
iou_ratio
def
nms
(
boxes
,
scores
,
score_threshold
,
nms_threshold
,
top_k
=
200
,
eta
=
1.0
):
def
nms
(
boxes
,
scores
,
score_threshold
,
nms_threshold
,
top_k
=
200
,
normalized
=
True
,
eta
=
1.0
):
"""Apply non-maximum suppression at test time to avoid detecting too many
overlapping bounding boxes for a given object.
Args:
...
...
@@ -87,7 +93,7 @@ def nms(boxes, scores, score_threshold, nms_threshold, top_k=200, eta=1.0):
for
k
in
range
(
len
(
selected_indices
)):
if
keep
:
kept_idx
=
selected_indices
[
k
]
overlap
=
iou
(
boxes
[
idx
],
boxes
[
kept_idx
])
overlap
=
iou
(
boxes
[
idx
],
boxes
[
kept_idx
]
,
normalized
)
keep
=
True
if
overlap
<=
adaptive_threshold
else
False
else
:
break
...
...
@@ -99,16 +105,24 @@ def nms(boxes, scores, score_threshold, nms_threshold, top_k=200, eta=1.0):
def
multiclass_nms
(
boxes
,
scores
,
background
,
score_threshold
,
nms_threshold
,
nms_top_k
,
keep_top_k
):
class_num
=
scores
.
shape
[
0
]
priorbox_num
=
scores
.
shape
[
1
]
nms_top_k
,
keep_top_k
,
normalized
,
shared
):
if
shared
:
class_num
=
scores
.
shape
[
0
]
priorbox_num
=
scores
.
shape
[
1
]
else
:
box_num
=
scores
.
shape
[
0
]
class_num
=
scores
.
shape
[
1
]
selected_indices
=
{}
num_det
=
0
for
c
in
range
(
class_num
):
if
c
==
background
:
continue
indices
=
nms
(
boxes
,
scores
[
c
],
score_threshold
,
nms_threshold
,
nms_top_k
)
if
shared
:
indices
=
nms
(
boxes
,
scores
[
c
],
score_threshold
,
nms_threshold
,
nms_top_k
,
normalized
)
else
:
indices
=
nms
(
boxes
[:,
c
,
:],
scores
[:,
c
],
score_threshold
,
nms_threshold
,
nms_top_k
,
normalized
)
selected_indices
[
c
]
=
indices
num_det
+=
len
(
indices
)
...
...
@@ -116,7 +130,10 @@ def multiclass_nms(boxes, scores, background, score_threshold, nms_threshold,
score_index
=
[]
for
c
,
indices
in
selected_indices
.
items
():
for
idx
in
indices
:
score_index
.
append
((
scores
[
c
][
idx
],
c
,
idx
))
if
shared
:
score_index
.
append
((
scores
[
c
][
idx
],
c
,
idx
))
else
:
score_index
.
append
((
scores
[
idx
][
c
],
c
,
idx
))
sorted_score_index
=
sorted
(
score_index
,
key
=
lambda
tup
:
tup
[
0
],
reverse
=
True
)
...
...
@@ -127,24 +144,75 @@ def multiclass_nms(boxes, scores, background, score_threshold, nms_threshold,
selected_indices
[
c
]
=
[]
for
s
,
c
,
idx
in
sorted_score_index
:
selected_indices
[
c
].
append
(
idx
)
if
not
shared
:
for
labels
in
selected_indices
:
selected_indices
[
labels
].
sort
()
num_det
=
keep_top_k
return
selected_indices
,
num_det
def
batched_multiclass_nms
(
boxes
,
scores
,
background
,
score_threshold
,
nms_threshold
,
nms_top_k
,
keep_top_k
):
def
lod_multiclass_nms
(
boxes
,
scores
,
background
,
score_threshold
,
nms_threshold
,
nms_top_k
,
keep_top_k
,
box_lod
,
normalized
):
det_outs
=
[]
lod
=
[]
head
=
0
for
n
in
range
(
len
(
box_lod
[
0
])):
box
=
boxes
[
head
:
head
+
box_lod
[
0
][
n
]]
score
=
scores
[
head
:
head
+
box_lod
[
0
][
n
]]
head
=
head
+
box_lod
[
0
][
n
]
nmsed_outs
,
nmsed_num
=
multiclass_nms
(
box
,
score
,
background
,
score_threshold
,
nms_threshold
,
nms_top_k
,
keep_top_k
,
normalized
,
shared
=
False
)
if
nmsed_num
==
0
:
#lod.append(1)
continue
lod
.
append
(
nmsed_num
)
for
c
,
indices
in
nmsed_outs
.
items
():
for
idx
in
indices
:
xmin
,
ymin
,
xmax
,
ymax
=
box
[
idx
,
c
,
:]
det_outs
.
append
([
c
,
score
[
idx
][
c
],
xmin
,
ymin
,
xmax
,
ymax
])
if
len
(
lod
)
==
0
:
lod
.
append
(
1
)
return
det_outs
,
lod
def
batched_multiclass_nms
(
boxes
,
scores
,
background
,
score_threshold
,
nms_threshold
,
nms_top_k
,
keep_top_k
,
normalized
=
True
):
batch_size
=
scores
.
shape
[
0
]
det_outs
=
[]
lod
=
[]
for
n
in
range
(
batch_size
):
nmsed_outs
,
nmsed_num
=
multiclass_nms
(
boxes
[
n
],
scores
[
n
],
background
,
score_threshold
,
nms_threshold
,
nms_top_k
,
keep_top_k
)
lod
.
append
(
nmsed_num
)
if
nmsed_num
==
0
:
continue
nmsed_outs
,
nmsed_num
=
multiclass_nms
(
boxes
[
n
],
scores
[
n
],
background
,
score_threshold
,
nms_threshold
,
nms_top_k
,
keep_top_k
,
normalized
,
shared
=
True
)
if
nmsed_num
==
0
:
continue
lod
.
append
(
nmsed_num
)
tmp_det_out
=
[]
for
c
,
indices
in
nmsed_outs
.
items
():
for
idx
in
indices
:
...
...
@@ -154,7 +222,8 @@ def batched_multiclass_nms(boxes, scores, background, score_threshold,
sorted_det_out
=
sorted
(
tmp_det_out
,
key
=
lambda
tup
:
tup
[
0
],
reverse
=
False
)
det_outs
.
extend
(
sorted_det_out
)
if
len
(
lod
)
==
0
:
lod
+=
[
1
]
return
det_outs
,
lod
...
...
@@ -168,7 +237,6 @@ class TestMulticlassNMSOp(OpTest):
M
=
1200
C
=
21
BOX_SIZE
=
4
background
=
0
nms_threshold
=
0.3
nms_top_k
=
400
...
...
@@ -206,6 +274,7 @@ class TestMulticlassNMSOp(OpTest):
'keep_top_k'
:
keep_top_k
,
'score_threshold'
:
score_threshold
,
'nms_eta'
:
1.0
,
'normalized'
:
True
,
}
def
test_check_output
(
self
):
...
...
@@ -219,13 +288,70 @@ class TestMulticlassNMSOpNoOutput(TestMulticlassNMSOp):
self
.
score_threshold
=
2.0
class
TestMulticlassNMSLoDInput
(
OpTest
):
def
set_argument
(
self
):
self
.
score_threshold
=
0.01
def
setUp
(
self
):
self
.
set_argument
()
M
=
1200
C
=
21
BOX_SIZE
=
4
box_lod
=
[[
1200
]]
background
=
0
nms_threshold
=
0.3
nms_top_k
=
400
keep_top_k
=
200
score_threshold
=
self
.
score_threshold
normalized
=
False
scores
=
np
.
random
.
random
((
M
,
C
)).
astype
(
'float32'
)
def
softmax
(
x
):
shiftx
=
x
-
np
.
max
(
x
).
clip
(
-
64.
)
exps
=
np
.
exp
(
shiftx
)
return
exps
/
np
.
sum
(
exps
)
scores
=
np
.
apply_along_axis
(
softmax
,
1
,
scores
)
boxes
=
np
.
random
.
random
((
M
,
C
,
BOX_SIZE
)).
astype
(
'float32'
)
boxes
[:,
:,
0
]
=
boxes
[:,
:,
0
]
*
10
boxes
[:,
:,
1
]
=
boxes
[:,
:,
1
]
*
10
boxes
[:,
:,
2
]
=
boxes
[:,
:,
2
]
*
10
+
10
boxes
[:,
:,
3
]
=
boxes
[:,
:,
3
]
*
10
+
10
nmsed_outs
,
lod
=
lod_multiclass_nms
(
boxes
,
scores
,
background
,
score_threshold
,
nms_threshold
,
nms_top_k
,
keep_top_k
,
box_lod
,
normalized
)
nmsed_outs
=
[
-
1
]
if
not
nmsed_outs
else
nmsed_outs
nmsed_outs
=
np
.
array
(
nmsed_outs
).
astype
(
'float32'
)
self
.
op_type
=
'multiclass_nms'
self
.
inputs
=
{
'BBoxes'
:
(
boxes
,
box_lod
),
'Scores'
:
(
scores
,
box_lod
),
}
self
.
outputs
=
{
'Out'
:
(
nmsed_outs
,
[
lod
])}
self
.
attrs
=
{
'background_label'
:
0
,
'nms_threshold'
:
nms_threshold
,
'nms_top_k'
:
nms_top_k
,
'keep_top_k'
:
keep_top_k
,
'score_threshold'
:
score_threshold
,
'nms_eta'
:
1.0
,
'normalized'
:
normalized
,
}
def
test_check_output
(
self
):
self
.
check_output
()
class
TestIOU
(
unittest
.
TestCase
):
def
test_iou
(
self
):
box1
=
np
.
array
([
4.0
,
3.0
,
7.0
,
5.0
]).
astype
(
'float32'
)
box2
=
np
.
array
([
3.0
,
4.0
,
6.0
,
8.0
]).
astype
(
'float32'
)
expt_output
=
np
.
array
([
2.0
/
16.0
]).
astype
(
'float32'
)
calc_output
=
np
.
array
([
iou
(
box1
,
box2
)]).
astype
(
'float32'
)
calc_output
=
np
.
array
([
iou
(
box1
,
box2
,
True
)]).
astype
(
'float32'
)
self
.
assertTrue
(
np
.
allclose
(
calc_output
,
expt_output
))
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录