提交 1e0a7855 编写于 作者: M minqiyang

Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into imperative_lr_scheduler

......@@ -212,7 +212,7 @@ endif()
if (WITH_JEMALLOC)
find_package(JeMalloc REQUIRED)
include_directories(${JEMALLOC_INCLUDE_DIR})
add_definitions(-DWITH_JEMALLOC)
add_definitions(-DPADDLE_WITH_JEMALLOC)
endif()
include(generic) # simplify cmake module
......
......@@ -325,6 +325,7 @@ paddle.fluid.layers.iou_similarity ArgSpec(args=['x', 'y', 'name'], varargs=None
paddle.fluid.layers.box_coder ArgSpec(args=['prior_box', 'prior_box_var', 'target_box', 'code_type', 'box_normalized', 'name'], varargs=None, keywords=None, defaults=('encode_center_size', True, None))
paddle.fluid.layers.polygon_box_transform ArgSpec(args=['input', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.yolov3_loss ArgSpec(args=['x', 'gtbox', 'gtlabel', 'anchors', 'class_num', 'ignore_thresh', 'loss_weight_xy', 'loss_weight_wh', 'loss_weight_conf_target', 'loss_weight_conf_notarget', 'loss_weight_class', 'name'], varargs=None, keywords=None, defaults=(None, None, None, None, None, None))
paddle.fluid.layers.multiclass_nms ArgSpec(args=['bboxes', 'scores', 'score_threshold', 'nms_top_k', 'keep_top_k', 'nms_threshold', 'normalized', 'nms_eta', 'background_label', 'name'], varargs=None, keywords=None, defaults=(0.3, True, 1.0, 0, None))
paddle.fluid.layers.accuracy ArgSpec(args=['input', 'label', 'k', 'correct', 'total'], varargs=None, keywords=None, defaults=(1, None, None))
paddle.fluid.layers.auc ArgSpec(args=['input', 'label', 'curve', 'num_thresholds', 'topk', 'slide_steps'], varargs=None, keywords=None, defaults=('ROC', 4095, 1, 1))
paddle.fluid.layers.exponential_decay ArgSpec(args=['learning_rate', 'decay_steps', 'decay_rate', 'staircase'], varargs=None, keywords=None, defaults=(False,))
......
......@@ -156,6 +156,8 @@ class Autograd {
for (auto it : candidate->pre_ops_) {
for (OpBase* pre_op : it.second) {
if (!pre_op) continue;
VLOG(5) << "op dep " << candidate->op_desc_->Type() << " <---- "
<< it.first << " <---- " << pre_op->op_desc_->Type();
if (visited.find(pre_op) == visited.end()) {
visited.insert(pre_op);
queue.push_back(pre_op);
......
......@@ -28,6 +28,7 @@
#include "paddle/fluid/framework/var_desc.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/imperative/type_defs.h"
......@@ -140,16 +141,24 @@ class VarBase {
void RunBackward();
void TrackPreOp(OpBase* pre_op, const std::string& pre_op_out_name,
int pre_op_out_idx, bool stop_gradient) {
int pre_op_out_idx, bool pre_op_stop_gradient) {
pre_op_ = pre_op;
pre_op_out_name_ = pre_op_out_name;
pre_op_out_idx_ = pre_op_out_idx;
stop_gradient_ = stop_gradient;
if (pre_op_stop_gradient) {
stop_gradient_ = pre_op_stop_gradient;
}
}
void ClearGradient() {
delete grads_;
grads_ = new VarBase(true);
VLOG(1) << "clear gradient of " << var_desc_->Name();
if (grads_ && grads_->var_ && grads_->var_->IsInitialized()) {
auto grads_t = grads_->var_->GetMutable<framework::LoDTensor>();
operators::math::set_constant(
*(platform::DeviceContextPool::Instance().Get(
grads_->var_->Get<framework::LoDTensor>().place())),
grads_t, 0.0);
}
}
framework::LoDTensor& GradValue();
......
......@@ -31,6 +31,7 @@ void CreateGradOp(const framework::OpDesc& op_desc,
framework::OpInfoMap::Instance()
.Get(op_desc.Type())
.GradOpMaker()(op_desc, no_grad_set, grad_to_var, grad_sub_block);
for (auto& desc : descs) {
grad_op_descs->emplace_back(desc.release());
}
......@@ -84,11 +85,12 @@ void Tracer::Trace(OpBase* op, const VarBasePtrMap& inputs,
op->input_vars_ = inputs;
for (auto it : op->input_vars_) {
auto& invars = invars_map[it.first];
invars.reserve(it.second.size());
for (VarBase* inp : it.second) {
PADDLE_ENFORCE_NOT_NULL(inp->var_, "op %s input %s nullptr",
op->op_desc_->Type(), inp->var_desc_->Name());
invars.push_back(inp->var_);
invars.emplace_back(inp->var_);
vars[inp->var_desc_->Name()] = inp;
if (inp->PreOp()) {
op->pre_ops_[it.first].push_back(inp->PreOp());
......@@ -105,9 +107,10 @@ void Tracer::Trace(OpBase* op, const VarBasePtrMap& inputs,
for (auto it : op->output_vars_) {
auto& outvars = outvars_map[it.first];
const std::vector<VarBase*>& outputs = it.second;
outvars.reserve(outputs.size());
for (size_t i = 0; i < outputs.size(); ++i) {
VarBase* out = outputs[i];
outvars.push_back(out->var_);
outvars.emplace_back(out->var_);
vars[out->var_desc_->Name()] = out;
framework::VarDesc* var_desc = block->FindVar(out->var_desc_->Name());
......
......@@ -132,7 +132,7 @@ struct Argument {
DECL_ARGUMENT_FIELD(tensorrt_workspace_size, TensorRtWorkspaceSize, int);
DECL_ARGUMENT_FIELD(tensorrt_min_subgraph_size, TensorRtMinSubgraphSize, int);
DECL_ARGUMENT_FIELD(tensorrt_precision_mode, TensorRtPrecisionMode,
contrib::AnalysisConfig::Precision);
AnalysisConfig::Precision);
// Memory optimized related.
DECL_ARGUMENT_FIELD(enable_memory_optim, EnableMemoryOptim, bool);
......
......@@ -32,7 +32,7 @@ limitations under the License. */
#ifdef _WIN32
#include <direct.h>
#include <io.h>
#define GCC_ATTRIBUTE(attr__) ;
#define GCC_ATTRIBUTE(attr__)
#define MKDIR(path) _mkdir(path)
#else
#include <unistd.h>
......
......@@ -71,7 +71,7 @@ void IRPassManager::CreatePasses(Argument *argument,
new framework::ProgramDesc *(&argument->main_program()));
bool enable_int8 = argument->tensorrt_precision_mode() ==
contrib::AnalysisConfig::Precision::kInt8;
AnalysisConfig::Precision::kInt8;
pass->Set("enable_int8", new bool(enable_int8));
std::string model_opt_cache_dir =
......
......@@ -13,7 +13,9 @@
// limitations under the License.
#pragma once
#include <string>
#include <utility>
#include <vector>
#include "paddle/fluid/inference/analysis/analysis_pass.h"
#include "paddle/fluid/platform/port.h"
......
......@@ -22,7 +22,7 @@
namespace paddle {
PassStrategy *contrib::AnalysisConfig::pass_builder() const {
PassStrategy *AnalysisConfig::pass_builder() const {
if (!pass_builder_.get()) {
if (use_gpu_) {
LOG(INFO) << "Create GPU IR passes";
......@@ -42,27 +42,27 @@ PassStrategy *contrib::AnalysisConfig::pass_builder() const {
return pass_builder_.get();
}
contrib::AnalysisConfig::AnalysisConfig(const std::string &model_dir) {
AnalysisConfig::AnalysisConfig(const std::string &model_dir) {
model_dir_ = model_dir;
Update();
}
contrib::AnalysisConfig::AnalysisConfig(const std::string &prog_file,
const std::string &params_file) {
AnalysisConfig::AnalysisConfig(const std::string &prog_file,
const std::string &params_file) {
prog_file_ = prog_file;
params_file_ = params_file;
Update();
}
void contrib::AnalysisConfig::SetModel(const std::string &prog_file_path,
const std::string &params_file_path) {
void AnalysisConfig::SetModel(const std::string &prog_file_path,
const std::string &params_file_path) {
prog_file_ = prog_file_path;
params_file_ = params_file_path;
Update();
}
void contrib::AnalysisConfig::EnableUseGpu(uint64_t memory_pool_init_size_mb,
int device_id) {
void AnalysisConfig::EnableUseGpu(uint64_t memory_pool_init_size_mb,
int device_id) {
#ifdef PADDLE_WITH_CUDA
use_gpu_ = true;
memory_pool_init_size_mb_ = memory_pool_init_size_mb;
......@@ -74,13 +74,13 @@ void contrib::AnalysisConfig::EnableUseGpu(uint64_t memory_pool_init_size_mb,
Update();
}
void contrib::AnalysisConfig::DisableGpu() {
void AnalysisConfig::DisableGpu() {
use_gpu_ = false;
Update();
}
contrib::AnalysisConfig::AnalysisConfig(const contrib::AnalysisConfig &other) {
AnalysisConfig::AnalysisConfig(const AnalysisConfig &other) {
#define CP_MEMBER(member__) member__ = other.member__;
// Model related.
......@@ -130,7 +130,7 @@ contrib::AnalysisConfig::AnalysisConfig(const contrib::AnalysisConfig &other) {
Update();
}
void contrib::AnalysisConfig::EnableMKLDNN() {
void AnalysisConfig::EnableMKLDNN() {
#ifdef PADDLE_WITH_MKLDNN
pass_builder()->EnableMKLDNN();
use_mkldnn_ = true;
......@@ -142,9 +142,9 @@ void contrib::AnalysisConfig::EnableMKLDNN() {
Update();
}
void contrib::AnalysisConfig::EnableTensorRtEngine(
void AnalysisConfig::EnableTensorRtEngine(
int workspace_size, int max_batch_size, int min_subgraph_size,
contrib::AnalysisConfig::Precision precision_mode) {
AnalysisConfig::Precision precision_mode) {
#ifdef PADDLE_WITH_CUDA
if (!use_gpu()) {
LOG(ERROR) << "To use TensorRT engine, please call EnableGpu() first";
......@@ -165,7 +165,7 @@ void contrib::AnalysisConfig::EnableTensorRtEngine(
}
// TODO(Superjomn) refactor this, buggy.
void contrib::AnalysisConfig::Update() {
void AnalysisConfig::Update() {
auto info = SerializeInfoCache();
if (info == serialized_info_cache_) return;
......@@ -225,7 +225,7 @@ void contrib::AnalysisConfig::Update() {
}
}
std::string contrib::AnalysisConfig::SerializeInfoCache() {
std::string AnalysisConfig::SerializeInfoCache() {
std::stringstream ss;
ss << model_dir_;
ss << prog_file_;
......@@ -260,14 +260,14 @@ std::string contrib::AnalysisConfig::SerializeInfoCache() {
return ss.str();
}
void contrib::AnalysisConfig::SetCpuMathLibraryNumThreads(
void AnalysisConfig::SetCpuMathLibraryNumThreads(
int cpu_math_library_num_threads) {
cpu_math_library_num_threads_ = cpu_math_library_num_threads;
Update();
}
float contrib::AnalysisConfig::fraction_of_gpu_memory_for_pool() const {
float AnalysisConfig::fraction_of_gpu_memory_for_pool() const {
#ifdef PADDLE_WITH_CUDA
// Get the GPU memory details and calculate the fraction of memory for the
// GPU memory pool.
......@@ -282,8 +282,8 @@ float contrib::AnalysisConfig::fraction_of_gpu_memory_for_pool() const {
#endif
}
void contrib::AnalysisConfig::EnableMemoryOptim(
bool static_optim, bool force_update_static_cache) {
void AnalysisConfig::EnableMemoryOptim(bool static_optim,
bool force_update_static_cache) {
enable_memory_optim_ = true;
static_memory_optim_ = static_optim;
static_memory_optim_force_update_ = force_update_static_cache;
......@@ -291,14 +291,14 @@ void contrib::AnalysisConfig::EnableMemoryOptim(
Update();
}
bool contrib::AnalysisConfig::enable_memory_optim() const {
bool AnalysisConfig::enable_memory_optim() const {
return enable_memory_optim_;
}
void contrib::AnalysisConfig::SetModelBuffer(const char *prog_buffer,
size_t prog_buffer_size,
const char *param_buffer,
size_t param_buffer_size) {
void AnalysisConfig::SetModelBuffer(const char *prog_buffer,
size_t prog_buffer_size,
const char *param_buffer,
size_t param_buffer_size) {
prog_file_ = std::string(prog_buffer, prog_buffer + prog_buffer_size);
params_file_ = std::string(param_buffer, param_buffer + param_buffer_size);
model_from_memory_ = true;
......@@ -306,7 +306,7 @@ void contrib::AnalysisConfig::SetModelBuffer(const char *prog_buffer,
Update();
}
NativeConfig contrib::AnalysisConfig::ToNativeConfig() const {
NativeConfig AnalysisConfig::ToNativeConfig() const {
NativeConfig config;
config.model_dir = model_dir_;
config.prog_file = prog_file_;
......
......@@ -47,7 +47,6 @@ DECLARE_bool(profile);
namespace paddle {
using contrib::AnalysisConfig;
using inference::Singleton;
#if PADDLE_WITH_TENSORRT
using inference::tensorrt::TRTInt8Calibrator;
......@@ -731,10 +730,10 @@ std::string AnalysisPredictor::GetSeriazlizedProgram() const {
}
template <>
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<contrib::AnalysisConfig>(
const contrib::AnalysisConfig &config) {
return CreatePaddlePredictor<contrib::AnalysisConfig,
PaddleEngineKind::kAnalysis>(config);
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<AnalysisConfig>(
const AnalysisConfig &config) {
return CreatePaddlePredictor<AnalysisConfig, PaddleEngineKind::kAnalysis>(
config);
}
} // namespace paddle
......
......@@ -33,7 +33,6 @@ using inference::analysis::Argument;
using inference::analysis::Analyzer;
using framework::proto::ProgramDesc;
using framework::NaiveExecutor;
using contrib::AnalysisConfig;
/** \brief This predictor is based on the original native predictor with IR and
* Analysis support.
......@@ -123,7 +122,7 @@ class AnalysisPredictor : public PaddlePredictor {
#endif
private:
contrib::AnalysisConfig config_;
AnalysisConfig config_;
Argument argument_;
std::unique_ptr<NaiveExecutor> executor_;
platform::Place place_;
......
......@@ -24,7 +24,6 @@
DEFINE_string(dirname, "", "dirname to tests.");
namespace paddle {
using contrib::AnalysisConfig;
TEST(AnalysisPredictor, analysis_off) {
AnalysisConfig config;
......
......@@ -295,7 +295,7 @@ TEST(inference_api_native, image_classification_gpu) {
#endif
TEST(PassBuilder, Delete) {
contrib::AnalysisConfig config;
AnalysisConfig config;
config.DisableGpu();
config.pass_builder()->DeletePass("attention_lstm_fuse_pass");
const auto& passes = config.pass_builder()->AllPasses();
......
......@@ -36,7 +36,7 @@ namespace demo {
*/
void Main() {
std::unique_ptr<PaddlePredictor> predictor;
paddle::contrib::AnalysisConfig config;
paddle::AnalysisConfig config;
config.EnableUseGpu(100, 0);
config.SetModel(FLAGS_modeldir + "/__model__",
FLAGS_modeldir + "/__params__");
......
......@@ -34,7 +34,6 @@ DEFINE_bool(use_gpu, false, "Whether use gpu.");
namespace paddle {
namespace demo {
using contrib::AnalysisConfig;
/*
* Use the native and analysis fluid engine to inference the demo.
*/
......
......@@ -29,11 +29,6 @@
namespace paddle {
class AnalysisPredictor;
// ==
//
// -----------------------------------------------------------------------------------
// NOTE: The following APIs are not mature yet, we are still working on them.
namespace contrib {
// NOTE WIP, not stable yet.
struct AnalysisConfig {
......@@ -260,5 +255,4 @@ struct AnalysisConfig {
mutable std::unique_ptr<PassStrategy> pass_builder_;
};
} // namespace contrib
} // namespace paddle
......@@ -221,7 +221,7 @@ class PaddlePredictor {
virtual std::string GetSeriazlizedProgram() const {
assert(false); // Force raise error.
return "NotImplemented";
};
}
/** The common configs for all the predictors.
*/
......
......@@ -13,16 +13,16 @@
// limitations under the License.
#pragma once
#include <NvInfer.h>
#include <cuda_runtime_api.h>
#include <atomic>
#include <memory>
#include <mutex>
#include <mutex> // NOLINT
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
#include <NvInfer.h>
#include <cuda_runtime_api.h>
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/inference/tensorrt/engine.h"
#include "paddle/fluid/platform/place.h"
......
......@@ -128,6 +128,11 @@ inference_analysis_api_test_with_fake_data(test_analyzer_resnet50
inference_analysis_api_test_with_fake_data(test_analyzer_mobilenet_depthwise_conv
"${INFERENCE_DEMO_INSTALL_DIR}/mobilenet_depthwise_conv" analyzer_resnet50_tester.cc "mobilenet_model.tar.gz" SERIAL)
# bert, max_len=20
set(BERT_INSTALL_DIR "${INFERENCE_DEMO_INSTALL_DIR}/bert20")
download_model_and_data(${BERT_INSTALL_DIR} "bert_model.tar.gz" "bert_data_len20.txt.tar.gz")
inference_analysis_api_test(test_analyzer_bert ${BERT_INSTALL_DIR} analyzer_bert_tester.cc SERIAL)
# anakin
if (WITH_ANAKIN AND WITH_MKL) # only needed in CI
# anakin rnn1
......
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/inference/tests/api/tester_helper.h"
namespace paddle {
namespace inference {
using paddle::PaddleTensor;
template <typename T>
void GetValueFromStream(std::stringstream *ss, T *t) {
(*ss) >> (*t);
}
template <>
void GetValueFromStream<std::string>(std::stringstream *ss, std::string *t) {
*t = ss->str();
}
// Split string to vector
template <typename T>
void Split(const std::string &line, char sep, std::vector<T> *v) {
std::stringstream ss;
T t;
for (auto c : line) {
if (c != sep) {
ss << c;
} else {
GetValueFromStream<T>(&ss, &t);
v->push_back(std::move(t));
ss.str({});
ss.clear();
}
}
if (!ss.str().empty()) {
GetValueFromStream<T>(&ss, &t);
v->push_back(std::move(t));
ss.str({});
ss.clear();
}
}
template <typename T>
constexpr paddle::PaddleDType GetPaddleDType();
template <>
constexpr paddle::PaddleDType GetPaddleDType<int64_t>() {
return paddle::PaddleDType::INT64;
}
template <>
constexpr paddle::PaddleDType GetPaddleDType<float>() {
return paddle::PaddleDType::FLOAT32;
}
// Parse tensor from string
template <typename T>
bool ParseTensor(const std::string &field, paddle::PaddleTensor *tensor) {
std::vector<std::string> data;
Split(field, ':', &data);
if (data.size() < 2) return false;
std::string shape_str = data[0];
std::vector<int> shape;
Split(shape_str, ' ', &shape);
std::string mat_str = data[1];
std::vector<T> mat;
Split(mat_str, ' ', &mat);
tensor->shape = shape;
auto size =
std::accumulate(shape.begin(), shape.end(), 1, std::multiplies<int>()) *
sizeof(T);
tensor->data.Resize(size);
std::copy(mat.begin(), mat.end(), static_cast<T *>(tensor->data.data()));
tensor->dtype = GetPaddleDType<T>();
return true;
}
// Parse input tensors from string
bool ParseLine(const std::string &line,
std::vector<paddle::PaddleTensor> *tensors) {
std::vector<std::string> fields;
Split(line, ';', &fields);
if (fields.size() < 5) return false;
tensors->clear();
tensors->reserve(5);
int i = 0;
// src_id
paddle::PaddleTensor src_id;
ParseTensor<int64_t>(fields[i++], &src_id);
tensors->push_back(src_id);
// pos_id
paddle::PaddleTensor pos_id;
ParseTensor<int64_t>(fields[i++], &pos_id);
tensors->push_back(pos_id);
// segment_id
paddle::PaddleTensor segment_id;
ParseTensor<int64_t>(fields[i++], &segment_id);
tensors->push_back(segment_id);
// self_attention_bias
paddle::PaddleTensor self_attention_bias;
ParseTensor<float>(fields[i++], &self_attention_bias);
tensors->push_back(self_attention_bias);
// next_segment_index
paddle::PaddleTensor next_segment_index;
ParseTensor<int64_t>(fields[i++], &next_segment_index);
tensors->push_back(next_segment_index);
return true;
}
bool LoadInputData(std::vector<std::vector<paddle::PaddleTensor>> *inputs) {
if (FLAGS_infer_data.empty()) {
LOG(ERROR) << "please set input data path";
return false;
}
std::ifstream fin(FLAGS_infer_data);
std::string line;
int sample = 0;
// The unit-test dataset only have 10 samples, each sample have 5 feeds.
while (std::getline(fin, line)) {
std::vector<paddle::PaddleTensor> feed_data;
ParseLine(line, &feed_data);
inputs->push_back(std::move(feed_data));
sample++;
if (!FLAGS_test_all_data && sample == FLAGS_batch_size) break;
}
LOG(INFO) << "number of samples: " << sample;
return true;
}
void SetConfig(AnalysisConfig *config) { config->SetModel(FLAGS_infer_model); }
void profile(bool use_mkldnn = false) {
AnalysisConfig config;
SetConfig(&config);
if (use_mkldnn) {
config.EnableMKLDNN();
}
std::vector<PaddleTensor> outputs;
std::vector<std::vector<PaddleTensor>> inputs;
LoadInputData(&inputs);
TestPrediction(reinterpret_cast<const PaddlePredictor::Config *>(&config),
inputs, &outputs, FLAGS_num_threads);
}
TEST(Analyzer_bert, profile) { profile(); }
#ifdef PADDLE_WITH_MKLDNN
TEST(Analyzer_bert, profile_mkldnn) { profile(true); }
#endif
// Check the fuse status
TEST(Analyzer_bert, fuse_statis) {
AnalysisConfig cfg;
SetConfig(&cfg);
int num_ops;
auto predictor = CreatePaddlePredictor<AnalysisConfig>(cfg);
auto fuse_statis = GetFuseStatis(
static_cast<AnalysisPredictor *>(predictor.get()), &num_ops);
LOG(INFO) << "num_ops: " << num_ops;
}
// Compare result of NativeConfig and AnalysisConfig
void compare(bool use_mkldnn = false) {
AnalysisConfig cfg;
SetConfig(&cfg);
if (use_mkldnn) {
cfg.EnableMKLDNN();
}
std::vector<std::vector<PaddleTensor>> inputs;
LoadInputData(&inputs);
CompareNativeAndAnalysis(
reinterpret_cast<const PaddlePredictor::Config *>(&cfg), inputs);
}
TEST(Analyzer_bert, compare) { compare(); }
#ifdef PADDLE_WITH_MKLDNN
TEST(Analyzer_bert, compare_mkldnn) { compare(true /* use_mkldnn */); }
#endif
// Compare Deterministic result
TEST(Analyzer_bert, compare_determine) {
AnalysisConfig cfg;
SetConfig(&cfg);
std::vector<std::vector<PaddleTensor>> inputs;
LoadInputData(&inputs);
CompareDeterministic(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
inputs);
}
} // namespace inference
} // namespace paddle
......@@ -19,7 +19,6 @@ DEFINE_int32(max_turn_num, 9,
namespace paddle {
namespace inference {
using contrib::AnalysisConfig;
constexpr int32_t kMaxTurnLen = 50;
......@@ -165,7 +164,7 @@ void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data,
input_slots->push_back(std::move(response_mask_tensor));
}
void SetConfig(contrib::AnalysisConfig *cfg) {
void SetConfig(AnalysisConfig *cfg) {
cfg->SetModel(FLAGS_infer_model + "/__model__", FLAGS_infer_model + "/param");
cfg->SwitchSpecifyInputNames();
cfg->SwitchIrOptim(true);
......@@ -187,7 +186,7 @@ void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) {
// Easy for profiling independently.
void profile(bool use_mkldnn = false) {
contrib::AnalysisConfig cfg;
AnalysisConfig cfg;
SetConfig(&cfg);
if (use_mkldnn) {
......@@ -223,7 +222,7 @@ TEST(Analyzer_dam, profile_mkldnn) { profile(true /* use_mkldnn */); }
// Check the fuse status
TEST(Analyzer_dam, fuse_statis) {
contrib::AnalysisConfig cfg;
AnalysisConfig cfg;
SetConfig(&cfg);
int num_ops;
......@@ -256,7 +255,7 @@ void compare(bool use_mkldnn = false) {
TEST(Analyzer_dam, compare_with_static_memory_optim) {
// The small dam will core in CI, but works in local.
if (FLAGS_max_turn_num == 9) {
contrib::AnalysisConfig cfg, cfg1;
AnalysisConfig cfg, cfg1;
DataRecord data(FLAGS_infer_data, FLAGS_batch_size);
std::vector<std::vector<PaddleTensor>> input_slots_all;
......@@ -282,7 +281,7 @@ TEST(Analyzer_dam, compare_with_static_memory_optim) {
TEST(Analyzer_dam, compare_with_dynamic_memory_optim) {
// The small dam will core in CI, but works in local.
if (FLAGS_max_turn_num == 9) {
contrib::AnalysisConfig cfg, cfg1;
AnalysisConfig cfg, cfg1;
DataRecord data(FLAGS_infer_data, FLAGS_batch_size);
std::vector<std::vector<PaddleTensor>> input_slots_all;
......
......@@ -18,8 +18,6 @@ namespace paddle {
namespace inference {
namespace analysis {
using contrib::AnalysisConfig;
struct DataRecord {
std::vector<int64_t> data;
std::vector<size_t> lod;
......
......@@ -16,7 +16,6 @@
namespace paddle {
namespace inference {
using contrib::AnalysisConfig;
struct DataRecord {
std::vector<std::vector<int64_t>> query, title;
......@@ -75,7 +74,7 @@ void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data,
}
}
void SetConfig(contrib::AnalysisConfig *cfg) {
void SetConfig(AnalysisConfig *cfg) {
cfg->SetModel(FLAGS_infer_model);
cfg->DisableGpu();
cfg->SwitchSpecifyInputNames();
......@@ -95,7 +94,7 @@ void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) {
// Easy for profiling independently.
void profile(bool use_mkldnn = false) {
contrib::AnalysisConfig cfg;
AnalysisConfig cfg;
SetConfig(&cfg);
std::vector<PaddleTensor> outputs;
......@@ -130,7 +129,7 @@ TEST(Analyzer_MM_DNN, profile_mkldnn) { profile(true /* use_mkldnn */); }
// Check the fuse status
TEST(Analyzer_MM_DNN, fuse_statis) {
contrib::AnalysisConfig cfg;
AnalysisConfig cfg;
SetConfig(&cfg);
int num_ops;
......@@ -141,7 +140,7 @@ TEST(Analyzer_MM_DNN, fuse_statis) {
// Compare result of NativeConfig and AnalysisConfig
void compare(bool use_mkldnn = false) {
contrib::AnalysisConfig cfg;
AnalysisConfig cfg;
SetConfig(&cfg);
if (use_mkldnn) {
......
......@@ -16,7 +16,6 @@
namespace paddle {
namespace inference {
using contrib::AnalysisConfig;
struct DataRecord {
std::vector<std::vector<int64_t>> word, mention;
......@@ -76,7 +75,7 @@ void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data) {
}
}
void SetConfig(contrib::AnalysisConfig *cfg, bool memory_load = false) {
void SetConfig(AnalysisConfig *cfg, bool memory_load = false) {
if (memory_load) {
std::string buffer_prog, buffer_param;
ReadBinaryFile(FLAGS_infer_model + "/__model__", &buffer_prog);
......@@ -105,7 +104,7 @@ void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) {
// Easy for profiling independently.
void profile(bool memory_load = false) {
contrib::AnalysisConfig cfg;
AnalysisConfig cfg;
SetConfig(&cfg, memory_load);
std::vector<PaddleTensor> outputs;
......@@ -136,7 +135,7 @@ TEST(Analyzer_Chinese_ner, profile_memory_load) {
// Check the fuse status
TEST(Analyzer_Chinese_ner, fuse_statis) {
contrib::AnalysisConfig cfg;
AnalysisConfig cfg;
SetConfig(&cfg);
int num_ops;
......@@ -152,7 +151,7 @@ TEST(Analyzer_Chinese_ner, fuse_statis) {
// Compare result of NativeConfig and AnalysisConfig
TEST(Analyzer_Chinese_ner, compare) {
contrib::AnalysisConfig cfg;
AnalysisConfig cfg;
SetConfig(&cfg);
std::vector<std::vector<PaddleTensor>> input_slots_all;
......
......@@ -16,7 +16,6 @@
namespace paddle {
namespace inference {
using contrib::AnalysisConfig;
struct DataRecord {
std::vector<std::vector<int64_t>> query_basic, query_phrase, title_basic,
......@@ -103,7 +102,7 @@ void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data,
}
}
void SetConfig(contrib::AnalysisConfig *cfg) {
void SetConfig(AnalysisConfig *cfg) {
cfg->SetModel(FLAGS_infer_model);
cfg->DisableGpu();
cfg->SwitchSpecifyInputNames();
......@@ -123,7 +122,7 @@ void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) {
// Easy for profiling independently.
TEST(Analyzer_Pyramid_DNN, profile) {
contrib::AnalysisConfig cfg;
AnalysisConfig cfg;
SetConfig(&cfg);
std::vector<PaddleTensor> outputs;
......@@ -147,7 +146,7 @@ TEST(Analyzer_Pyramid_DNN, profile) {
// Check the fuse status
TEST(Analyzer_Pyramid_DNN, fuse_statis) {
contrib::AnalysisConfig cfg;
AnalysisConfig cfg;
SetConfig(&cfg);
int num_ops;
......@@ -158,7 +157,7 @@ TEST(Analyzer_Pyramid_DNN, fuse_statis) {
// Compare result of NativeConfig and AnalysisConfig
TEST(Analyzer_Pyramid_DNN, compare) {
contrib::AnalysisConfig cfg;
AnalysisConfig cfg;
SetConfig(&cfg);
std::vector<std::vector<PaddleTensor>> input_slots_all;
......
......@@ -20,7 +20,6 @@ namespace paddle {
namespace inference {
using namespace framework; // NOLINT
using namespace contrib; // NOLINT
struct DataRecord {
std::vector<std::vector<std::vector<float>>> link_step_data_all;
......@@ -223,7 +222,7 @@ void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) {
// Easy for profiling independently.
TEST(Analyzer_rnn1, profile) {
contrib::AnalysisConfig cfg;
AnalysisConfig cfg;
SetConfig(&cfg);
cfg.DisableGpu();
cfg.SwitchIrDebug();
......@@ -237,7 +236,7 @@ TEST(Analyzer_rnn1, profile) {
// Check the fuse status
TEST(Analyzer_rnn1, fuse_statis) {
contrib::AnalysisConfig cfg;
AnalysisConfig cfg;
SetConfig(&cfg);
int num_ops;
......@@ -254,7 +253,7 @@ TEST(Analyzer_rnn1, fuse_statis) {
// Compare result of NativeConfig and AnalysisConfig
TEST(Analyzer_rnn1, compare) {
contrib::AnalysisConfig cfg;
AnalysisConfig cfg;
SetConfig(&cfg);
std::vector<std::vector<PaddleTensor>> input_slots_all;
......@@ -276,7 +275,7 @@ TEST(Analyzer_rnn1, compare_determine) {
// Test Multi-Thread.
TEST(Analyzer_rnn1, multi_thread) {
contrib::AnalysisConfig cfg;
AnalysisConfig cfg;
SetConfig(&cfg);
std::vector<PaddleTensor> outputs;
......
......@@ -20,7 +20,6 @@ limitations under the License. */
namespace paddle {
namespace inference {
namespace analysis {
using contrib::AnalysisConfig;
struct Record {
std::vector<float> data;
......
......@@ -58,9 +58,8 @@ std::ostream &operator<<(std::ostream &os, const NativeConfig &config) {
return os;
}
std::ostream &operator<<(std::ostream &os,
const contrib::AnalysisConfig &config) {
os << GenSpaces(num_spaces) << "contrib::AnalysisConfig {\n";
std::ostream &operator<<(std::ostream &os, const AnalysisConfig &config) {
os << GenSpaces(num_spaces) << "AnalysisConfig {\n";
num_spaces++;
os << config.ToNativeConfig();
if (!config.model_from_memory()) {
......
......@@ -65,7 +65,7 @@ float Random(float low, float high) {
void PrintConfig(const PaddlePredictor::Config *config, bool use_analysis) {
const auto *analysis_config =
reinterpret_cast<const contrib::AnalysisConfig *>(config);
reinterpret_cast<const AnalysisConfig *>(config);
if (use_analysis) {
LOG(INFO) << *analysis_config;
return;
......@@ -109,9 +109,9 @@ void CompareResult(const std::vector<PaddleTensor> &outputs,
std::unique_ptr<PaddlePredictor> CreateTestPredictor(
const PaddlePredictor::Config *config, bool use_analysis = true) {
const auto *analysis_config =
reinterpret_cast<const contrib::AnalysisConfig *>(config);
reinterpret_cast<const AnalysisConfig *>(config);
if (use_analysis) {
return CreatePaddlePredictor<contrib::AnalysisConfig>(*analysis_config);
return CreatePaddlePredictor<AnalysisConfig>(*analysis_config);
}
auto native_config = analysis_config->ToNativeConfig();
return CreatePaddlePredictor<NativeConfig>(native_config);
......
......@@ -42,9 +42,9 @@ void SetConfig(ConfigType* config, std::string model_dir, bool use_gpu,
}
template <>
void SetConfig<contrib::AnalysisConfig>(contrib::AnalysisConfig* config,
std::string model_dir, bool use_gpu,
bool use_tensorrt, int batch_size) {
void SetConfig<AnalysisConfig>(AnalysisConfig* config, std::string model_dir,
bool use_gpu, bool use_tensorrt,
int batch_size) {
if (!FLAGS_prog_filename.empty() && !FLAGS_param_filename.empty()) {
config->SetModel(model_dir + "/" + FLAGS_prog_filename,
model_dir + "/" + FLAGS_param_filename);
......@@ -75,11 +75,11 @@ void profile(std::string model_dir, bool use_analysis, bool use_tensorrt) {
std::vector<PaddleTensor> outputs;
if (use_analysis || use_tensorrt) {
contrib::AnalysisConfig config;
AnalysisConfig config;
config.EnableUseGpu(100, 0);
config.pass_builder()->TurnOnDebug();
SetConfig<contrib::AnalysisConfig>(&config, model_dir, true, use_tensorrt,
FLAGS_batch_size);
SetConfig<AnalysisConfig>(&config, model_dir, true, use_tensorrt,
FLAGS_batch_size);
TestPrediction(reinterpret_cast<PaddlePredictor::Config*>(&config),
inputs_all, &outputs, FLAGS_num_threads, true);
} else {
......@@ -99,18 +99,18 @@ void compare(std::string model_dir, bool use_tensorrt) {
SetFakeImageInput(&inputs_all, model_dir, false, "__model__", "");
}
contrib::AnalysisConfig analysis_config;
SetConfig<contrib::AnalysisConfig>(&analysis_config, model_dir, true,
use_tensorrt, FLAGS_batch_size);
AnalysisConfig analysis_config;
SetConfig<AnalysisConfig>(&analysis_config, model_dir, true, use_tensorrt,
FLAGS_batch_size);
CompareNativeAndAnalysis(
reinterpret_cast<const PaddlePredictor::Config*>(&analysis_config),
inputs_all);
}
void compare_continuous_input(std::string model_dir, bool use_tensorrt) {
contrib::AnalysisConfig analysis_config;
SetConfig<contrib::AnalysisConfig>(&analysis_config, model_dir, true,
use_tensorrt, FLAGS_batch_size);
AnalysisConfig analysis_config;
SetConfig<AnalysisConfig>(&analysis_config, model_dir, true, use_tensorrt,
FLAGS_batch_size);
auto config =
reinterpret_cast<const PaddlePredictor::Config*>(&analysis_config);
auto native_pred = CreateTestPredictor(config, false);
......
cc_library(benchmark SRCS benchmark.cc DEPS enforce)
cc_test(test_benchmark SRCS benchmark_tester.cc DEPS benchmark)
cc_binary(visualizer SRCS visualizer.cc DEPS analysis
paddle_pass_builder ir_pass_manager pass graph_viz_pass analysis_passes)
#cc_binary(visualizer SRCS visualizer.cc DEPS analysis
# paddle_pass_builder ir_pass_manager pass graph_viz_pass analysis_passes)
......@@ -13,9 +13,15 @@
// limitations under the License.
#include "paddle/fluid/memory/allocation/legacy_allocator.h"
#include <string>
#include <utility>
#include <vector>
#ifdef PADDLE_WITH_JEMALLOC
#include <jemalloc/jemalloc.h>
#endif
#include "glog/logging.h"
#include "paddle/fluid/memory/detail/buddy_allocator.h"
#include "paddle/fluid/memory/detail/system_allocator.h"
......@@ -95,7 +101,11 @@ struct NaiveAllocator {
template <>
void *Alloc<platform::CPUPlace>(const platform::CPUPlace &place, size_t size) {
VLOG(10) << "Allocate " << size << " bytes on " << platform::Place(place);
#ifdef PADDLE_WITH_JEMALLOC
void *p = malloc(size);
#else
void *p = GetCPUBuddyAllocator()->Alloc(size);
#endif
if (FLAGS_init_allocated_mem) {
memset(p, 0xEF, size);
}
......@@ -107,12 +117,21 @@ template <>
void Free<platform::CPUPlace>(const platform::CPUPlace &place, void *p,
size_t size) {
VLOG(10) << "Free pointer=" << p << " on " << platform::Place(place);
#ifdef PADDLE_WITH_JEMALLOC
free(p);
#else
GetCPUBuddyAllocator()->Free(p);
#endif
}
template <>
size_t Used<platform::CPUPlace>(const platform::CPUPlace &place) {
#ifdef PADDLE_WITH_JEMALLOC
// fake the result of used memory when PADDLE_WITH_JEMALLOC is ON
return 0U;
#else
return GetCPUBuddyAllocator()->Used();
#endif
}
#ifdef PADDLE_WITH_CUDA
......
......@@ -9,9 +9,9 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
limitations under the License. */
#include <glog/logging.h>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/detection/poly_util.h"
......@@ -35,30 +35,45 @@ class MultiClassNMSOp : public framework::OperatorWithKernel {
auto box_dims = ctx->GetInputDim("BBoxes");
auto score_dims = ctx->GetInputDim("Scores");
auto score_size = score_dims.size();
if (ctx->IsRuntime()) {
PADDLE_ENFORCE(score_size == 2 || score_size == 3,
"The rank of Input(Scores) must be 2 or 3");
PADDLE_ENFORCE_EQ(box_dims.size(), 3,
"The rank of Input(BBoxes) must be 3.");
PADDLE_ENFORCE_EQ(score_dims.size(), 3,
"The rank of Input(Scores) must be 3.");
PADDLE_ENFORCE(box_dims[2] == 4 || box_dims[2] == 8 ||
box_dims[2] == 16 || box_dims[2] == 24 ||
box_dims[2] == 32,
"The 2nd dimension of Input(BBoxes) must be 4 or 8, "
"represents the layout of coordinate "
"[xmin, ymin, xmax, ymax] or "
"4 points: [x1, y1, x2, y2, x3, y3, x4, y4] or "
"8 points: [xi, yi] i= 1,2,...,8 or "
"12 points: [xi, yi] i= 1,2,...,12 or "
"16 points: [xi, yi] i= 1,2,...,16");
PADDLE_ENFORCE_EQ(box_dims[1], score_dims[2],
"The 1st dimensiong of Input(BBoxes) must be equal to "
"3rd dimension of Input(Scores), which represents the "
"predicted bboxes.");
"The rank of Input(BBoxes) must be 3");
if (score_size == 3) {
PADDLE_ENFORCE(box_dims[2] == 4 || box_dims[2] == 8 ||
box_dims[2] == 16 || box_dims[2] == 24 ||
box_dims[2] == 32,
"The last dimension of Input(BBoxes) must be 4 or 8, "
"represents the layout of coordinate "
"[xmin, ymin, xmax, ymax] or "
"4 points: [x1, y1, x2, y2, x3, y3, x4, y4] or "
"8 points: [xi, yi] i= 1,2,...,8 or "
"12 points: [xi, yi] i= 1,2,...,12 or "
"16 points: [xi, yi] i= 1,2,...,16");
PADDLE_ENFORCE_EQ(
box_dims[1], score_dims[2],
"The 2nd dimension of Input(BBoxes) must be equal to "
"last dimension of Input(Scores), which represents the "
"predicted bboxes.");
} else {
PADDLE_ENFORCE(box_dims[2] == 4,
"The last dimension of Input(BBoxes) must be 4");
PADDLE_ENFORCE_EQ(box_dims[1], score_dims[1],
"The 2nd dimension of Input(BBoxes)"
"must be equal to the 2nd dimension"
" of Input(Scores)");
}
}
// Here the box_dims[0] is not the real dimension of output.
// It will be rewritten in the computing kernel.
ctx->SetOutputDim("Out", {box_dims[1], box_dims[2] + 2});
if (score_size == 3) {
ctx->SetOutputDim("Out", {box_dims[1], box_dims[2] + 2});
} else {
ctx->SetOutputDim("Out", {-1, box_dims[2] + 2});
}
}
protected:
......@@ -123,8 +138,9 @@ static inline T JaccardOverlap(const T* box1, const T* box2,
const T inter_ymin = std::max(box1[1], box2[1]);
const T inter_xmax = std::min(box1[2], box2[2]);
const T inter_ymax = std::min(box1[3], box2[3]);
const T inter_w = inter_xmax - inter_xmin;
const T inter_h = inter_ymax - inter_ymin;
T norm = normalized ? static_cast<T>(0.) : static_cast<T>(1.);
T inter_w = inter_xmax - inter_xmin + norm;
T inter_h = inter_ymax - inter_ymin + norm;
const T inter_area = inter_w * inter_h;
const T bbox1_area = BBoxArea<T>(box1, normalized);
const T bbox2_area = BBoxArea<T>(box2, normalized);
......@@ -139,7 +155,7 @@ T PolyIoU(const T* box1, const T* box2, const size_t box_size,
T bbox2_area = PolyArea<T>(box2, box_size, normalized);
T inter_area = PolyOverlapArea<T>(box1, box2, box_size, normalized);
if (bbox1_area == 0 || bbox2_area == 0 || inter_area == 0) {
// If coordinate values are is invalid
// If coordinate values are invalid
// if area size <= 0, return 0.
return T(0.);
} else {
......@@ -147,12 +163,35 @@ T PolyIoU(const T* box1, const T* box2, const size_t box_size,
}
}
template <class T>
void SliceOneClass(const platform::DeviceContext& ctx,
const framework::Tensor& items, const int class_id,
framework::Tensor* one_class_item) {
T* item_data = one_class_item->mutable_data<T>(ctx.GetPlace());
const T* items_data = items.data<T>();
const int64_t num_item = items.dims()[0];
const int class_num = items.dims()[1];
if (items.dims().size() == 3) {
int item_size = items.dims()[2];
for (int i = 0; i < num_item; ++i) {
std::memcpy(item_data + i * item_size,
items_data + i * class_num * item_size + class_id * item_size,
sizeof(T) * item_size);
}
} else {
for (int i = 0; i < num_item; ++i) {
item_data[i] = items_data[i * class_num + class_id];
}
}
}
template <typename T>
class MultiClassNMSKernel : public framework::OpKernel<T> {
public:
void NMSFast(const Tensor& bbox, const Tensor& scores,
const T score_threshold, const T nms_threshold, const T eta,
const int64_t top_k, std::vector<int>* selected_indices) const {
const int64_t top_k, std::vector<int>* selected_indices,
const bool normalized) const {
// The total boxes for each instance.
int64_t num_boxes = bbox.dims()[0];
// 4: [xmin ymin xmax ymax]
......@@ -178,15 +217,16 @@ class MultiClassNMSKernel : public framework::OpKernel<T> {
T overlap = T(0.);
// 4: [xmin ymin xmax ymax]
if (box_size == 4) {
overlap = JaccardOverlap<T>(bbox_data + idx * box_size,
bbox_data + kept_idx * box_size, true);
overlap =
JaccardOverlap<T>(bbox_data + idx * box_size,
bbox_data + kept_idx * box_size, normalized);
}
// 8: [x1 y1 x2 y2 x3 y3 x4 y4] or 16, 24, 32
if (box_size == 8 || box_size == 16 || box_size == 24 ||
box_size == 32) {
overlap =
PolyIoU<T>(bbox_data + idx * box_size,
bbox_data + kept_idx * box_size, box_size, true);
overlap = PolyIoU<T>(bbox_data + idx * box_size,
bbox_data + kept_idx * box_size, box_size,
normalized);
}
keep = overlap <= adaptive_threshold;
} else {
......@@ -205,37 +245,58 @@ class MultiClassNMSKernel : public framework::OpKernel<T> {
void MultiClassNMS(const framework::ExecutionContext& ctx,
const Tensor& scores, const Tensor& bboxes,
const int scores_size,
std::map<int, std::vector<int>>* indices,
int* num_nmsed_out) const {
int64_t background_label = ctx.Attr<int>("background_label");
int64_t nms_top_k = ctx.Attr<int>("nms_top_k");
int64_t keep_top_k = ctx.Attr<int>("keep_top_k");
bool normalized = ctx.Attr<bool>("normalized");
T nms_threshold = static_cast<T>(ctx.Attr<float>("nms_threshold"));
T nms_eta = static_cast<T>(ctx.Attr<float>("nms_eta"));
T score_threshold = static_cast<T>(ctx.Attr<float>("score_threshold"));
auto& dev_ctx = ctx.template device_context<platform::CPUDeviceContext>();
int64_t class_num = scores.dims()[0];
int64_t predict_dim = scores.dims()[1];
int num_det = 0;
int64_t class_num = scores_size == 3 ? scores.dims()[0] : scores.dims()[1];
Tensor bbox_slice, score_slice;
for (int64_t c = 0; c < class_num; ++c) {
if (c == background_label) continue;
Tensor score = scores.Slice(c, c + 1);
NMSFast(bboxes, score, score_threshold, nms_threshold, nms_eta, nms_top_k,
&((*indices)[c]));
if (scores_size == 3) {
score_slice = scores.Slice(c, c + 1);
bbox_slice = bboxes;
} else {
score_slice.Resize({scores.dims()[0], 1});
bbox_slice.Resize({scores.dims()[0], 4});
SliceOneClass<T>(dev_ctx, scores, c, &score_slice);
SliceOneClass<T>(dev_ctx, bboxes, c, &bbox_slice);
}
NMSFast(bbox_slice, score_slice, score_threshold, nms_threshold, nms_eta,
nms_top_k, &((*indices)[c]), normalized);
if (scores_size == 2) {
std::stable_sort((*indices)[c].begin(), (*indices)[c].end());
}
num_det += (*indices)[c].size();
}
*num_nmsed_out = num_det;
const T* scores_data = scores.data<T>();
if (keep_top_k > -1 && num_det > keep_top_k) {
const T* sdata;
std::vector<std::pair<float, std::pair<int, int>>> score_index_pairs;
for (const auto& it : *indices) {
int label = it.first;
const T* sdata = scores_data + label * predict_dim;
if (scores_size == 3) {
sdata = scores_data + label * scores.dims()[1];
} else {
score_slice.Resize({scores.dims()[0], 1});
SliceOneClass<T>(dev_ctx, scores, label, &score_slice);
sdata = score_slice.data<T>();
}
const std::vector<int>& label_indices = it.second;
for (size_t j = 0; j < label_indices.size(); ++j) {
int idx = label_indices[j];
PADDLE_ENFORCE_LT(idx, predict_dim);
score_index_pairs.push_back(
std::make_pair(sdata[idx], std::make_pair(label, idx)));
}
......@@ -252,31 +313,55 @@ class MultiClassNMSKernel : public framework::OpKernel<T> {
int idx = score_index_pairs[j].second.second;
new_indices[label].push_back(idx);
}
if (scores_size == 2) {
for (const auto& it : new_indices) {
int label = it.first;
std::stable_sort(new_indices[label].begin(),
new_indices[label].end());
}
}
new_indices.swap(*indices);
*num_nmsed_out = keep_top_k;
}
}
void MultiClassOutput(const Tensor& scores, const Tensor& bboxes,
void MultiClassOutput(const platform::DeviceContext& ctx,
const Tensor& scores, const Tensor& bboxes,
const std::map<int, std::vector<int>>& selected_indices,
Tensor* outs) const {
const int scores_size, Tensor* outs) const {
int64_t class_num = scores.dims()[1];
int64_t predict_dim = scores.dims()[1];
int64_t box_size = bboxes.dims()[1];
int64_t out_dim = bboxes.dims()[1] + 2;
if (scores_size == 2) {
box_size = bboxes.dims()[2];
}
int64_t out_dim = box_size + 2;
auto* scores_data = scores.data<T>();
auto* bboxes_data = bboxes.data<T>();
auto* odata = outs->data<T>();
const T* sdata;
Tensor bbox;
bbox.Resize({scores.dims()[0], box_size});
int count = 0;
for (const auto& it : selected_indices) {
int label = it.first;
const T* sdata = scores_data + label * predict_dim;
const std::vector<int>& indices = it.second;
if (scores_size == 2) {
SliceOneClass<T>(ctx, bboxes, label, &bbox);
} else {
sdata = scores_data + label * predict_dim;
}
for (size_t j = 0; j < indices.size(); ++j) {
int idx = indices[j];
const T* bdata = bboxes_data + idx * box_size;
odata[count * out_dim] = label; // label
odata[count * out_dim + 1] = sdata[idx]; // score
odata[count * out_dim] = label; // label
const T* bdata;
if (scores_size == 3) {
bdata = bboxes_data + idx * box_size;
odata[count * out_dim + 1] = sdata[idx]; // score
} else {
bdata = bbox.data<T>() + idx * box_size;
odata[count * out_dim + 1] = *(scores_data + idx * class_num + label);
}
// xmin, ymin, xmax, ymax or multi-points coordinates
std::memcpy(odata + count * out_dim + 2, bdata, box_size * sizeof(T));
count++;
......@@ -285,52 +370,64 @@ class MultiClassNMSKernel : public framework::OpKernel<T> {
}
void Compute(const framework::ExecutionContext& ctx) const override {
auto* boxes = ctx.Input<Tensor>("BBoxes");
auto* scores = ctx.Input<Tensor>("Scores");
auto* boxes = ctx.Input<LoDTensor>("BBoxes");
auto* scores = ctx.Input<LoDTensor>("Scores");
auto* outs = ctx.Output<LoDTensor>("Out");
auto score_dims = scores->dims();
int64_t batch_size = score_dims[0];
int64_t class_num = score_dims[1];
int64_t predict_dim = score_dims[2];
int64_t box_dim = boxes->dims()[2];
int64_t out_dim = boxes->dims()[2] + 2;
auto score_size = score_dims.size();
auto& dev_ctx = ctx.template device_context<platform::CPUDeviceContext>();
std::vector<std::map<int, std::vector<int>>> all_indices;
std::vector<size_t> batch_starts = {0};
for (int64_t i = 0; i < batch_size; ++i) {
Tensor ins_score = scores->Slice(i, i + 1);
ins_score.Resize({class_num, predict_dim});
Tensor ins_boxes = boxes->Slice(i, i + 1);
ins_boxes.Resize({predict_dim, box_dim});
int64_t batch_size = score_dims[0];
int64_t box_dim = boxes->dims()[2];
int64_t out_dim = box_dim + 2;
int num_nmsed_out = 0;
Tensor boxes_slice, scores_slice;
int n = score_size == 3 ? batch_size : boxes->lod().back().size() - 1;
for (int i = 0; i < n; ++i) {
if (score_size == 3) {
scores_slice = scores->Slice(i, i + 1);
scores_slice.Resize({score_dims[1], score_dims[2]});
boxes_slice = boxes->Slice(i, i + 1);
boxes_slice.Resize({score_dims[2], box_dim});
} else {
auto boxes_lod = boxes->lod().back();
scores_slice = scores->Slice(boxes_lod[i], boxes_lod[i + 1]);
boxes_slice = boxes->Slice(boxes_lod[i], boxes_lod[i + 1]);
}
std::map<int, std::vector<int>> indices;
int num_nmsed_out = 0;
MultiClassNMS(ctx, ins_score, ins_boxes, &indices, &num_nmsed_out);
MultiClassNMS(ctx, scores_slice, boxes_slice, score_size, &indices,
&num_nmsed_out);
all_indices.push_back(indices);
batch_starts.push_back(batch_starts.back() + num_nmsed_out);
}
int num_kept = batch_starts.back();
if (num_kept == 0) {
T* od = outs->mutable_data<T>({1}, ctx.GetPlace());
T* od = outs->mutable_data<T>({1, 1}, ctx.GetPlace());
od[0] = -1;
batch_starts = {0, 1};
} else {
outs->mutable_data<T>({num_kept, out_dim}, ctx.GetPlace());
for (int64_t i = 0; i < batch_size; ++i) {
Tensor ins_score = scores->Slice(i, i + 1);
ins_score.Resize({class_num, predict_dim});
Tensor ins_boxes = boxes->Slice(i, i + 1);
ins_boxes.Resize({predict_dim, box_dim});
for (int i = 0; i < n; ++i) {
if (score_size == 3) {
scores_slice = scores->Slice(i, i + 1);
boxes_slice = boxes->Slice(i, i + 1);
scores_slice.Resize({score_dims[1], score_dims[2]});
boxes_slice.Resize({score_dims[2], box_dim});
} else {
auto boxes_lod = boxes->lod().back();
scores_slice = scores->Slice(boxes_lod[i], boxes_lod[i + 1]);
boxes_slice = boxes->Slice(boxes_lod[i], boxes_lod[i + 1]);
}
int64_t s = batch_starts[i];
int64_t e = batch_starts[i + 1];
if (e > s) {
Tensor out = outs->Slice(s, e);
MultiClassOutput(ins_score, ins_boxes, all_indices[i], &out);
MultiClassOutput(dev_ctx, scores_slice, boxes_slice, all_indices[i],
score_dims.size(), &out);
}
}
}
......@@ -346,17 +443,24 @@ class MultiClassNMSOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("BBoxes",
"(Tensor) A 3-D Tensor with shape "
"Two types of bboxes are supported:"
"1. (Tensor) A 3-D Tensor with shape "
"[N, M, 4 or 8 16 24 32] represents the "
"predicted locations of M bounding bboxes, N is the batch size. "
"Each bounding box has four coordinate values and the layout is "
"[xmin, ymin, xmax, ymax], when box size equals to 4.");
"[xmin, ymin, xmax, ymax], when box size equals to 4."
"2. (LoDTensor) A 3-D Tensor with shape [M, C, 4]"
"M is the number of bounding boxes, C is the class number");
AddInput("Scores",
"(Tensor) A 3-D Tensor with shape [N, C, M] represents the "
"Two types of scores are supported:"
"1. (Tensor) A 3-D Tensor with shape [N, C, M] represents the "
"predicted confidence predictions. N is the batch size, C is the "
"class number, M is number of bounding boxes. For each category "
"there are total M scores which corresponding M bounding boxes. "
" Please note, M is equal to the 1st dimension of BBoxes. ");
" Please note, M is equal to the 2nd dimension of BBoxes. "
"2. (LoDTensor) A 2-D LoDTensor with shape [M, C]. "
"M is the number of bbox, C is the class number. In this case, "
"Input BBoxes should be the second case with shape [M, C, 4].");
AddAttr<int>(
"background_label",
"(int, defalut: 0) "
......@@ -384,6 +488,10 @@ class MultiClassNMSOpMaker : public framework::OpProtoAndCheckerMaker {
"(int64_t) "
"Number of total bboxes to be kept per image after NMS "
"step. -1 means keeping all bboxes after NMS step.");
AddAttr<bool>("normalized",
"(bool, default true) "
"Whether detections are normalized.")
.SetDefault(true);
AddOutput("Out",
"(LoDTensor) A 2-D LoDTensor with shape [No, 6] represents the "
"detections. Each row has 6 values: "
......@@ -399,24 +507,21 @@ class MultiClassNMSOpMaker : public framework::OpProtoAndCheckerMaker {
AddComment(R"DOC(
This operator is to do multi-class non maximum suppression (NMS) on a batched
of boxes and scores.
In the NMS step, this operator greedily selects a subset of detection bounding
boxes that have high scores larger than score_threshold, if providing this
threshold, then selects the largest nms_top_k confidences scores if nms_top_k
is larger than -1. Then this operator pruns away boxes that have high IOU
(intersection over union) overlap with already selected boxes by adaptive
threshold NMS based on parameters of nms_threshold and nms_eta.
Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
per image if keep_top_k is larger than -1.
This operator support multi-class and batched inputs. It applying NMS
independently for each class. The outputs is a 2-D LoDTenosr, for each
image, the offsets in first dimension of LoDTensor are called LoD, the number
of offset is N + 1, where N is the batch size. If LoD[i + 1] - LoD[i] == 0,
means there is no detected bbox for this image. If there is no detected boxes
for all images, all the elements in LoD are 0, and the Out only contains one
value which is -1.
for all images, all the elements in LoD are set to {1}, and the Out only
contains one value which is -1.
)DOC");
}
};
......
......@@ -33,7 +33,6 @@ using paddle::PaddlePredictor;
using paddle::NativeConfig;
using paddle::NativePaddlePredictor;
using paddle::AnalysisPredictor;
using paddle::contrib::AnalysisConfig;
static void BindPaddleDType(py::module *m);
static void BindPaddleBuf(py::module *m);
......
......@@ -445,11 +445,16 @@ class Variable(object):
@property
def _stop_gradient(self):
return self._ivar.stop_gradient
if _in_imperative_mode():
return self._ivar.stop_gradient
else:
return self.stop_gradient
@_stop_gradient.setter
def _stop_gradient(self, s):
self._ivar.stop_gradient = s
if _in_imperative_mode():
self._ivar.stop_gradient = s
self.stop_gradient = s
@property
def persistable(self):
......@@ -1310,6 +1315,9 @@ class Block(object):
outputs=kwargs.get("outputs", None),
attrs=kwargs.get("attrs", None))
self.ops.append(op)
# TODO(minqiyang): add stop_gradient support in static mode too.
# currently, we only support stop_gradient in imperative mode.
self._trace_op(op, kwargs.get("stop_gradient", False))
return op
......
......@@ -15,6 +15,7 @@
import contextlib
import sys
import numpy as np
import collections
from paddle.fluid import core
from paddle.fluid import framework
......@@ -31,7 +32,23 @@ class Layer(core.Layer):
self._dtype = dtype
def parameters(self):
return []
params = []
for key in self.__dict__.keys():
value = self.__dict__[key]
if isinstance(value, framework.Parameter):
params.append(value)
elif isinstance(value, core.Layer):
params.extend(value.parameters())
elif isinstance(value, collections.Container):
if len(value) == 0:
continue
if isinstance(value[0], framework.Parameter):
params.extend(value)
elif isinstance(value[0], core.Layer):
for v in value:
params.extend(v.parameters())
return params
def clear_gradients(self):
for p in self.parameters():
......
......@@ -22,13 +22,7 @@ from . import layers
from ..framework import Variable, OpProtoHolder
from ..param_attr import ParamAttr
from ..initializer import Normal, Constant
__all__ = [
'Conv2D',
'Pool2D',
'FC',
'BatchNorm',
]
__all__ = ['Conv2D', 'Pool2D', 'FC', 'BatchNorm', 'Embedding']
class Conv2D(layers.Layer):
......@@ -332,21 +326,16 @@ class BatchNorm(layers.Layer):
shape=param_shape,
dtype=self._dtype,
default_initializer=Constant(1.0))
# TODO(minqiyang): change stop_gradient sign to trainable to align with static graph
# # setting stop_gradient=True to reduce computation
# if use_global_stats and self._helper.param_attr.learning_rate == 0.:
# self._scale.stop_gradient = True
if use_global_stats and self._helper.param_attr.learning_rate == 0.:
self._scale._stop_gradient = True
self._bias = self._helper.create_parameter(
attr=self._helper.bias_attr,
shape=param_shape,
dtype=self._dtype,
is_bias=True)
# TODO(minqiyang): change stop_gradient sign to trainable to align with static graph
# # setting stop_gradient=True to reduce computation
# if use_global_stats and self._helper.bias_attr.learning_rate == 0.:
# self._bias.stop_gradient = True
if use_global_stats and self._helper.bias_attr.learning_rate == 0.:
self._bias._stop_gradient = True
self._mean = self._helper.create_parameter(
attr=ParamAttr(
......@@ -356,7 +345,7 @@ class BatchNorm(layers.Layer):
do_model_average=do_model_average_for_mean_and_var),
shape=param_shape,
dtype=self._dtype)
self._mean.stop_gradient = True
self._mean._stop_gradient = True
self._variance = self._helper.create_parameter(
attr=ParamAttr(
......@@ -366,7 +355,7 @@ class BatchNorm(layers.Layer):
do_model_average=do_model_average_for_mean_and_var),
shape=param_shape,
dtype=self._dtype)
self._variance.stop_gradient = True
self._variance._stop_gradient = True
self._in_place = in_place
self._momentum = momentum
......@@ -419,3 +408,91 @@ class BatchNorm(layers.Layer):
# Currently, we don't support inplace in imperative mode
return self._helper.append_activation(batch_norm_out)
class Embedding(layers.Layer):
"""
**Embedding Layer**
This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
a lookup table. The result of this lookup is the embedding of each ID in the
:attr:`input`.
All the input variables are passed in as local variables to the LayerHelper
constructor.
Args:
size(tuple|list): The shape of the look up table parameter. It should
have two elements which indicate the size of the dictionary of
embeddings and the size of each embedding vector respectively.
is_sparse(bool): The flag indicating whether to use sparse update.
is_distributed(bool): Whether to run lookup table from remote parameter server.
padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
Otherwise the given :attr:`padding_idx` indicates padding the output
with zeros whenever lookup encounters it in :attr:`input`. If
:math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
:math:`size[0] + dim`.
param_attr(ParamAttr): Parameters for this layer
dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Returns:
Variable: The tensor variable storing the embeddings of the \
supplied inputs.
Examples:
.. code-block:: python
dict_size = len(dataset.ids)
input = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
embedding = fluid.imperative.Embedding(size=[dict_size, 16])
fc = embedding(input)
"""
def __init__(self,
size,
is_sparse=False,
is_distributed=False,
padding_idx=None,
param_attr=None,
dtype='float32'):
super(Embedding, self).__init__()
self._size = size
self._is_sparse = is_sparse
self._is_distributed = is_distributed
self._padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
size[0] + padding_idx)
self._param_attr = param_attr
self._dtype = dtype
self._remote_prefetch = self._is_sparse and (not self._is_distributed)
if self._remote_prefetch:
assert self._is_sparse is True and self._is_distributed is False
from ..layer_helper import LayerHelper
self._helper = LayerHelper('embedding', param_attr=param_attr)
self._w = self._helper.create_parameter(
attr=self._param_attr,
shape=self._size,
dtype=self._dtype,
is_bias=False)
def parameters(self):
return [self._w]
def forward(self, input):
out = self._helper.create_variable_for_type_inference(self._dtype)
self._helper.append_op(
type='lookup_table',
inputs={'Ids': input,
'W': self._w},
outputs={'Out': out},
attrs={
'is_sparse': self._is_sparse,
'is_distributed': self._is_distributed,
'remote_prefetch': self._remote_prefetch,
'padding_idx': self._padding_idx
})
return out
......@@ -300,6 +300,17 @@ class LayerHelper(object):
attr.name = unique_name.generate(".".join([self.name, suffix]))
if default_initializer is None and attr.initializer is None:
if isinstance(dtype, core.VarDesc.VarType):
if dtype != core.VarDesc.VarType.FP32 and \
dtype != core.VarDesc.VarType.FP64:
raise TypeError(
"Can not create parameter with default initializer when dtype is not float type. Set default_initializer to fit the parameter dtype!"
)
else:
if not (dtype.startswith("float") or dtype == "double"):
raise TypeError(
"Can not create parameter with default initializer when dtype is not float type. Set default_initializer to fit the parameter dtype!"
)
if is_bias:
attr._set_default_bias_initializer()
else:
......
......@@ -49,6 +49,7 @@ __all__ = [
'box_coder',
'polygon_box_transform',
'yolov3_loss',
'multiclass_nms',
]
......@@ -262,8 +263,10 @@ def detection_output(loc,
number is N + 1, N is the batch size. The i-th image has
`LoD[i + 1] - LoD[i]` detected results, if it is 0, the i-th image
has no detected results. If all images have not detected results,
all the elements in LoD are 0, and output tensor only contains one
LoD will be set to {1}, and output tensor only contains one
value, which is -1.
(After version 1.3, when no boxes detected, the lod is changed
from {0} to {1}.)
Examples:
.. code-block:: python
......@@ -1960,3 +1963,119 @@ def generate_proposals(scores,
rpn_roi_probs.stop_gradient = True
return rpn_rois, rpn_roi_probs
def multiclass_nms(bboxes,
scores,
score_threshold,
nms_top_k,
keep_top_k,
nms_threshold=0.3,
normalized=True,
nms_eta=1.,
background_label=0,
name=None):
"""
**Multiclass NMS**
This operator is to do multi-class non maximum suppression (NMS) on
boxes and scores.
In the NMS step, this operator greedily selects a subset of detection bounding
boxes that have high scores larger than score_threshold, if providing this
threshold, then selects the largest nms_top_k confidences scores if nms_top_k
is larger than -1. Then this operator pruns away boxes that have high IOU
(intersection over union) overlap with already selected boxes by adaptive
threshold NMS based on parameters of nms_threshold and nms_eta.
Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
per image if keep_top_k is larger than -1.
Args:
bboxes (Variable): Two types of bboxes are supported:
1. (Tensor) A 3-D Tensor with shape
[N, M, 4 or 8 16 24 32] represents the
predicted locations of M bounding bboxes,
N is the batch size. Each bounding box has four
coordinate values and the layout is
[xmin, ymin, xmax, ymax], when box size equals to 4.
2. (LoDTensor) A 3-D Tensor with shape [M, C, 4]
M is the number of bounding boxes, C is the
class number
scores (Variable): Two types of scores are supported:
1. (Tensor) A 3-D Tensor with shape [N, C, M]
represents the predicted confidence predictions.
N is the batch size, C is the class number, M is
number of bounding boxes. For each category there
are total M scores which corresponding M bounding
boxes. Please note, M is equal to the 2nd dimension
of BBoxes.
2. (LoDTensor) A 2-D LoDTensor with shape [M, C].
M is the number of bbox, C is the class number.
In this case, input BBoxes should be the second
case with shape [M, C, 4].
background_label (int): The index of background label, the background
label will be ignored. If set to -1, then all
categories will be considered. Default: 0
score_threshold (float): Threshold to filter out bounding boxes with
low confidence score. If not provided,
consider all boxes.
nms_top_k (int): Maximum number of detections to be kept according to
the confidences aftern the filtering detections based
on score_threshold.
nms_threshold (float): The threshold to be used in NMS. Default: 0.3
nms_eta (float): The threshold to be used in NMS. Default: 1.0
keep_top_k (int): Number of total bboxes to be kept per image after NMS
step. -1 means keeping all bboxes after NMS step.
normalized (bool): Whether detections are normalized. Default: True
name(str): Name of the multiclass nms op. Default: None.
Returns:
Out: A 2-D LoDTensor with shape [No, 6] represents the detections.
Each row has 6 values: [label, confidence, xmin, ymin, xmax, ymax]
or A 2-D LoDTensor with shape [No, 10] represents the detections.
Each row has 10 values:
[label, confidence, x1, y1, x2, y2, x3, y3, x4, y4]. No is the
total number of detections. If there is no detected boxes for all
images, lod will be set to {1} and Out only contains one value
which is -1.
(After version 1.3, when no boxes detected, the lod is changed
from {0} to {1})
Examples:
.. code-block:: python
boxes = fluid.layers.data(name='bboxes', shape=[81, 4],
dtype='float32', lod_level=1)
scores = fluid.layers.data(name='scores', shape=[81],
dtype='float32', lod_level=1)
out = fluid.layers.multiclass_nms(bboxes=boxes,
scores=scores,
background_label=0,
score_threshold=0.5,
nms_top_k=400,
nms_threshold=0.3,
keep_top_k=200,
normalized=False)
"""
helper = LayerHelper('multiclass_nms', **locals())
output = helper.create_variable_for_type_inference(dtype=bboxes.dtype)
helper.append_op(
type="multiclass_nms",
inputs={'BBoxes': bboxes,
'Scores': scores},
attrs={
'background_label': background_label,
'score_threshold': score_threshold,
'nms_top_k': nms_top_k,
'nms_threshold': nms_threshold,
'nms_eta': nms_eta,
'keep_top_k': keep_top_k,
'nms_eta': nms_eta,
'normalized': normalized
},
outputs={'Out': output})
output.stop_gradient = True
return output
......@@ -406,7 +406,7 @@ class Optimizer(object):
params_grads = []
for param in parameters:
if param.stop_gradient:
if param.stop_gradient or not param.trainable:
continue
# create gradient variable
grad_var = Variable(
......
......@@ -469,5 +469,16 @@ class TestYoloDetection(unittest.TestCase):
self.assertIsNotNone(loss)
class TestMulticlassNMS(unittest.TestCase):
def test_multiclass_nms(self):
program = Program()
with program_guard(program):
bboxes = layers.data(
name='bboxes', shape=[-1, 10, 4], dtype='float32')
scores = layers.data(name='scores', shape=[-1, 10], dtype='float32')
output = layers.multiclass_nms(bboxes, scores, 0.3, 400, 200, 0.7)
self.assertIsNotNone(output)
if __name__ == '__main__':
unittest.main()
......@@ -85,6 +85,7 @@ list(REMOVE_ITEM TEST_OPS test_image_classification_resnet)
list(REMOVE_ITEM TEST_OPS test_bilinear_interp_op)
list(REMOVE_ITEM TEST_OPS test_nearest_interp_op)
list(REMOVE_ITEM TEST_OPS test_imperative_resnet)
list(REMOVE_ITEM TEST_OPS test_imperative_optimizer)
foreach(TEST_OP ${TEST_OPS})
py_test_modules(${TEST_OP} MODULES ${TEST_OP})
endforeach(TEST_OP)
......@@ -94,6 +95,8 @@ py_test_modules(test_bilinear_interp_op MODULES test_bilinear_interp_op SERIAL)
py_test_modules(test_nearest_interp_op MODULES test_nearest_interp_op SERIAL)
py_test_modules(test_imperative_resnet MODULES test_imperative_resnet ENVS
FLAGS_cudnn_deterministic=1)
py_test_modules(test_imperative_optimizer MODULES test_imperative_optimizer ENVS
FLAGS_cudnn_deterministic=1)
if(WITH_DISTRIBUTE)
py_test_modules(test_dist_train MODULES test_dist_train SERIAL)
set_tests_properties(test_listen_and_serv_op PROPERTIES TIMEOUT 20)
......
......@@ -66,6 +66,128 @@ class MLP(fluid.imperative.Layer):
return x
class SimpleRNNCell(fluid.imperative.Layer):
def __init__(self, step_input_size, hidden_size, output_size, param_attr):
super(SimpleRNNCell, self).__init__()
self.step_input_size = step_input_size
self.hidden_size = hidden_size
self.output_size = output_size
self._dype = core.VarDesc.VarType.FP32
from paddle.fluid.layer_helper import LayerHelper
self._helper = LayerHelper(
'SimpleRNNCell', act="tanh", param_attr=param_attr)
def _build_once(self, inputs, pre_hidden):
i2h_param_shape = [self.step_input_size, self.hidden_size]
h2h_param_shape = [self.hidden_size, self.hidden_size]
h2o_param_shape = [self.output_size, self.hidden_size]
self._i2h_w = self._helper.create_parameter(
attr=self._helper.param_attr,
shape=i2h_param_shape,
dtype=self._dtype,
is_bias=False)
self._h2h_w = self._helper.create_parameter(
attr=self._helper.param_attr,
shape=h2h_param_shape,
dtype=self._dtype,
is_bias=False)
self._h2o_w = self._helper.create_parameter(
attr=self._helper.param_attr,
shape=h2o_param_shape,
dtype=self._dtype,
is_bias=False)
def forward(self, input, pre_hidden):
tmp_i2h = self._helper.create_variable_for_type_inference(self._dtype)
tmp_h2h = self._helper.create_variable_for_type_inference(self._dtype)
hidden = self._helper.create_variable_for_type_inference(self._dype)
out = self._helper.create_variable_for_type_inference(self._dype)
softmax_out = self._helper.create_variable_for_type_inference(
self._dtype)
reduce_out = self._helper.create_variable_for_type_inference(
self._dtype)
self._helper.append_op(
type="mul",
inputs={"X": input,
"Y": self._i2h_w},
outputs={"Out": tmp_i2h},
attrs={"x_num_col_dims": 1,
"y_num_col_dims": 1})
self._helper.append_op(
type="mul",
inputs={"X": pre_hidden,
"Y": self._h2h_w},
outputs={"Out": tmp_h2h},
attrs={"x_num_col_dims": 1,
"y_num_col_dims": 1})
self._helper.append_op(
type="elementwise_add",
inputs={'X': tmp_h2h,
'Y': tmp_i2h},
outputs={'Out': hidden},
attrs={'axis': -1,
'use_mkldnn': False})
hidden = self._helper.append_activation(hidden)
self._helper.append_op(
type="mul",
inputs={"X": hidden,
"Y": self._h2o_w},
outputs={"Out": out},
attrs={"x_num_col_dims": 1,
"y_num_col_dims": 1})
self._helper.append_op(
type="softmax",
inputs={"X": out},
outputs={"Out": softmax_out},
attrs={"use_cudnn": False})
self._helper.append_op(
type='reduce_sum',
inputs={'X': softmax_out},
outputs={'Out': reduce_out},
attrs={'dim': None,
'keep_dim': False,
'reduce_all': True})
return reduce_out, hidden
class SimpleRNN(fluid.imperative.Layer):
def __init__(self):
super(SimpleRNN, self).__init__()
self.seq_len = 4
self._cell = SimpleRNNCell(
3,
3,
3,
fluid.ParamAttr(initializer=fluid.initializer.Constant(value=0.1)))
def forward(self, inputs):
outs = list()
pre_hiddens = list()
init_hidden = fluid.layers.tensor.create_parameter(
attr=fluid.ParamAttr(
initializer=fluid.initializer.Constant(value=0.1)),
shape=[1, 3],
dtype='float32',
is_bias=False)
pre_hidden = init_hidden
for i in range(self.seq_len):
input = fluid.layers.slice(
inputs, axes=[1], starts=[i], ends=[i + 1])
input = fluid.layers.reshape(input, shape=[1, 3])
out_softmax, pre_hidden = self._cell(input, pre_hidden)
outs.append(out_softmax)
return outs, pre_hiddens
class TestImperative(unittest.TestCase):
def test_sum_op(self):
x = np.ones([2, 2], np.float32)
......@@ -211,6 +333,41 @@ class TestImperative(unittest.TestCase):
self.assertTrue(np.allclose(dy_out, static_out))
self.assertTrue(np.allclose(dy_grad, static_grad))
def test_rnn(self):
np_inp = np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0],
[10.0, 11.0, 12.0]])
np_inp = np_inp.reshape((1, 4, 3))
np_inp = np_inp.astype(np.float32)
with fluid.imperative.guard():
var_inp = fluid.imperative.base.to_variable(np_inp)
var_inp = fluid.layers.reshape(var_inp, shape=[1, 4, 3])
simple_rnn = SimpleRNN()
outs, pre_hiddens = simple_rnn.forward(var_inp)
dy_out = outs[3]._numpy()
outs[3]._backward()
dy_grad_h2o = simple_rnn._cell._h2o_w._gradient()
dy_grad_h2h = simple_rnn._cell._h2h_w._gradient()
dy_grad_i2h = simple_rnn._cell._i2h_w._gradient()
with new_program_scope():
inp = fluid.layers.data(
name="inp", shape=[1, 4, 3], append_batch_size=False)
simple_rnn = SimpleRNN()
outs, pre_hiddens = simple_rnn(inp)
param_grads = fluid.backward.append_backward(outs[3])
exe = fluid.Executor(fluid.CPUPlace())
exe.run(fluid.default_startup_program())
static_out, static_grad_h2o, static_grad_h2h, static_grad_i2h = exe.run(
feed={inp.name: np_inp},
fetch_list=[
outs[3].name, param_grads[0][1].name,
param_grads[1][1].name, param_grads[2][1].name
])
self.assertTrue(np.allclose(dy_out, static_out))
self.assertTrue(np.allclose(dy_grad_h2o, static_grad_h2o))
self.assertTrue(np.allclose(dy_grad_h2h, static_grad_h2h))
self.assertTrue(np.allclose(dy_grad_i2h, static_grad_i2h))
if __name__ == '__main__':
unittest.main()
......@@ -46,7 +46,6 @@ class TestImperativeOptimizerBase(unittest.TestCase):
def test_optimizer_float32(self):
seed = 90
with fluid.imperative.guard():
fluid.default_startup_program().random_seed = seed
fluid.default_main_program().random_seed = seed
......@@ -61,12 +60,12 @@ class TestImperativeOptimizerBase(unittest.TestCase):
if batch_id >= self.batch_num:
break
x_data = np.array(
dy_x_data = np.array(
[x[0].reshape(1, 28, 28) for x in data]).astype('float32')
y_data = np.array([x[1] for x in data]).astype('int64').reshape(
128, 1)
img = to_variable(x_data)
img = to_variable(dy_x_data)
label = to_variable(y_data)
label._stop_gradient = True
......@@ -81,7 +80,7 @@ class TestImperativeOptimizerBase(unittest.TestCase):
avg_loss._backward()
self.optimizer.minimize(avg_loss)
mlp.clear_gradients()
dy_param_value = {}
for param in fluid.default_main_program().global_block(
).all_parameters():
......@@ -123,7 +122,7 @@ class TestImperativeOptimizerBase(unittest.TestCase):
if batch_id >= self.batch_num:
break
x_data = np.array(
static_x_data = np.array(
[x[0].reshape(1, 28, 28) for x in data]).astype('float32')
y_data = np.array([x[1] for x in data]).astype('int64').reshape(
[128, 1])
......@@ -131,7 +130,7 @@ class TestImperativeOptimizerBase(unittest.TestCase):
fetch_list = [avg_loss.name]
fetch_list.extend(static_param_name_list)
out = exe.run(fluid.default_main_program(),
feed={"pixel": x_data,
feed={"pixel": static_x_data,
"label": y_data},
fetch_list=fetch_list)
......@@ -141,11 +140,12 @@ class TestImperativeOptimizerBase(unittest.TestCase):
static_param_value[static_param_name_list[i - 1]] = out[i]
for key, value in six.iteritems(static_param_init_value):
self.assertTrue(
np.allclose(value.all(), dy_param_init_value[key].all()))
self.assertTrue(np.allclose(static_out.all(), dy_out.all()))
self.assertTrue(np.allclose(value, dy_param_init_value[key]))
self.assertTrue(np.allclose(static_out, dy_out))
for key, value in six.iteritems(static_param_value):
self.assertTrue(np.allclose(value.all(), dy_param_value[key].all()))
self.assertTrue(np.allclose(value, dy_param_value[key]))
if __name__ == '__main__':
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import paddle.fluid as fluid
from paddle.fluid.imperative.nn import Embedding
import paddle.fluid.framework as framework
from paddle.fluid.optimizer import SGDOptimizer
from paddle.fluid.imperative.base import to_variable
from test_imperative_base import new_program_scope
import numpy as np
import six
from paddle.fluid.backward import append_backward
class SimpleLSTMRNN(fluid.imperative.Layer):
def __init__(self,
hidden_size,
num_steps,
num_layers=2,
init_scale=0.1,
dropout=None):
super(SimpleLSTMRNN, self).__init__()
self._hidden_size = hidden_size
self._num_layers = num_layers
self._init_scale = init_scale
self._dropout = dropout
self._input = None
self._num_steps = num_steps
def _build_once(self, input_embedding, init_hidden=None, init_cell=None):
self.weight_1_arr = []
self.weight_2_arr = []
self.bias_arr = []
self.hidden_array = []
self.cell_array = []
self.mask_array = []
for i in range(self._num_layers):
weight_1 = fluid.layers.create_parameter(
shape=[self._hidden_size * 2, self._hidden_size * 4],
dtype="float32",
name="fc_weight1_" + str(i),
default_initializer=fluid.initializer.UniformInitializer(
low=-self._init_scale, high=self._init_scale))
self.weight_1_arr.append(weight_1)
bias_1 = fluid.layers.create_parameter(
[self._hidden_size * 4],
dtype="float32",
name="fc_bias1_" + str(i),
default_initializer=fluid.initializer.Constant(0.0))
self.bias_arr.append(bias_1)
pre_hidden = fluid.layers.slice(
init_hidden, axes=[0], starts=[i], ends=[i + 1])
pre_cell = fluid.layers.slice(
init_cell, axes=[0], starts=[i], ends=[i + 1])
pre_hidden = fluid.layers.reshape(
pre_hidden, shape=[-1, self._hidden_size])
pre_cell = fluid.layers.reshape(
pre_cell, shape=[-1, self._hidden_size])
self.hidden_array.append(pre_hidden)
self.cell_array.append(pre_cell)
def parameters(self):
parameters = list()
for param in self.weight_1_arr:
parameters.append(param)
for param in self.weight_2_arr:
parameters.append(param)
for bias in self.bias_arr:
parameters.append(bias)
return parameters
def forward(self, input_embedding, init_hidden=None, init_cell=None):
res = []
for index in range(self._num_steps):
self._input = fluid.layers.slice(
input_embedding, axes=[1], starts=[index], ends=[index + 1])
self._input = fluid.layers.reshape(
self._input, shape=[-1, self._hidden_size])
for k in range(self._num_layers):
pre_hidden = self.hidden_array[k]
pre_cell = self.cell_array[k]
weight_1 = self.weight_1_arr[k]
bias = self.bias_arr[k]
nn = fluid.layers.concat([self._input, pre_hidden], 1)
gate_input = fluid.layers.matmul(x=nn, y=weight_1)
gate_input = fluid.layers.elementwise_add(gate_input, bias)
i, j, f, o = fluid.layers.split(
gate_input, num_or_sections=4, dim=-1)
c = pre_cell * fluid.layers.sigmoid(f) + fluid.layers.sigmoid(
i) * fluid.layers.tanh(j)
m = fluid.layers.tanh(c) * fluid.layers.sigmoid(o)
self.hidden_array[k] = m
self.cell_array[k] = c
self._input = m
if self._dropout is not None and self._dropout > 0.0:
self._input = fluid.layers.dropout(
self._input,
dropout_prob=self._dropout,
dropout_implementation='upscale_in_train')
res.append(
fluid.layers.reshape(
self._input, shape=[1, -1, self._hidden_size]))
real_res = fluid.layers.concat(res, 0)
real_res = fluid.layers.transpose(x=real_res, perm=[1, 0, 2])
last_hidden = fluid.layers.concat(self.hidden_array, 1)
last_hidden = fluid.layers.reshape(
last_hidden, shape=[-1, self._num_layers, self._hidden_size])
last_hidden = fluid.layers.transpose(x=last_hidden, perm=[1, 0, 2])
last_cell = fluid.layers.concat(self.cell_array, 1)
last_cell = fluid.layers.reshape(
last_cell, shape=[-1, self._num_layers, self._hidden_size])
last_cell = fluid.layers.transpose(x=last_cell, perm=[1, 0, 2])
return real_res, last_hidden, last_cell
class PtbModel(fluid.imperative.Layer):
def __init__(self,
hidden_size,
vocab_size,
num_layers=2,
num_steps=20,
init_scale=0.1,
dropout=None):
super(PtbModel, self).__init__()
self.hidden_size = hidden_size
self.vocab_size = vocab_size
self.init_scale = init_scale
self.num_layers = num_layers
self.num_steps = num_steps
self.dropout = dropout
self.simple_lstm_rnn = SimpleLSTMRNN(
hidden_size,
num_steps,
num_layers=num_layers,
init_scale=init_scale,
dropout=dropout)
self.embedding = Embedding(
size=[vocab_size, hidden_size],
dtype='float32',
is_sparse=False,
param_attr=fluid.ParamAttr(
name='embedding_para',
initializer=fluid.initializer.UniformInitializer(
low=-init_scale, high=init_scale)))
self.softmax_weight = fluid.layers.create_parameter(
[self.hidden_size, self.vocab_size],
dtype="float32",
name="softmax_weight",
default_initializer=fluid.initializer.UniformInitializer(
low=-self.init_scale, high=self.init_scale))
self.softmax_bias = fluid.layers.create_parameter(
[self.vocab_size],
dtype="float32",
name='softmax_bias',
default_initializer=fluid.initializer.UniformInitializer(
low=-self.init_scale, high=self.init_scale))
def _build_once(self, input, label, init_hidden, init_cell):
pass
def parameters(self):
parameters = self.simple_lstm_rnn.parameters() + [
self.softmax_weight, self.softmax_bias
] + self.embedding.parameters()
return parameters
def forward(self, input, label, init_hidden, init_cell):
init_h = fluid.layers.reshape(
init_hidden, shape=[self.num_layers, -1, self.hidden_size])
init_c = fluid.layers.reshape(
init_cell, shape=[self.num_layers, -1, self.hidden_size])
x_emb = self.embedding(input)
x_emb = fluid.layers.reshape(
x_emb, shape=[-1, self.num_steps, self.hidden_size])
if self.dropout is not None and self.dropout > 0.0:
x_emb = fluid.layers.dropout(
x_emb,
dropout_prob=self.drop_out,
dropout_implementation='upscale_in_train')
rnn_out, last_hidden, last_cell = self.simple_lstm_rnn(x_emb, init_h,
init_c)
rnn_out = fluid.layers.reshape(
rnn_out, shape=[-1, self.num_steps, self.hidden_size])
projection = fluid.layers.matmul(rnn_out, self.softmax_weight)
projection = fluid.layers.elementwise_add(projection, self.softmax_bias)
projection = fluid.layers.reshape(
projection, shape=[-1, self.vocab_size])
projection = fluid.layers.reshape(
projection, shape=[-1, self.vocab_size])
loss = fluid.layers.softmax_with_cross_entropy(
logits=projection, label=label, soft_label=False)
loss = fluid.layers.reshape(loss, shape=[-1, self.num_steps])
loss = fluid.layers.reduce_mean(loss, dim=[0])
loss = fluid.layers.reduce_sum(loss)
loss.permissions = True
return loss, last_hidden, last_cell
class TestImperativePtbRnn(unittest.TestCase):
def test_ptb_rnn_cpu_float32(self):
seed = 90
hidden_size = 10
vocab_size = 1000
num_layers = 1
num_steps = 3
init_scale = 0.1
batch_size = 4
with fluid.imperative.guard():
fluid.default_startup_program().random_seed = seed
fluid.default_main_program().random_seed = seed
# TODO: marsyang1993 Change seed to
ptb_model = PtbModel(
hidden_size=hidden_size,
vocab_size=vocab_size,
num_layers=num_layers,
num_steps=num_steps,
init_scale=init_scale)
sgd = SGDOptimizer(learning_rate=1e-3)
dy_param_updated = dict()
dy_param_init = dict()
dy_loss = None
last_hidden = None
last_cell = None
for i in range(2):
x_data = np.arange(12).reshape(4, 3).astype('int64')
y_data = np.arange(1, 13).reshape(4, 3).astype('int64')
x_data = x_data.reshape((-1, num_steps, 1))
y_data = y_data.reshape((-1, 1))
init_hidden_data = np.zeros(
(num_layers, batch_size, hidden_size), dtype='float32')
init_cell_data = np.zeros(
(num_layers, batch_size, hidden_size), dtype='float32')
x = to_variable(x_data)
y = to_variable(y_data)
init_hidden = to_variable(init_hidden_data)
init_cell = to_variable(init_cell_data)
dy_loss, last_hidden, last_cell = ptb_model(x, y, init_hidden,
init_cell)
if i == 0:
for param in ptb_model.parameters():
dy_param_init[param.name] = param._numpy()
dy_loss._backward()
sgd.minimize(dy_loss)
for param in ptb_model.parameters():
dy_param_updated[param.name] = param._numpy()
# print("dy_loss is {}".format(dy_loss._numpy()))
# print("last_hidden is {}".format(last_hidden._numpy()))
# print("last_cell is {}".format(last_cell._numpy()))
with new_program_scope():
fluid.default_startup_program().random_seed = seed
fluid.default_main_program().random_seed = seed
# TODO: marsyang1993 Change seed to
ptb_model = PtbModel(
hidden_size=hidden_size,
vocab_size=vocab_size,
num_layers=num_layers,
num_steps=num_steps,
init_scale=init_scale)
exe = fluid.Executor(fluid.CPUPlace())
sgd = SGDOptimizer(learning_rate=1e-3)
x = fluid.layers.data(name="x", shape=[-1, 3, 1], dtype='int64')
y = fluid.layers.data(name="y", shape=[-1, 1], dtype='float32')
init_hidden = fluid.layers.data(
name="init_hidden", shape=[1], dtype='float32')
init_cell = fluid.layers.data(
name="init_cell", shape=[1], dtype='float32')
static_loss, static_last_hidden, static_last_cell = ptb_model(
x, y, init_hidden, init_cell)
sgd.minimize(static_loss)
static_param_updated = dict()
static_param_init = dict()
static_param_name_list = list()
for param in ptb_model.parameters():
static_param_name_list.append(param.name)
out = exe.run(framework.default_startup_program(),
fetch_list=static_param_name_list)
for i in range(len(static_param_name_list)):
static_param_init[static_param_name_list[i]] = out[i]
static_loss_value = None
static_last_cell_value = None
static_last_hidden_value = None
for i in range(2):
x_data = np.arange(12).reshape(4, 3).astype('int64')
y_data = np.arange(1, 13).reshape(4, 3).astype('int64')
x_data = x_data.reshape((-1, num_steps, 1))
y_data = y_data.reshape((-1, 1))
init_hidden_data = np.zeros(
(num_layers, batch_size, hidden_size), dtype='float32')
init_cell_data = np.zeros(
(num_layers, batch_size, hidden_size), dtype='float32')
fetch_list = [static_loss, static_last_hidden, static_last_cell]
fetch_list.extend(static_param_name_list)
out = exe.run(fluid.default_main_program(),
feed={
"x": x_data,
"y": y_data,
"init_hidden": init_hidden_data,
"init_cell": init_cell_data
},
fetch_list=fetch_list)
static_loss_value = out[0]
static_last_cell_value = out[1]
static_last_hidden_value = out[2]
for k in range(3, len(out)):
static_param_updated[static_param_name_list[k - 3]] = out[k]
self.assertTrue(
np.allclose(static_loss_value.all(), dy_loss._numpy().all()))
self.assertTrue(
np.allclose(static_last_cell_value.all(),
last_cell._numpy().all()))
self.assertTrue(
np.allclose(static_last_hidden_value.all(),
last_hidden._numpy().all()))
for key, value in six.iteritems(static_param_init):
self.assertTrue(
np.allclose(value.all(), dy_param_init[key].all()))
for key, value in six.iteritems(static_param_updated):
self.assertTrue(
np.allclose(value.all(), dy_param_updated[key].all()))
if __name__ == '__main__':
unittest.main()
......@@ -264,6 +264,7 @@ class TestImperativeResnet(unittest.TestCase):
)] = np_array
optimizer.minimize(avg_loss)
resnet.clear_gradients()
dy_param_value = {}
for param in fluid.default_main_program().global_block(
......
......@@ -58,7 +58,8 @@ class TestBook(unittest.TestCase):
def test_simple_conv2d(self):
program = Program()
with program_guard(program, startup_program=Program()):
images = layers.data(name='pixel', shape=[3, 48, 48], dtype='int32')
images = layers.data(
name='pixel', shape=[3, 48, 48], dtype='float32')
layers.conv2d(input=images, num_filters=3, filter_size=[4, 4])
print(str(program))
......
......@@ -19,7 +19,7 @@ import copy
from op_test import OpTest
def iou(box_a, box_b):
def iou(box_a, box_b, norm):
"""Apply intersection-over-union overlap between box_a and box_b
"""
xmin_a = min(box_a[0], box_a[2])
......@@ -32,8 +32,10 @@ def iou(box_a, box_b):
xmax_b = max(box_b[0], box_b[2])
ymax_b = max(box_b[1], box_b[3])
area_a = (ymax_a - ymin_a) * (xmax_a - xmin_a)
area_b = (ymax_b - ymin_b) * (xmax_b - xmin_b)
area_a = (ymax_a - ymin_a + (norm == False)) * (xmax_a - xmin_a +
(norm == False))
area_b = (ymax_b - ymin_b + (norm == False)) * (xmax_b - xmin_b +
(norm == False))
if area_a <= 0 and area_b <= 0:
return 0.0
......@@ -42,17 +44,21 @@ def iou(box_a, box_b):
xb = min(xmax_a, xmax_b)
yb = min(ymax_a, ymax_b)
inter_area = max(xb - xa, 0.0) * max(yb - ya, 0.0)
box_a_area = (box_a[2] - box_a[0]) * (box_a[3] - box_a[1])
box_b_area = (box_b[2] - box_b[0]) * (box_b[3] - box_b[1])
inter_area = max(xb - xa + (norm == False),
0.0) * max(yb - ya + (norm == False), 0.0)
iou_ratio = inter_area / (area_a + area_b - inter_area)
return iou_ratio
def nms(boxes, scores, score_threshold, nms_threshold, top_k=200, eta=1.0):
def nms(boxes,
scores,
score_threshold,
nms_threshold,
top_k=200,
normalized=True,
eta=1.0):
"""Apply non-maximum suppression at test time to avoid detecting too many
overlapping bounding boxes for a given object.
Args:
......@@ -87,7 +93,7 @@ def nms(boxes, scores, score_threshold, nms_threshold, top_k=200, eta=1.0):
for k in range(len(selected_indices)):
if keep:
kept_idx = selected_indices[k]
overlap = iou(boxes[idx], boxes[kept_idx])
overlap = iou(boxes[idx], boxes[kept_idx], normalized)
keep = True if overlap <= adaptive_threshold else False
else:
break
......@@ -99,16 +105,24 @@ def nms(boxes, scores, score_threshold, nms_threshold, top_k=200, eta=1.0):
def multiclass_nms(boxes, scores, background, score_threshold, nms_threshold,
nms_top_k, keep_top_k):
class_num = scores.shape[0]
priorbox_num = scores.shape[1]
nms_top_k, keep_top_k, normalized, shared):
if shared:
class_num = scores.shape[0]
priorbox_num = scores.shape[1]
else:
box_num = scores.shape[0]
class_num = scores.shape[1]
selected_indices = {}
num_det = 0
for c in range(class_num):
if c == background: continue
indices = nms(boxes, scores[c], score_threshold, nms_threshold,
nms_top_k)
if shared:
indices = nms(boxes, scores[c], score_threshold, nms_threshold,
nms_top_k, normalized)
else:
indices = nms(boxes[:, c, :], scores[:, c], score_threshold,
nms_threshold, nms_top_k, normalized)
selected_indices[c] = indices
num_det += len(indices)
......@@ -116,7 +130,10 @@ def multiclass_nms(boxes, scores, background, score_threshold, nms_threshold,
score_index = []
for c, indices in selected_indices.items():
for idx in indices:
score_index.append((scores[c][idx], c, idx))
if shared:
score_index.append((scores[c][idx], c, idx))
else:
score_index.append((scores[idx][c], c, idx))
sorted_score_index = sorted(
score_index, key=lambda tup: tup[0], reverse=True)
......@@ -127,24 +144,75 @@ def multiclass_nms(boxes, scores, background, score_threshold, nms_threshold,
selected_indices[c] = []
for s, c, idx in sorted_score_index:
selected_indices[c].append(idx)
if not shared:
for labels in selected_indices:
selected_indices[labels].sort()
num_det = keep_top_k
return selected_indices, num_det
def batched_multiclass_nms(boxes, scores, background, score_threshold,
nms_threshold, nms_top_k, keep_top_k):
def lod_multiclass_nms(boxes, scores, background, score_threshold,
nms_threshold, nms_top_k, keep_top_k, box_lod,
normalized):
det_outs = []
lod = []
head = 0
for n in range(len(box_lod[0])):
box = boxes[head:head + box_lod[0][n]]
score = scores[head:head + box_lod[0][n]]
head = head + box_lod[0][n]
nmsed_outs, nmsed_num = multiclass_nms(
box,
score,
background,
score_threshold,
nms_threshold,
nms_top_k,
keep_top_k,
normalized,
shared=False)
if nmsed_num == 0:
#lod.append(1)
continue
lod.append(nmsed_num)
for c, indices in nmsed_outs.items():
for idx in indices:
xmin, ymin, xmax, ymax = box[idx, c, :]
det_outs.append([c, score[idx][c], xmin, ymin, xmax, ymax])
if len(lod) == 0:
lod.append(1)
return det_outs, lod
def batched_multiclass_nms(boxes,
scores,
background,
score_threshold,
nms_threshold,
nms_top_k,
keep_top_k,
normalized=True):
batch_size = scores.shape[0]
det_outs = []
lod = []
for n in range(batch_size):
nmsed_outs, nmsed_num = multiclass_nms(boxes[n], scores[n], background,
score_threshold, nms_threshold,
nms_top_k, keep_top_k)
lod.append(nmsed_num)
if nmsed_num == 0: continue
nmsed_outs, nmsed_num = multiclass_nms(
boxes[n],
scores[n],
background,
score_threshold,
nms_threshold,
nms_top_k,
keep_top_k,
normalized,
shared=True)
if nmsed_num == 0:
continue
lod.append(nmsed_num)
tmp_det_out = []
for c, indices in nmsed_outs.items():
for idx in indices:
......@@ -154,7 +222,8 @@ def batched_multiclass_nms(boxes, scores, background, score_threshold,
sorted_det_out = sorted(
tmp_det_out, key=lambda tup: tup[0], reverse=False)
det_outs.extend(sorted_det_out)
if len(lod) == 0:
lod += [1]
return det_outs, lod
......@@ -168,7 +237,6 @@ class TestMulticlassNMSOp(OpTest):
M = 1200
C = 21
BOX_SIZE = 4
background = 0
nms_threshold = 0.3
nms_top_k = 400
......@@ -206,6 +274,7 @@ class TestMulticlassNMSOp(OpTest):
'keep_top_k': keep_top_k,
'score_threshold': score_threshold,
'nms_eta': 1.0,
'normalized': True,
}
def test_check_output(self):
......@@ -219,13 +288,70 @@ class TestMulticlassNMSOpNoOutput(TestMulticlassNMSOp):
self.score_threshold = 2.0
class TestMulticlassNMSLoDInput(OpTest):
def set_argument(self):
self.score_threshold = 0.01
def setUp(self):
self.set_argument()
M = 1200
C = 21
BOX_SIZE = 4
box_lod = [[1200]]
background = 0
nms_threshold = 0.3
nms_top_k = 400
keep_top_k = 200
score_threshold = self.score_threshold
normalized = False
scores = np.random.random((M, C)).astype('float32')
def softmax(x):
shiftx = x - np.max(x).clip(-64.)
exps = np.exp(shiftx)
return exps / np.sum(exps)
scores = np.apply_along_axis(softmax, 1, scores)
boxes = np.random.random((M, C, BOX_SIZE)).astype('float32')
boxes[:, :, 0] = boxes[:, :, 0] * 10
boxes[:, :, 1] = boxes[:, :, 1] * 10
boxes[:, :, 2] = boxes[:, :, 2] * 10 + 10
boxes[:, :, 3] = boxes[:, :, 3] * 10 + 10
nmsed_outs, lod = lod_multiclass_nms(
boxes, scores, background, score_threshold, nms_threshold,
nms_top_k, keep_top_k, box_lod, normalized)
nmsed_outs = [-1] if not nmsed_outs else nmsed_outs
nmsed_outs = np.array(nmsed_outs).astype('float32')
self.op_type = 'multiclass_nms'
self.inputs = {
'BBoxes': (boxes, box_lod),
'Scores': (scores, box_lod),
}
self.outputs = {'Out': (nmsed_outs, [lod])}
self.attrs = {
'background_label': 0,
'nms_threshold': nms_threshold,
'nms_top_k': nms_top_k,
'keep_top_k': keep_top_k,
'score_threshold': score_threshold,
'nms_eta': 1.0,
'normalized': normalized,
}
def test_check_output(self):
self.check_output()
class TestIOU(unittest.TestCase):
def test_iou(self):
box1 = np.array([4.0, 3.0, 7.0, 5.0]).astype('float32')
box2 = np.array([3.0, 4.0, 6.0, 8.0]).astype('float32')
expt_output = np.array([2.0 / 16.0]).astype('float32')
calc_output = np.array([iou(box1, box2)]).astype('float32')
calc_output = np.array([iou(box1, box2, True)]).astype('float32')
self.assertTrue(np.allclose(calc_output, expt_output))
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册