test_imperative_optimizer.py 7.5 KB
Newer Older
M
minqiyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import contextlib
import unittest
import numpy as np
M
minqiyang 已提交
18
import six
M
minqiyang 已提交
19

M
minqiyang 已提交
20
import paddle
M
minqiyang 已提交
21 22
import paddle.fluid as fluid
from paddle.fluid import core
M
minqiyang 已提交
23
from paddle.fluid.optimizer import SGDOptimizer
24 25
from paddle.fluid.imperative.nn import Conv2D, Pool2D, FC
from paddle.fluid.imperative.base import to_variable
M
minqiyang 已提交
26
from test_imperative_base import new_program_scope
27 28


X
Xin Pan 已提交
29
class SimpleImgConvPool(fluid.imperative.Layer):
30
    def __init__(self,
X
Xin Pan 已提交
31
                 name_scope,
32
                 num_channels,
33
                 num_filters,
M
minqiyang 已提交
34
                 filter_size,
35 36 37 38 39 40 41 42 43 44 45 46 47
                 pool_size,
                 pool_stride,
                 pool_padding=0,
                 pool_type='max',
                 global_pooling=False,
                 conv_stride=1,
                 conv_padding=0,
                 conv_dilation=1,
                 conv_groups=1,
                 act=None,
                 use_cudnn=False,
                 param_attr=None,
                 bias_attr=None):
X
Xin Pan 已提交
48
        super(SimpleImgConvPool, self).__init__(name_scope)
49 50

        self._conv2d = Conv2D(
X
Xin Pan 已提交
51
            self.full_name(),
52 53 54 55 56 57 58 59 60 61 62 63
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=filter_size,
            stride=conv_stride,
            padding=conv_padding,
            dilation=conv_dilation,
            groups=conv_groups,
            param_attr=None,
            bias_attr=None,
            use_cudnn=use_cudnn)

        self._pool2d = Pool2D(
X
Xin Pan 已提交
64
            self.full_name(),
65 66 67 68 69 70
            pool_size=pool_size,
            pool_type=pool_type,
            pool_stride=pool_stride,
            pool_padding=pool_padding,
            global_pooling=global_pooling,
            use_cudnn=use_cudnn)
M
minqiyang 已提交
71

72 73 74 75
    def forward(self, inputs):
        x = self._conv2d(inputs)
        x = self._pool2d(x)
        return x
M
minqiyang 已提交
76 77


X
Xin Pan 已提交
78
class MNIST(fluid.imperative.Layer):
X
Xin Pan 已提交
79 80
    def __init__(self, name_scope, param_attr=None, bias_attr=None):
        super(MNIST, self).__init__(name_scope)
M
minqiyang 已提交
81

82
        self._simple_img_conv_pool_1 = SimpleImgConvPool(
X
Xin Pan 已提交
83
            self.full_name(), 1, 20, 5, 2, 2, act="relu")
84 85

        self._simple_img_conv_pool_2 = SimpleImgConvPool(
X
Xin Pan 已提交
86
            self.full_name(), 20, 50, 5, 2, 2, act="relu")
87

M
minqiyang 已提交
88
        pool_2_shape = 50 * 4 * 4
89 90
        SIZE = 10
        scale = (2.0 / (pool_2_shape**2 * SIZE))**0.5
X
Xin Pan 已提交
91 92
        self._fc = FC(self.full_name(),
                      10,
93 94
                      param_attr=fluid.param_attr.ParamAttr(
                          initializer=fluid.initializer.NormalInitializer(
M
minqiyang 已提交
95 96
                              loc=0.0, scale=scale)),
                      act="softmax")
M
minqiyang 已提交
97 98

    def forward(self, inputs):
99 100
        x = self._simple_img_conv_pool_1(inputs)
        x = self._simple_img_conv_pool_2(x)
101
        x = self._fc(x)
M
minqiyang 已提交
102 103 104 105
        return x


class TestImperativeMnist(unittest.TestCase):
M
minqiyang 已提交
106
    def test_mnist_float32(self):
M
minqiyang 已提交
107
        seed = 90
M
minqiyang 已提交
108
        epoch_num = 1
M
minqiyang 已提交
109
        with fluid.imperative.guard():
M
minqiyang 已提交
110 111 112
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed

X
Xin Pan 已提交
113
            mnist = MNIST("mnist")
M
minqiyang 已提交
114
            sgd = SGDOptimizer(learning_rate=1e-3)
M
minqiyang 已提交
115
            train_reader = paddle.batch(
M
minqiyang 已提交
116
                paddle.dataset.mnist.train(), batch_size=128, drop_last=True)
M
minqiyang 已提交
117

M
minqiyang 已提交
118
            dy_param_init_value = {}
M
minqiyang 已提交
119 120 121 122 123 124 125
            for epoch in range(epoch_num):
                for batch_id, data in enumerate(train_reader()):
                    dy_x_data = np.array(
                        [x[0].reshape(1, 28, 28)
                         for x in data]).astype('float32')
                    y_data = np.array(
                        [x[1] for x in data]).astype('int64').reshape(128, 1)
M
minqiyang 已提交
126

M
minqiyang 已提交
127 128 129
                    img = to_variable(dy_x_data)
                    label = to_variable(y_data)
                    label._stop_gradient = True
M
minqiyang 已提交
130

M
minqiyang 已提交
131 132 133
                    cost = mnist(img)
                    loss = fluid.layers.cross_entropy(cost, label)
                    avg_loss = fluid.layers.mean(loss)
M
minqiyang 已提交
134

M
minqiyang 已提交
135
                    dy_out = avg_loss._numpy()
M
minqiyang 已提交
136

M
minqiyang 已提交
137
                    if epoch == 0 and batch_id == 0:
M
minqiyang 已提交
138
                        for param in mnist.parameters():
M
minqiyang 已提交
139
                            dy_param_init_value[param.name] = param._numpy()
M
minqiyang 已提交
140

M
minqiyang 已提交
141 142 143
                    avg_loss._backward()
                    sgd.minimize(avg_loss)
                    mnist.clear_gradients()
M
minqiyang 已提交
144

M
minqiyang 已提交
145
                    dy_param_value = {}
M
minqiyang 已提交
146
                    for param in mnist.parameters():
M
minqiyang 已提交
147
                        dy_param_value[param.name] = param._numpy()
M
minqiyang 已提交
148

149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
        #  with new_program_scope():
        #  fluid.default_startup_program().random_seed = seed
        #  fluid.default_main_program().random_seed = seed

        #  exe = fluid.Executor(fluid.CPUPlace(
        #  ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))

        #  mnist = MNIST("mnist")
        #  sgd = SGDOptimizer(learning_rate=1e-3)
        #  train_reader = paddle.batch(
        #  paddle.dataset.mnist.train(), batch_size=128, drop_last=True)

        #  img = fluid.layers.data(
        #  name='pixel', shape=[1, 28, 28], dtype='float32')
        #  label = fluid.layers.data(name='label', shape=[1], dtype='int64')
        #  cost = mnist(img)
        #  loss = fluid.layers.cross_entropy(cost, label)
        #  avg_loss = fluid.layers.mean(loss)
        #  sgd.minimize(avg_loss)

        #  # initialize params and fetch them
        #  static_param_init_value = {}
        #  static_param_name_list = []
        #  for param in mnist.parameters():
        #  static_param_name_list.append(param.name)

        #  out = exe.run(fluid.default_startup_program(),
        #  fetch_list=static_param_name_list)

        #  for i in range(len(static_param_name_list)):
        #  static_param_init_value[static_param_name_list[i]] = out[i]

        #  for epoch in range(epoch_num):
        #  for batch_id, data in enumerate(train_reader()):
        #  static_x_data = np.array(
        #  [x[0].reshape(1, 28, 28)
        #  for x in data]).astype('float32')
        #  y_data = np.array(
        #  [x[1] for x in data]).astype('int64').reshape([128, 1])

        #  fetch_list = [avg_loss.name]
        #  fetch_list.extend(static_param_name_list)
        #  out = exe.run(
        #  fluid.default_main_program(),
        #  feed={"pixel": static_x_data,
        #  "label": y_data},
        #  fetch_list=fetch_list)

        #  static_param_value = {}
        #  static_out = out[0]
        #  for i in range(1, len(out)):
        #  static_param_value[static_param_name_list[i - 1]] = out[
        #  i]

        #  self.assertTrue(np.allclose(dy_x_data.all(), static_x_data.all()))

        #  for key, value in six.iteritems(static_param_init_value):
        #  self.assertTrue(np.allclose(value, dy_param_init_value[key]))

        #  self.assertTrue(np.allclose(static_out, dy_out))

        #  for key, value in six.iteritems(static_param_value):
        #  self.assertTrue(np.allclose(value, dy_param_value[key], atol=1e-5))
M
minqiyang 已提交
212 213 214 215


if __name__ == '__main__':
    unittest.main()