Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
133f1005
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
133f1005
编写于
12月 29, 2018
作者:
M
minqiyang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Complete the unittest of optimizers
test=develop
上级
2547f9d1
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
113 addition
and
36 deletion
+113
-36
python/paddle/fluid/imperative/nn.py
python/paddle/fluid/imperative/nn.py
+29
-18
python/paddle/fluid/tests/unittests/test_imperative.py
python/paddle/fluid/tests/unittests/test_imperative.py
+1
-10
python/paddle/fluid/tests/unittests/test_imperative_mnist.py
python/paddle/fluid/tests/unittests/test_imperative_mnist.py
+83
-8
未找到文件。
python/paddle/fluid/imperative/nn.py
浏览文件 @
133f1005
...
...
@@ -97,17 +97,23 @@ class Conv2D(layers.PyLayer):
persistable
=
True
,
type
=
core
.
VarDesc
.
VarType
.
RAW
)
self
.
_pre_bias
=
self
.
_helper
.
create_variable_for_type_inference
(
dtype
=
self
.
_dtype
)
self
.
_bias_param
=
self
.
_helper
.
create_parameter
(
attr
=
self
.
_helper
.
bias_attr
,
shape
=
[
num_filter_channels
],
dtype
=
self
.
_dtype
,
is_bias
=
True
)
def
forward
(
self
,
input
):
pre_bias
=
self
.
_helper
.
create_variable_for_type_inference
(
dtype
=
self
.
_dtype
)
self
.
_helper
.
append_op
(
type
=
self
.
_l_type
,
inputs
=
{
'Input'
:
input
,
'Filter'
:
self
.
_filter_param
,
},
outputs
=
{
"Output"
:
self
.
_
pre_bias
},
outputs
=
{
"Output"
:
pre_bias
},
attrs
=
{
'strides'
:
self
.
_stride
,
'paddings'
:
self
.
_padding
,
...
...
@@ -117,11 +123,17 @@ class Conv2D(layers.PyLayer):
'use_mkldnn'
:
False
,
})
self
.
_pre_act
=
self
.
_helper
.
append_bias_op
(
self
.
_pre_bias
,
dim_start
=
1
,
dim_end
=
2
)
pre_act
=
self
.
_helper
.
create_variable_for_type_inference
(
dtype
=
self
.
_dtype
)
out
=
self
.
_helper
.
append_activation
(
self
.
_pre_act
)
return
out
self
.
_helper
.
append_op
(
type
=
'elementwise_add'
,
inputs
=
{
'X'
:
[
pre_bias
],
'Y'
:
[
self
.
_bias_param
]},
outputs
=
{
'Out'
:
[
pre_act
]},
attrs
=
{
'axis'
:
1
})
return
self
.
_helper
.
append_activation
(
pre_act
)
class
Pool2D
(
layers
.
PyLayer
):
...
...
@@ -162,14 +174,13 @@ class Pool2D(layers.PyLayer):
self
.
_exclusive
=
exclusive
self
.
_l_type
=
'pool2d'
self
.
_pool_out
=
self
.
_helper
.
create_variable_for_type_inference
(
self
.
_dtype
)
def
forward
(
self
,
input
):
pool_out
=
self
.
_helper
.
create_variable_for_type_inference
(
self
.
_dtype
)
self
.
_helper
.
append_op
(
type
=
self
.
_l_type
,
inputs
=
{
"X"
:
input
},
outputs
=
{
"Out"
:
self
.
_
pool_out
},
outputs
=
{
"Out"
:
pool_out
},
attrs
=
{
"pooling_type"
:
self
.
_pool_type
,
"ksize"
:
self
.
_pool_size
,
...
...
@@ -181,7 +192,7 @@ class Pool2D(layers.PyLayer):
"use_mkldnn"
:
False
,
"exclusive"
:
self
.
_exclusive
,
})
return
self
.
_
pool_out
return
pool_out
class
FC
(
layers
.
PyLayer
):
...
...
@@ -203,8 +214,6 @@ class FC(layers.PyLayer):
shape
=
[
size_in
,
size_out
],
dtype
=
self
.
_dtype
,
is_bias
=
False
)
self
.
_tmp
=
self
.
_helper
.
create_variable_for_type_inference
(
self
.
_dtype
)
self
.
_out
=
self
.
_helper
.
create_variable_for_type_inference
(
self
.
_dtype
)
def
_build_once
(
self
,
input
):
if
self
.
_size_in
!=
-
1
:
...
...
@@ -221,19 +230,21 @@ class FC(layers.PyLayer):
is_bias
=
False
)
def
forward
(
self
,
input
):
tmp
=
self
.
_helper
.
create_variable_for_type_inference
(
self
.
_dtype
)
self
.
_helper
.
append_op
(
type
=
"mul"
,
inputs
=
{
"X"
:
input
,
"Y"
:
self
.
_w
},
outputs
=
{
"Out"
:
self
.
_
tmp
},
outputs
=
{
"Out"
:
tmp
},
attrs
=
{
"x_num_col_dims"
:
self
.
_num_flatten_dims
,
"y_num_col_dims"
:
1
})
out
=
self
.
_helper
.
create_variable_for_type_inference
(
self
.
_dtype
)
self
.
_helper
.
append_op
(
type
=
"sum"
,
inputs
=
{
"X"
:
[
self
.
_
tmp
]},
outputs
=
{
"Out"
:
self
.
_
out
},
inputs
=
{
"X"
:
[
tmp
]},
outputs
=
{
"Out"
:
out
},
attrs
=
{
"use_mkldnn"
:
False
})
return
self
.
_
out
return
out
python/paddle/fluid/tests/unittests/test_imperative.py
浏览文件 @
133f1005
...
...
@@ -19,16 +19,7 @@ import numpy as np
import
paddle.fluid
as
fluid
from
paddle.fluid
import
core
from
paddle.fluid.layers.nn
import
FC
@
contextlib
.
contextmanager
def
new_program_scope
():
prog
=
fluid
.
Program
()
startup_prog
=
fluid
.
Program
()
scope
=
fluid
.
core
.
Scope
()
with
fluid
.
scope_guard
(
scope
):
with
fluid
.
program_guard
(
prog
,
startup_prog
):
yield
from
test_imperative_base
import
new_program_scope
class
MyLayer
(
fluid
.
imperative
.
PyLayer
):
...
...
python/paddle/fluid/tests/unittests/test_imperative_mnist.py
浏览文件 @
133f1005
...
...
@@ -15,12 +15,15 @@
import
contextlib
import
unittest
import
numpy
as
np
import
six
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid
import
core
from
paddle.fluid.optimizer
import
SGDOptimizer
from
paddle.fluid.imperative.nn
import
Conv2D
,
Pool2D
,
FC
from
paddle.fluid.imperative.base
import
to_variable
from
test_imperative_base
import
new_program_scope
class
SimpleImgConvPool
(
fluid
.
imperative
.
PyLayer
):
...
...
@@ -97,21 +100,93 @@ class MNIST(fluid.imperative.PyLayer):
class
TestImperativeMnist
(
unittest
.
TestCase
):
def
test_mnist_cpu_float32
(
self
):
seed
=
90
with
fluid
.
imperative
.
guard
():
mnist
=
MNIST
()
fluid
.
default_startup_program
().
random_seed
=
seed
fluid
.
default_main_program
().
random_seed
=
seed
mnist
=
Conv2D
(
1
,
20
,
5
)
sgd
=
SGDOptimizer
(
learning_rate
=
1e-3
)
train_reader
=
paddle
.
batch
(
paddle
.
dataset
.
mnist
.
train
(),
batch_size
=
128
)
dy_param_value
=
{}
for
param
in
fluid
.
default_main_program
().
global_block
(
).
all_parameters
():
dy_param_value
[
param
.
name
]
=
param
.
_numpy
()
for
batch_id
,
data
in
enumerate
(
train_reader
()):
if
batch_id
>=
1
:
break
x_data
=
np
.
array
(
[
x
[
0
].
reshape
(
1
,
28
,
28
)
for
x
in
data
]).
astype
(
'float32'
)
y_data
=
np
.
array
([
x
[
1
]
for
x
in
data
]).
astype
(
'int64'
).
reshape
(
128
,
1
)
for
i
in
range
(
2
):
x_data
=
np
.
random
.
rand
(
128
,
1
,
28
,
28
).
astype
(
'float32'
)
img
=
to_variable
(
x_data
)
y_data
=
np
.
random
.
rand
(
128
,
1
).
astype
(
'int64'
)
label
=
to_variable
(
y_data
)
label
.
_stop_gradient
=
True
predict
=
mnist
(
img
)
out
=
fluid
.
layers
.
cross_entropy
(
predict
,
label
)
out
.
_backward
()
sgd
.
minimize
(
out
)
cost
=
mnist
(
img
)
loss
=
fluid
.
layers
.
reduce_mean
(
cost
)
dy_out
=
loss
.
_numpy
()
loss
.
_backward
()
sgd
.
minimize
(
loss
)
dy_filter_param
=
mnist
.
_filter_param
.
_numpy
()
with
new_program_scope
():
fluid
.
default_startup_program
().
random_seed
=
seed
fluid
.
default_main_program
().
random_seed
=
seed
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
())
mnist
=
Conv2D
(
1
,
20
,
5
)
sgd
=
SGDOptimizer
(
learning_rate
=
1e-3
)
train_reader
=
paddle
.
batch
(
paddle
.
dataset
.
mnist
.
train
(),
batch_size
=
128
)
img
=
fluid
.
layers
.
data
(
name
=
'pixel'
,
shape
=
[
1
,
28
,
28
],
dtype
=
'float32'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
cost
=
mnist
(
img
)
loss
=
fluid
.
layers
.
reduce_mean
(
cost
)
sgd
.
minimize
(
loss
)
# initialize params and fetch them
static_param_value
=
{}
static_param_name_list
=
[]
for
param
in
fluid
.
default_startup_program
().
global_block
(
).
all_parameters
():
static_param_name_list
.
append
(
param
.
name
)
out
=
exe
.
run
(
fluid
.
default_startup_program
(),
fetch_list
=
static_param_name_list
)
for
i
in
range
(
len
(
static_param_name_list
)):
static_param_value
[
static_param_name_list
[
i
]]
=
out
[
i
]
for
batch_id
,
data
in
enumerate
(
train_reader
()):
if
batch_id
>=
1
:
break
x_data
=
np
.
array
(
[
x
[
0
].
reshape
(
1
,
28
,
28
)
for
x
in
data
]).
astype
(
'float32'
)
y_data
=
np
.
array
([
x
[
1
]
for
x
in
data
]).
astype
(
'int64'
).
reshape
(
[
128
,
1
])
static_out
,
static_filter_param
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
"pixel"
:
x_data
,
"label"
:
y_data
},
fetch_list
=
[
loss
.
name
,
mnist
.
_filter_param
.
name
])
for
key
,
value
in
six
.
iteritems
(
static_param_value
):
self
.
assertTrue
(
np
.
allclose
(
value
.
all
(),
dy_param_value
[
key
].
all
()))
self
.
assertTrue
(
np
.
allclose
(
static_out
.
all
(),
dy_out
.
all
()))
self
.
assertTrue
(
np
.
allclose
(
static_filter_param
.
all
(),
dy_filter_param
.
all
()))
if
__name__
==
'__main__'
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录