test_imperative_optimizer.py 5.4 KB
Newer Older
M
minqiyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import contextlib
import unittest
import numpy as np
M
minqiyang 已提交
18
import six
M
minqiyang 已提交
19

M
minqiyang 已提交
20
import paddle
M
minqiyang 已提交
21 22
import paddle.fluid as fluid
from paddle.fluid import core
M
minqiyang 已提交
23
from paddle.fluid.optimizer import SGDOptimizer
24
from paddle.fluid.imperative.nn import FC
25
from paddle.fluid.imperative.base import to_variable
M
minqiyang 已提交
26
from test_imperative_base import new_program_scope
27 28


29
class MLP(fluid.imperative.Layer):
30
    def __init__(self, param_attr=None, bias_attr=None):
31 32
        self._fc1 = FC(10)
        self._fc2 = FC(10)
33

34 35 36 37
    def forward(self, inputs):
        y = self._fc1(inputs)
        y = self._fc2(y)
        return y
38

M
minqiyang 已提交
39

40 41 42
class TestImperativeOptimizerBase(unittest.TestCase):
    def setUp(self):
        self.batch_num = 2
M
minqiyang 已提交
43

44 45
    def get_optimizer(self):
        self.optimizer = SGDOptimizer(learning_rate=1e-3)
M
minqiyang 已提交
46

47
    def test_optimizer_float32(self):
M
minqiyang 已提交
48 49
        seed = 90

M
minqiyang 已提交
50
        with fluid.imperative.guard():
M
minqiyang 已提交
51 52 53
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed

54 55
            mlp = MLP()
            self.get_optimizer()
M
minqiyang 已提交
56 57 58
            train_reader = paddle.batch(
                paddle.dataset.mnist.train(), batch_size=128)

M
minqiyang 已提交
59
            dy_param_init_value = {}
M
minqiyang 已提交
60
            for batch_id, data in enumerate(train_reader()):
61
                if batch_id >= self.batch_num:
M
minqiyang 已提交
62 63 64 65 66 67
                    break

                x_data = np.array(
                    [x[0].reshape(1, 28, 28) for x in data]).astype('float32')
                y_data = np.array([x[1] for x in data]).astype('int64').reshape(
                    128, 1)
68 69 70 71 72

                img = to_variable(x_data)
                label = to_variable(y_data)
                label._stop_gradient = True

73 74
                cost = mlp(img)
                avg_loss = fluid.layers.reduce_mean(cost)
M
minqiyang 已提交
75
                dy_out = avg_loss._numpy()
M
minqiyang 已提交
76

M
minqiyang 已提交
77 78 79 80 81
                if batch_id == 0:
                    for param in fluid.default_main_program().global_block(
                    ).all_parameters():
                        dy_param_init_value[param.name] = param._numpy()

M
minqiyang 已提交
82
                avg_loss._backward()
83 84
                self.optimizer.minimize(avg_loss)

M
minqiyang 已提交
85 86 87 88
                dy_param_value = {}
                for param in fluid.default_main_program().global_block(
                ).all_parameters():
                    dy_param_value[param.name] = param._numpy()
M
minqiyang 已提交
89 90 91 92 93

        with new_program_scope():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed

M
minqiyang 已提交
94 95
            exe = fluid.Executor(fluid.CPUPlace(
            ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
M
minqiyang 已提交
96

M
minqiyang 已提交
97
            mnist = MNIST()
98
            self.get_optimizer()
M
minqiyang 已提交
99 100 101 102 103 104 105
            train_reader = paddle.batch(
                paddle.dataset.mnist.train(), batch_size=128)

            img = fluid.layers.data(
                name='pixel', shape=[1, 28, 28], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            cost = mnist(img)
106 107
            avg_loss = fluid.layers.reduce_mean(cost)
            self.optimizer.minimize(avg_loss)
M
minqiyang 已提交
108 109

            # initialize params and fetch them
M
minqiyang 已提交
110
            static_param_init_value = {}
M
minqiyang 已提交
111 112 113 114 115 116 117 118 119
            static_param_name_list = []
            for param in fluid.default_startup_program().global_block(
            ).all_parameters():
                static_param_name_list.append(param.name)

            out = exe.run(fluid.default_startup_program(),
                          fetch_list=static_param_name_list)

            for i in range(len(static_param_name_list)):
M
minqiyang 已提交
120
                static_param_init_value[static_param_name_list[i]] = out[i]
M
minqiyang 已提交
121 122

            for batch_id, data in enumerate(train_reader()):
123
                if batch_id >= self.batch_num:
M
minqiyang 已提交
124 125 126 127 128 129 130
                    break

                x_data = np.array(
                    [x[0].reshape(1, 28, 28) for x in data]).astype('float32')
                y_data = np.array([x[1] for x in data]).astype('int64').reshape(
                    [128, 1])

M
minqiyang 已提交
131
                fetch_list = [avg_loss.name]
M
minqiyang 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
                fetch_list.extend(static_param_name_list)
                out = exe.run(fluid.default_main_program(),
                              feed={"pixel": x_data,
                                    "label": y_data},
                              fetch_list=fetch_list)

                static_param_value = {}
                static_out = out[0]
                for i in range(1, len(out)):
                    static_param_value[static_param_name_list[i - 1]] = out[i]

        for key, value in six.iteritems(static_param_init_value):
            self.assertTrue(
                np.allclose(value.all(), dy_param_init_value[key].all()))
        self.assertTrue(np.allclose(static_out.all(), dy_out.all()))
M
minqiyang 已提交
147 148
        for key, value in six.iteritems(static_param_value):
            self.assertTrue(np.allclose(value.all(), dy_param_value[key].all()))
M
minqiyang 已提交
149 150 151 152


if __name__ == '__main__':
    unittest.main()