layers.py 51.4 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
16
import six
Q
qingqing01 已提交
17 18 19 20
import numpy as np
from numbers import Integral

import paddle
G
Guanghua Yu 已提交
21 22
import paddle.nn as nn
from paddle import ParamAttr
Q
qingqing01 已提交
23
from paddle import to_tensor
G
Guanghua Yu 已提交
24
import paddle.nn.functional as F
W
wangguanzhong 已提交
25
from paddle.nn.initializer import Normal, Constant, XavierUniform
G
Guanghua Yu 已提交
26 27
from paddle.regularizer import L2Decay

Q
qingqing01 已提交
28
from ppdet.core.workspace import register, serializable
29
from ppdet.modeling.bbox_utils import delta2bbox
Q
qingqing01 已提交
30
from . import ops
31
from .initializer import xavier_uniform_, constant_
32

F
Feng Ni 已提交
33
from paddle.vision.ops import DeformConv2D
34 35
from paddle.nn.layer import transformer
_convert_attention_mask = transformer._convert_attention_mask
Q
qingqing01 已提交
36 37 38 39 40 41 42 43


def _to_list(l):
    if isinstance(l, (list, tuple)):
        return list(l)
    return [l]


F
Feng Ni 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56
class DeformableConvV2(nn.Layer):
    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=1,
                 weight_attr=None,
                 bias_attr=None,
                 lr_scale=1,
                 regularizer=None,
F
FlyingQianMM 已提交
57 58 59
                 skip_quant=False,
                 dcn_bias_regularizer=L2Decay(0.),
                 dcn_bias_lr_scale=2.):
F
Feng Ni 已提交
60 61 62 63 64
        super(DeformableConvV2, self).__init__()
        self.offset_channel = 2 * kernel_size**2
        self.mask_channel = kernel_size**2

        if lr_scale == 1 and regularizer is None:
W
wangxinxin08 已提交
65
            offset_bias_attr = ParamAttr(initializer=Constant(0.))
F
Feng Ni 已提交
66 67 68 69
        else:
            offset_bias_attr = ParamAttr(
                initializer=Constant(0.),
                learning_rate=lr_scale,
W
wangxinxin08 已提交
70
                regularizer=regularizer)
F
Feng Ni 已提交
71 72 73 74 75 76
        self.conv_offset = nn.Conv2D(
            in_channels,
            3 * kernel_size**2,
            kernel_size,
            stride=stride,
            padding=(kernel_size - 1) // 2,
W
wangxinxin08 已提交
77
            weight_attr=ParamAttr(initializer=Constant(0.0)),
F
Feng Ni 已提交
78
            bias_attr=offset_bias_attr)
G
Guanghua Yu 已提交
79 80
        if skip_quant:
            self.conv_offset.skip_quant = True
F
Feng Ni 已提交
81 82 83 84 85

        if bias_attr:
            # in FCOS-DCN head, specifically need learning_rate and regularizer
            dcn_bias_attr = ParamAttr(
                initializer=Constant(value=0),
F
FlyingQianMM 已提交
86 87
                regularizer=dcn_bias_regularizer,
                learning_rate=dcn_bias_lr_scale)
F
Feng Ni 已提交
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
        else:
            # in ResNet backbone, do not need bias
            dcn_bias_attr = False
        self.conv_dcn = DeformConv2D(
            in_channels,
            out_channels,
            kernel_size,
            stride=stride,
            padding=(kernel_size - 1) // 2 * dilation,
            dilation=dilation,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=dcn_bias_attr)

    def forward(self, x):
        offset_mask = self.conv_offset(x)
        offset, mask = paddle.split(
            offset_mask,
            num_or_sections=[self.offset_channel, self.mask_channel],
            axis=1)
        mask = F.sigmoid(mask)
        y = self.conv_dcn(x, offset, mask=mask)
        return y


G
Guanghua Yu 已提交
113 114 115 116 117 118
class ConvNormLayer(nn.Layer):
    def __init__(self,
                 ch_in,
                 ch_out,
                 filter_size,
                 stride,
W
wangguanzhong 已提交
119
                 groups=1,
G
Guanghua Yu 已提交
120
                 norm_type='bn',
F
Feng Ni 已提交
121
                 norm_decay=0.,
G
Guanghua Yu 已提交
122 123
                 norm_groups=32,
                 use_dcn=False,
F
Feng Ni 已提交
124 125
                 bias_on=False,
                 lr_scale=1.,
F
Feng Ni 已提交
126 127 128
                 freeze_norm=False,
                 initializer=Normal(
                     mean=0., std=0.01),
F
FlyingQianMM 已提交
129 130 131
                 skip_quant=False,
                 dcn_lr_scale=2.,
                 dcn_regularizer=L2Decay(0.)):
G
Guanghua Yu 已提交
132 133 134
        super(ConvNormLayer, self).__init__()
        assert norm_type in ['bn', 'sync_bn', 'gn']

F
Feng Ni 已提交
135 136
        if bias_on:
            bias_attr = ParamAttr(
137
                initializer=Constant(value=0.), learning_rate=lr_scale)
F
Feng Ni 已提交
138 139 140
        else:
            bias_attr = False

F
Feng Ni 已提交
141 142 143 144 145 146 147
        if not use_dcn:
            self.conv = nn.Conv2D(
                in_channels=ch_in,
                out_channels=ch_out,
                kernel_size=filter_size,
                stride=stride,
                padding=(filter_size - 1) // 2,
W
wangguanzhong 已提交
148
                groups=groups,
F
Feng Ni 已提交
149
                weight_attr=ParamAttr(
150
                    initializer=initializer, learning_rate=1.),
F
Feng Ni 已提交
151
                bias_attr=bias_attr)
G
Guanghua Yu 已提交
152 153
            if skip_quant:
                self.conv.skip_quant = True
F
Feng Ni 已提交
154 155 156 157 158 159 160 161
        else:
            # in FCOS-DCN head, specifically need learning_rate and regularizer
            self.conv = DeformableConvV2(
                in_channels=ch_in,
                out_channels=ch_out,
                kernel_size=filter_size,
                stride=stride,
                padding=(filter_size - 1) // 2,
W
wangguanzhong 已提交
162
                groups=groups,
F
Feng Ni 已提交
163
                weight_attr=ParamAttr(
164
                    initializer=initializer, learning_rate=1.),
F
Feng Ni 已提交
165
                bias_attr=True,
F
FlyingQianMM 已提交
166 167
                lr_scale=dcn_lr_scale,
                regularizer=dcn_regularizer,
168 169
                dcn_bias_regularizer=dcn_regularizer,
                dcn_bias_lr_scale=dcn_lr_scale,
170
                skip_quant=skip_quant)
G
Guanghua Yu 已提交
171

F
Feng Ni 已提交
172
        norm_lr = 0. if freeze_norm else 1.
G
Guanghua Yu 已提交
173
        param_attr = ParamAttr(
F
FlyingQianMM 已提交
174 175
            learning_rate=norm_lr,
            regularizer=L2Decay(norm_decay) if norm_decay is not None else None)
G
Guanghua Yu 已提交
176
        bias_attr = ParamAttr(
F
FlyingQianMM 已提交
177 178
            learning_rate=norm_lr,
            regularizer=L2Decay(norm_decay) if norm_decay is not None else None)
F
Feng Ni 已提交
179
        if norm_type == 'bn':
F
Feng Ni 已提交
180
            self.norm = nn.BatchNorm2D(
G
Guanghua Yu 已提交
181
                ch_out, weight_attr=param_attr, bias_attr=bias_attr)
F
Feng Ni 已提交
182 183 184
        elif norm_type == 'sync_bn':
            self.norm = nn.SyncBatchNorm(
                ch_out, weight_attr=param_attr, bias_attr=bias_attr)
G
Guanghua Yu 已提交
185
        elif norm_type == 'gn':
F
Feng Ni 已提交
186
            self.norm = nn.GroupNorm(
G
Guanghua Yu 已提交
187 188 189 190 191 192 193 194 195 196 197
                num_groups=norm_groups,
                num_channels=ch_out,
                weight_attr=param_attr,
                bias_attr=bias_attr)

    def forward(self, inputs):
        out = self.conv(inputs)
        out = self.norm(out)
        return out


W
wangguanzhong 已提交
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
class LiteConv(nn.Layer):
    def __init__(self,
                 in_channels,
                 out_channels,
                 stride=1,
                 with_act=True,
                 norm_type='sync_bn',
                 name=None):
        super(LiteConv, self).__init__()
        self.lite_conv = nn.Sequential()
        conv1 = ConvNormLayer(
            in_channels,
            in_channels,
            filter_size=5,
            stride=stride,
            groups=in_channels,
            norm_type=norm_type,
215
            initializer=XavierUniform())
W
wangguanzhong 已提交
216 217 218 219 220 221
        conv2 = ConvNormLayer(
            in_channels,
            out_channels,
            filter_size=1,
            stride=stride,
            norm_type=norm_type,
222
            initializer=XavierUniform())
W
wangguanzhong 已提交
223 224 225 226 227 228
        conv3 = ConvNormLayer(
            out_channels,
            out_channels,
            filter_size=1,
            stride=stride,
            norm_type=norm_type,
229
            initializer=XavierUniform())
W
wangguanzhong 已提交
230 231 232 233 234 235 236
        conv4 = ConvNormLayer(
            out_channels,
            out_channels,
            filter_size=5,
            stride=stride,
            groups=out_channels,
            norm_type=norm_type,
237
            initializer=XavierUniform())
W
wangguanzhong 已提交
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
        conv_list = [conv1, conv2, conv3, conv4]
        self.lite_conv.add_sublayer('conv1', conv1)
        self.lite_conv.add_sublayer('relu6_1', nn.ReLU6())
        self.lite_conv.add_sublayer('conv2', conv2)
        if with_act:
            self.lite_conv.add_sublayer('relu6_2', nn.ReLU6())
        self.lite_conv.add_sublayer('conv3', conv3)
        self.lite_conv.add_sublayer('relu6_3', nn.ReLU6())
        self.lite_conv.add_sublayer('conv4', conv4)
        if with_act:
            self.lite_conv.add_sublayer('relu6_4', nn.ReLU6())

    def forward(self, inputs):
        out = self.lite_conv(inputs)
        return out


G
Guanghua Yu 已提交
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
class DropBlock(nn.Layer):
    def __init__(self, block_size, keep_prob, name, data_format='NCHW'):
        """
        DropBlock layer, see https://arxiv.org/abs/1810.12890

        Args:
            block_size (int): block size
            keep_prob (int): keep probability
            name (str): layer name
            data_format (str): data format, NCHW or NHWC
        """
        super(DropBlock, self).__init__()
        self.block_size = block_size
        self.keep_prob = keep_prob
        self.name = name
        self.data_format = data_format

    def forward(self, x):
        if not self.training or self.keep_prob == 1:
            return x
        else:
            gamma = (1. - self.keep_prob) / (self.block_size**2)
            if self.data_format == 'NCHW':
                shape = x.shape[2:]
            else:
                shape = x.shape[1:3]
            for s in shape:
                gamma *= s / (s - self.block_size + 1)

            matrix = paddle.cast(paddle.rand(x.shape, x.dtype) < gamma, x.dtype)
            mask_inv = F.max_pool2d(
                matrix,
                self.block_size,
                stride=1,
                padding=self.block_size // 2,
                data_format=self.data_format)
            mask = 1. - mask_inv
            y = x * mask * (mask.numel() / mask.sum())
            return y


Q
qingqing01 已提交
296 297 298 299 300 301 302 303
@register
@serializable
class AnchorGeneratorSSD(object):
    def __init__(self,
                 steps=[8, 16, 32, 64, 100, 300],
                 aspect_ratios=[[2.], [2., 3.], [2., 3.], [2., 3.], [2.], [2.]],
                 min_ratio=15,
                 max_ratio=90,
304
                 base_size=300,
Q
qingqing01 已提交
305 306 307 308 309 310 311 312 313 314
                 min_sizes=[30.0, 60.0, 111.0, 162.0, 213.0, 264.0],
                 max_sizes=[60.0, 111.0, 162.0, 213.0, 264.0, 315.0],
                 offset=0.5,
                 flip=True,
                 clip=False,
                 min_max_aspect_ratios_order=False):
        self.steps = steps
        self.aspect_ratios = aspect_ratios
        self.min_ratio = min_ratio
        self.max_ratio = max_ratio
315
        self.base_size = base_size
Q
qingqing01 已提交
316 317 318 319 320 321 322
        self.min_sizes = min_sizes
        self.max_sizes = max_sizes
        self.offset = offset
        self.flip = flip
        self.clip = clip
        self.min_max_aspect_ratios_order = min_max_aspect_ratios_order

323 324 325 326 327 328 329 330 331 332 333 334
        if self.min_sizes == [] and self.max_sizes == []:
            num_layer = len(aspect_ratios)
            step = int(
                math.floor(((self.max_ratio - self.min_ratio)) / (num_layer - 2
                                                                  )))
            for ratio in six.moves.range(self.min_ratio, self.max_ratio + 1,
                                         step):
                self.min_sizes.append(self.base_size * ratio / 100.)
                self.max_sizes.append(self.base_size * (ratio + step) / 100.)
            self.min_sizes = [self.base_size * .10] + self.min_sizes
            self.max_sizes = [self.base_size * .20] + self.max_sizes

Q
qingqing01 已提交
335
        self.num_priors = []
336 337
        for aspect_ratio, min_size, max_size in zip(
                aspect_ratios, self.min_sizes, self.max_sizes):
338 339 340 341 342 343
            if isinstance(min_size, (list, tuple)):
                self.num_priors.append(
                    len(_to_list(min_size)) + len(_to_list(max_size)))
            else:
                self.num_priors.append((len(aspect_ratio) * 2 + 1) * len(
                    _to_list(min_size)) + len(_to_list(max_size)))
Q
qingqing01 已提交
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367

    def __call__(self, inputs, image):
        boxes = []
        for input, min_size, max_size, aspect_ratio, step in zip(
                inputs, self.min_sizes, self.max_sizes, self.aspect_ratios,
                self.steps):
            box, _ = ops.prior_box(
                input=input,
                image=image,
                min_sizes=_to_list(min_size),
                max_sizes=_to_list(max_size),
                aspect_ratios=aspect_ratio,
                flip=self.flip,
                clip=self.clip,
                steps=[step, step],
                offset=self.offset,
                min_max_aspect_ratios_order=self.min_max_aspect_ratios_order)
            boxes.append(paddle.reshape(box, [-1, 4]))
        return boxes


@register
@serializable
class RCNNBox(object):
W
wangguanzhong 已提交
368 369
    __shared__ = ['num_classes']

Q
qingqing01 已提交
370
    def __init__(self,
371
                 prior_box_var=[10., 10., 5., 5.],
Q
qingqing01 已提交
372
                 code_type="decode_center_size",
W
wangguanzhong 已提交
373 374
                 box_normalized=False,
                 num_classes=80):
Q
qingqing01 已提交
375 376 377 378
        super(RCNNBox, self).__init__()
        self.prior_box_var = prior_box_var
        self.code_type = code_type
        self.box_normalized = box_normalized
W
wangguanzhong 已提交
379
        self.num_classes = num_classes
Q
qingqing01 已提交
380 381

    def __call__(self, bbox_head_out, rois, im_shape, scale_factor):
C
cnn 已提交
382 383 384 385 386
        bbox_pred = bbox_head_out[0]
        cls_prob = bbox_head_out[1]
        roi = rois[0]
        rois_num = rois[1]

387
        origin_shape = paddle.floor(im_shape / scale_factor + 0.5)
Q
qingqing01 已提交
388 389
        scale_list = []
        origin_shape_list = []
390

C
cnn 已提交
391 392 393 394 395
        batch_size = 1
        if isinstance(roi, list):
            batch_size = len(roi)
        else:
            batch_size = paddle.slice(paddle.shape(im_shape), [0], [0], [1])
C
cnn 已提交
396 397 398
        # bbox_pred.shape: [N, C*4]
        for idx in range(batch_size):
            roi_per_im = roi[idx]
Q
qingqing01 已提交
399
            rois_num_per_im = rois_num[idx]
400
            expand_im_shape = paddle.expand(im_shape[idx, :],
Q
qingqing01 已提交
401 402 403 404 405
                                            [rois_num_per_im, 2])
            origin_shape_list.append(expand_im_shape)

        origin_shape = paddle.concat(origin_shape_list)

F
Feng Ni 已提交
406 407
        # bbox_pred.shape: [N, C*4]
        # C=num_classes in faster/mask rcnn(bbox_head), C=1 in cascade rcnn(cascade_head)
408
        bbox = paddle.concat(roi)
G
Guanghua Yu 已提交
409 410 411 412
        if bbox.shape[0] == 0:
            bbox = paddle.zeros([0, bbox_pred.shape[1]], dtype='float32')
        else:
            bbox = delta2bbox(bbox_pred, bbox, self.prior_box_var)
413 414
        scores = cls_prob[:, :-1]

F
Feng Ni 已提交
415 416 417
        # bbox.shape: [N, C, 4]
        # bbox.shape[1] must be equal to scores.shape[1]
        bbox_num_class = bbox.shape[1]
W
wangguanzhong 已提交
418 419 420
        if bbox_num_class == 1:
            bbox = paddle.tile(bbox, [1, self.num_classes, 1])

421 422 423
        origin_h = paddle.unsqueeze(origin_shape[:, 0], axis=1)
        origin_w = paddle.unsqueeze(origin_shape[:, 1], axis=1)
        zeros = paddle.zeros_like(origin_h)
Q
qingqing01 已提交
424 425 426 427 428 429
        x1 = paddle.maximum(paddle.minimum(bbox[:, :, 0], origin_w), zeros)
        y1 = paddle.maximum(paddle.minimum(bbox[:, :, 1], origin_h), zeros)
        x2 = paddle.maximum(paddle.minimum(bbox[:, :, 2], origin_w), zeros)
        y2 = paddle.maximum(paddle.minimum(bbox[:, :, 3], origin_h), zeros)
        bbox = paddle.stack([x1, y1, x2, y2], axis=-1)
        bboxes = (bbox, rois_num)
430
        return bboxes, scores
Q
qingqing01 已提交
431 432 433 434 435 436 437 438 439 440


@register
@serializable
class MultiClassNMS(object):
    def __init__(self,
                 score_threshold=.05,
                 nms_top_k=-1,
                 keep_top_k=100,
                 nms_threshold=.5,
441
                 normalized=True,
Q
qingqing01 已提交
442
                 nms_eta=1.0,
443
                 return_index=False,
Q
qingqing01 已提交
444 445 446 447 448 449 450 451
                 return_rois_num=True):
        super(MultiClassNMS, self).__init__()
        self.score_threshold = score_threshold
        self.nms_top_k = nms_top_k
        self.keep_top_k = keep_top_k
        self.nms_threshold = nms_threshold
        self.normalized = normalized
        self.nms_eta = nms_eta
452
        self.return_index = return_index
Q
qingqing01 已提交
453 454
        self.return_rois_num = return_rois_num

455 456 457 458 459 460 461 462 463 464 465 466 467 468
    def __call__(self, bboxes, score, background_label=-1):
        """
        bboxes (Tensor|List[Tensor]): 1. (Tensor) Predicted bboxes with shape 
                                         [N, M, 4], N is the batch size and M
                                         is the number of bboxes
                                      2. (List[Tensor]) bboxes and bbox_num,
                                         bboxes have shape of [M, C, 4], C
                                         is the class number and bbox_num means
                                         the number of bboxes of each batch with
                                         shape [N,] 
        score (Tensor): Predicted scores with shape [N, C, M] or [M, C]
        background_label (int): Ignore the background label; For example, RCNN
                                is num_classes and YOLO is -1. 
        """
Q
qingqing01 已提交
469 470 471 472
        kwargs = self.__dict__.copy()
        if isinstance(bboxes, tuple):
            bboxes, bbox_num = bboxes
            kwargs.update({'rois_num': bbox_num})
473 474
        if background_label > -1:
            kwargs.update({'background_label': background_label})
Q
qingqing01 已提交
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
        return ops.multiclass_nms(bboxes, score, **kwargs)


@register
@serializable
class MatrixNMS(object):
    __append_doc__ = True

    def __init__(self,
                 score_threshold=.05,
                 post_threshold=.05,
                 nms_top_k=-1,
                 keep_top_k=100,
                 use_gaussian=False,
                 gaussian_sigma=2.,
                 normalized=False,
                 background_label=0):
        super(MatrixNMS, self).__init__()
        self.score_threshold = score_threshold
        self.post_threshold = post_threshold
        self.nms_top_k = nms_top_k
        self.keep_top_k = keep_top_k
        self.normalized = normalized
        self.use_gaussian = use_gaussian
        self.gaussian_sigma = gaussian_sigma
        self.background_label = background_label

502
    def __call__(self, bbox, score, *args):
W
wangxinxin08 已提交
503 504 505 506 507 508 509 510 511 512 513 514
        return ops.matrix_nms(
            bboxes=bbox,
            scores=score,
            score_threshold=self.score_threshold,
            post_threshold=self.post_threshold,
            nms_top_k=self.nms_top_k,
            keep_top_k=self.keep_top_k,
            use_gaussian=self.use_gaussian,
            gaussian_sigma=self.gaussian_sigma,
            background_label=self.background_label,
            normalized=self.normalized)

Q
qingqing01 已提交
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567

@register
@serializable
class YOLOBox(object):
    __shared__ = ['num_classes']

    def __init__(self,
                 num_classes=80,
                 conf_thresh=0.005,
                 downsample_ratio=32,
                 clip_bbox=True,
                 scale_x_y=1.):
        self.num_classes = num_classes
        self.conf_thresh = conf_thresh
        self.downsample_ratio = downsample_ratio
        self.clip_bbox = clip_bbox
        self.scale_x_y = scale_x_y

    def __call__(self,
                 yolo_head_out,
                 anchors,
                 im_shape,
                 scale_factor,
                 var_weight=None):
        boxes_list = []
        scores_list = []
        origin_shape = im_shape / scale_factor
        origin_shape = paddle.cast(origin_shape, 'int32')
        for i, head_out in enumerate(yolo_head_out):
            boxes, scores = ops.yolo_box(head_out, origin_shape, anchors[i],
                                         self.num_classes, self.conf_thresh,
                                         self.downsample_ratio // 2**i,
                                         self.clip_bbox, self.scale_x_y)
            boxes_list.append(boxes)
            scores_list.append(paddle.transpose(scores, perm=[0, 2, 1]))
        yolo_boxes = paddle.concat(boxes_list, axis=1)
        yolo_scores = paddle.concat(scores_list, axis=2)
        return yolo_boxes, yolo_scores


@register
@serializable
class SSDBox(object):
    def __init__(self, is_normalized=True):
        self.is_normalized = is_normalized
        self.norm_delta = float(not self.is_normalized)

    def __call__(self,
                 preds,
                 prior_boxes,
                 im_shape,
                 scale_factor,
                 var_weight=None):
568
        boxes, scores = preds
Q
qingqing01 已提交
569 570 571 572 573 574 575 576 577 578 579 580
        outputs = []
        for box, score, prior_box in zip(boxes, scores, prior_boxes):
            pb_w = prior_box[:, 2] - prior_box[:, 0] + self.norm_delta
            pb_h = prior_box[:, 3] - prior_box[:, 1] + self.norm_delta
            pb_x = prior_box[:, 0] + pb_w * 0.5
            pb_y = prior_box[:, 1] + pb_h * 0.5
            out_x = pb_x + box[:, :, 0] * pb_w * 0.1
            out_y = pb_y + box[:, :, 1] * pb_h * 0.1
            out_w = paddle.exp(box[:, :, 2] * 0.2) * pb_w
            out_h = paddle.exp(box[:, :, 3] * 0.2) * pb_h

            if self.is_normalized:
K
Kaipeng Deng 已提交
581 582 583 584
                h = paddle.unsqueeze(
                    im_shape[:, 0] / scale_factor[:, 0], axis=-1)
                w = paddle.unsqueeze(
                    im_shape[:, 1] / scale_factor[:, 1], axis=-1)
Q
qingqing01 已提交
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
                output = paddle.stack(
                    [(out_x - out_w / 2.) * w, (out_y - out_h / 2.) * h,
                     (out_x + out_w / 2.) * w, (out_y + out_h / 2.) * h],
                    axis=-1)
            else:
                output = paddle.stack(
                    [
                        out_x - out_w / 2., out_y - out_h / 2.,
                        out_x + out_w / 2. - 1., out_y + out_h / 2. - 1.
                    ],
                    axis=-1)
            outputs.append(output)
        boxes = paddle.concat(outputs, axis=1)

        scores = F.softmax(paddle.concat(scores, axis=1))
        scores = paddle.transpose(scores, [0, 2, 1])

        return boxes, scores


@register
@serializable
class AnchorGrid(object):
    """Generate anchor grid

    Args:
        image_size (int or list): input image size, may be a single integer or
            list of [h, w]. Default: 512
        min_level (int): min level of the feature pyramid. Default: 3
        max_level (int): max level of the feature pyramid. Default: 7
        anchor_base_scale: base anchor scale. Default: 4
        num_scales: number of anchor scales. Default: 3
        aspect_ratios: aspect ratios. default: [[1, 1], [1.4, 0.7], [0.7, 1.4]]
    """

    def __init__(self,
                 image_size=512,
                 min_level=3,
                 max_level=7,
                 anchor_base_scale=4,
                 num_scales=3,
                 aspect_ratios=[[1, 1], [1.4, 0.7], [0.7, 1.4]]):
        super(AnchorGrid, self).__init__()
        if isinstance(image_size, Integral):
            self.image_size = [image_size, image_size]
        else:
            self.image_size = image_size
        for dim in self.image_size:
            assert dim % 2 ** max_level == 0, \
                "image size should be multiple of the max level stride"
        self.min_level = min_level
        self.max_level = max_level
        self.anchor_base_scale = anchor_base_scale
        self.num_scales = num_scales
        self.aspect_ratios = aspect_ratios

    @property
    def base_cell(self):
        if not hasattr(self, '_base_cell'):
            self._base_cell = self.make_cell()
        return self._base_cell

    def make_cell(self):
        scales = [2**(i / self.num_scales) for i in range(self.num_scales)]
        scales = np.array(scales)
        ratios = np.array(self.aspect_ratios)
        ws = np.outer(scales, ratios[:, 0]).reshape(-1, 1)
        hs = np.outer(scales, ratios[:, 1]).reshape(-1, 1)
        anchors = np.hstack((-0.5 * ws, -0.5 * hs, 0.5 * ws, 0.5 * hs))
        return anchors

    def make_grid(self, stride):
        cell = self.base_cell * stride * self.anchor_base_scale
        x_steps = np.arange(stride // 2, self.image_size[1], stride)
        y_steps = np.arange(stride // 2, self.image_size[0], stride)
        offset_x, offset_y = np.meshgrid(x_steps, y_steps)
        offset_x = offset_x.flatten()
        offset_y = offset_y.flatten()
        offsets = np.stack((offset_x, offset_y, offset_x, offset_y), axis=-1)
        offsets = offsets[:, np.newaxis, :]
        return (cell + offsets).reshape(-1, 4)

    def generate(self):
        return [
            self.make_grid(2**l)
            for l in range(self.min_level, self.max_level + 1)
        ]

    def __call__(self):
        if not hasattr(self, '_anchor_vars'):
            anchor_vars = []
            helper = LayerHelper('anchor_grid')
            for idx, l in enumerate(range(self.min_level, self.max_level + 1)):
                stride = 2**l
                anchors = self.make_grid(stride)
                var = helper.create_parameter(
                    attr=ParamAttr(name='anchors_{}'.format(idx)),
                    shape=anchors.shape,
                    dtype='float32',
                    stop_gradient=True,
                    default_initializer=NumpyArrayInitializer(anchors))
                anchor_vars.append(var)
                var.persistable = True
            self._anchor_vars = anchor_vars

        return self._anchor_vars
G
Guanghua Yu 已提交
691 692 693 694


@register
@serializable
F
Feng Ni 已提交
695
class FCOSBox(object):
F
Feng Ni 已提交
696
    __shared__ = ['num_classes']
F
Feng Ni 已提交
697

F
Feng Ni 已提交
698
    def __init__(self, num_classes=80):
F
Feng Ni 已提交
699 700 701 702 703
        super(FCOSBox, self).__init__()
        self.num_classes = num_classes

    def _merge_hw(self, inputs, ch_type="channel_first"):
        """
F
Feng Ni 已提交
704
        Merge h and w of the feature map into one dimension.
F
Feng Ni 已提交
705
        Args:
F
Feng Ni 已提交
706 707
            inputs (Tensor): Tensor of the input feature map
            ch_type (str): "channel_first" or "channel_last" style
F
Feng Ni 已提交
708
        Return:
F
Feng Ni 已提交
709
            new_shape (Tensor): The new shape after h and w merged
F
Feng Ni 已提交
710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
        """
        shape_ = paddle.shape(inputs)
        bs, ch, hi, wi = shape_[0], shape_[1], shape_[2], shape_[3]
        img_size = hi * wi
        img_size.stop_gradient = True
        if ch_type == "channel_first":
            new_shape = paddle.concat([bs, ch, img_size])
        elif ch_type == "channel_last":
            new_shape = paddle.concat([bs, img_size, ch])
        else:
            raise KeyError("Wrong ch_type %s" % ch_type)
        new_shape.stop_gradient = True
        return new_shape

    def _postprocessing_by_level(self, locations, box_cls, box_reg, box_ctn,
                                 scale_factor):
        """
F
Feng Ni 已提交
727
        Postprocess each layer of the output with corresponding locations.
F
Feng Ni 已提交
728
        Args:
F
Feng Ni 已提交
729 730 731 732 733 734
            locations (Tensor): anchor points for current layer, [H*W, 2]
            box_cls (Tensor): categories prediction, [N, C, H, W], 
                C is the number of classes
            box_reg (Tensor): bounding box prediction, [N, 4, H, W]
            box_ctn (Tensor): centerness prediction, [N, 1, H, W]
            scale_factor (Tensor): [h_scale, w_scale] for input images
F
Feng Ni 已提交
735
        Return:
F
Feng Ni 已提交
736
            box_cls_ch_last (Tensor): score for each category, in [N, C, M]
F
Feng Ni 已提交
737
                C is the number of classes and M is the number of anchor points
F
Feng Ni 已提交
738
            box_reg_decoding (Tensor): decoded bounding box, in [N, M, 4]
F
Feng Ni 已提交
739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
                last dimension is [x1, y1, x2, y2]
        """
        act_shape_cls = self._merge_hw(box_cls)
        box_cls_ch_last = paddle.reshape(x=box_cls, shape=act_shape_cls)
        box_cls_ch_last = F.sigmoid(box_cls_ch_last)

        act_shape_reg = self._merge_hw(box_reg)
        box_reg_ch_last = paddle.reshape(x=box_reg, shape=act_shape_reg)
        box_reg_ch_last = paddle.transpose(box_reg_ch_last, perm=[0, 2, 1])
        box_reg_decoding = paddle.stack(
            [
                locations[:, 0] - box_reg_ch_last[:, :, 0],
                locations[:, 1] - box_reg_ch_last[:, :, 1],
                locations[:, 0] + box_reg_ch_last[:, :, 2],
                locations[:, 1] + box_reg_ch_last[:, :, 3]
            ],
            axis=1)
        box_reg_decoding = paddle.transpose(box_reg_decoding, perm=[0, 2, 1])

        act_shape_ctn = self._merge_hw(box_ctn)
        box_ctn_ch_last = paddle.reshape(x=box_ctn, shape=act_shape_ctn)
        box_ctn_ch_last = F.sigmoid(box_ctn_ch_last)

        # recover the location to original image
        im_scale = paddle.concat([scale_factor, scale_factor], axis=1)
C
cnn 已提交
764 765
        im_scale = paddle.expand(im_scale, [box_reg_decoding.shape[0], 4])
        im_scale = paddle.reshape(im_scale, [box_reg_decoding.shape[0], -1, 4])
F
Feng Ni 已提交
766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
        box_reg_decoding = box_reg_decoding / im_scale
        box_cls_ch_last = box_cls_ch_last * box_ctn_ch_last
        return box_cls_ch_last, box_reg_decoding

    def __call__(self, locations, cls_logits, bboxes_reg, centerness,
                 scale_factor):
        pred_boxes_ = []
        pred_scores_ = []
        for pts, cls, box, ctn in zip(locations, cls_logits, bboxes_reg,
                                      centerness):
            pred_scores_lvl, pred_boxes_lvl = self._postprocessing_by_level(
                pts, cls, box, ctn, scale_factor)
            pred_boxes_.append(pred_boxes_lvl)
            pred_scores_.append(pred_scores_lvl)
        pred_boxes = paddle.concat(pred_boxes_, axis=1)
        pred_scores = paddle.concat(pred_scores_, axis=2)
        return pred_boxes, pred_scores


785
@register
F
Feng Ni 已提交
786 787 788 789 790 791 792 793 794 795
class TTFBox(object):
    __shared__ = ['down_ratio']

    def __init__(self, max_per_img=100, score_thresh=0.01, down_ratio=4):
        super(TTFBox, self).__init__()
        self.max_per_img = max_per_img
        self.score_thresh = score_thresh
        self.down_ratio = down_ratio

    def _simple_nms(self, heat, kernel=3):
F
Feng Ni 已提交
796 797 798
        """
        Use maxpool to filter the max score, get local peaks.
        """
F
Feng Ni 已提交
799 800 801 802 803 804
        pad = (kernel - 1) // 2
        hmax = F.max_pool2d(heat, kernel, stride=1, padding=pad)
        keep = paddle.cast(hmax == heat, 'float32')
        return heat * keep

    def _topk(self, scores):
F
Feng Ni 已提交
805 806 807
        """
        Select top k scores and decode to get xy coordinates.
        """
F
Feng Ni 已提交
808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
        k = self.max_per_img
        shape_fm = paddle.shape(scores)
        shape_fm.stop_gradient = True
        cat, height, width = shape_fm[1], shape_fm[2], shape_fm[3]
        # batch size is 1
        scores_r = paddle.reshape(scores, [cat, -1])
        topk_scores, topk_inds = paddle.topk(scores_r, k)
        topk_scores, topk_inds = paddle.topk(scores_r, k)
        topk_ys = topk_inds // width
        topk_xs = topk_inds % width

        topk_score_r = paddle.reshape(topk_scores, [-1])
        topk_score, topk_ind = paddle.topk(topk_score_r, k)
        k_t = paddle.full(paddle.shape(topk_ind), k, dtype='int64')
        topk_clses = paddle.cast(paddle.floor_divide(topk_ind, k_t), 'float32')

        topk_inds = paddle.reshape(topk_inds, [-1])
        topk_ys = paddle.reshape(topk_ys, [-1, 1])
        topk_xs = paddle.reshape(topk_xs, [-1, 1])
        topk_inds = paddle.gather(topk_inds, topk_ind)
        topk_ys = paddle.gather(topk_ys, topk_ind)
        topk_xs = paddle.gather(topk_xs, topk_ind)

        return topk_score, topk_inds, topk_clses, topk_ys, topk_xs

C
cnn 已提交
833
    def _decode(self, hm, wh, im_shape, scale_factor):
F
Feng Ni 已提交
834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
        heatmap = F.sigmoid(hm)
        heat = self._simple_nms(heatmap)
        scores, inds, clses, ys, xs = self._topk(heat)
        ys = paddle.cast(ys, 'float32') * self.down_ratio
        xs = paddle.cast(xs, 'float32') * self.down_ratio
        scores = paddle.tensor.unsqueeze(scores, [1])
        clses = paddle.tensor.unsqueeze(clses, [1])

        wh_t = paddle.transpose(wh, [0, 2, 3, 1])
        wh = paddle.reshape(wh_t, [-1, paddle.shape(wh_t)[-1]])
        wh = paddle.gather(wh, inds)

        x1 = xs - wh[:, 0:1]
        y1 = ys - wh[:, 1:2]
        x2 = xs + wh[:, 2:3]
        y2 = ys + wh[:, 3:4]

        bboxes = paddle.concat([x1, y1, x2, y2], axis=1)

        scale_y = scale_factor[:, 0:1]
        scale_x = scale_factor[:, 1:2]
        scale_expand = paddle.concat(
            [scale_x, scale_y, scale_x, scale_y], axis=1)
        boxes_shape = paddle.shape(bboxes)
        boxes_shape.stop_gradient = True
        scale_expand = paddle.expand(scale_expand, shape=boxes_shape)
        bboxes = paddle.divide(bboxes, scale_expand)
        results = paddle.concat([clses, scores, bboxes], axis=1)
        # hack: append result with cls=-1 and score=1. to avoid all scores
        # are less than score_thresh which may cause error in gather.
        fill_r = paddle.to_tensor(np.array([[-1, 1, 0, 0, 0, 0]]))
        fill_r = paddle.cast(fill_r, results.dtype)
        results = paddle.concat([results, fill_r])
        scores = results[:, 1]
        valid_ind = paddle.nonzero(scores > self.score_thresh)
        results = paddle.gather(results, valid_ind)
        return results, paddle.shape(results)[0:1]

C
cnn 已提交
872 873 874 875 876 877 878 879 880 881 882 883 884
    def __call__(self, hm, wh, im_shape, scale_factor):
        results = []
        results_num = []
        for i in range(scale_factor.shape[0]):
            result, num = self._decode(hm[i:i + 1, ], wh[i:i + 1, ],
                                       im_shape[i:i + 1, ],
                                       scale_factor[i:i + 1, ])
            results.append(result)
            results_num.append(num)
        results = paddle.concat(results, axis=0)
        results_num = paddle.concat(results_num, axis=0)
        return results, results_num

F
Feng Ni 已提交
885

886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
@register
@serializable
class JDEBox(object):
    __shared__ = ['num_classes']

    def __init__(self, num_classes=1, conf_thresh=0.3, downsample_ratio=32):
        self.num_classes = num_classes
        self.conf_thresh = conf_thresh
        self.downsample_ratio = downsample_ratio

    def generate_anchor(self, nGh, nGw, anchor_wh):
        nA = len(anchor_wh)
        yv, xv = paddle.meshgrid([paddle.arange(nGh), paddle.arange(nGw)])
        mesh = paddle.stack(
            (xv, yv), axis=0).cast(dtype='float32')  # 2 x nGh x nGw
        meshs = paddle.tile(mesh, [nA, 1, 1, 1])

        anchor_offset_mesh = anchor_wh[:, :, None][:, :, :, None].repeat(
            int(nGh), axis=-2).repeat(
                int(nGw), axis=-1)
        anchor_offset_mesh = paddle.to_tensor(
            anchor_offset_mesh.astype(np.float32))
        # nA x 2 x nGh x nGw

        anchor_mesh = paddle.concat([meshs, anchor_offset_mesh], axis=1)
        anchor_mesh = paddle.transpose(anchor_mesh,
                                       [0, 2, 3, 1])  # (nA x nGh x nGw) x 4
        return anchor_mesh

    def decode_delta(self, delta, fg_anchor_list):
        px, py, pw, ph = fg_anchor_list[:, 0], fg_anchor_list[:,1], \
                        fg_anchor_list[:, 2], fg_anchor_list[:,3]
        dx, dy, dw, dh = delta[:, 0], delta[:, 1], delta[:, 2], delta[:, 3]
        gx = pw * dx + px
        gy = ph * dy + py
        gw = pw * paddle.exp(dw)
        gh = ph * paddle.exp(dh)
        gx1 = gx - gw * 0.5
        gy1 = gy - gh * 0.5
        gx2 = gx + gw * 0.5
        gy2 = gy + gh * 0.5
        return paddle.stack([gx1, gy1, gx2, gy2], axis=1)

929 930
    def decode_delta_map(self, nA, nGh, nGw, delta_map, anchor_vec):
        anchor_mesh = self.generate_anchor(nGh, nGw, anchor_vec)
931 932 933 934 935 936
        anchor_mesh = paddle.unsqueeze(anchor_mesh, 0)
        pred_list = self.decode_delta(
            paddle.reshape(
                delta_map, shape=[-1, 4]),
            paddle.reshape(
                anchor_mesh, shape=[-1, 4]))
937
        pred_map = paddle.reshape(pred_list, shape=[nA * nGh * nGw, 4])
938 939
        return pred_map

940
    def _postprocessing_by_level(self, nA, stride, head_out, anchor_vec):
941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
        boxes_shape = head_out.shape  # [nB, nA*6, nGh, nGw]
        nGh, nGw = boxes_shape[-2], boxes_shape[-1]
        nB = 1  # TODO: only support bs=1 now
        boxes_list, scores_list = [], []
        for idx in range(nB):
            p = paddle.reshape(
                head_out[idx], shape=[nA, self.num_classes + 5, nGh, nGw])
            p = paddle.transpose(p, perm=[0, 2, 3, 1])  # [nA, nGh, nGw, 6]
            delta_map = p[:, :, :, :4]
            boxes = self.decode_delta_map(nA, nGh, nGw, delta_map, anchor_vec)
            # [nA * nGh * nGw, 4]
            boxes_list.append(boxes * stride)

            p_conf = paddle.transpose(
                p[:, :, :, 4:6], perm=[3, 0, 1, 2])  # [2, nA, nGh, nGw]
            p_conf = F.softmax(
                p_conf, axis=0)[1, :, :, :].unsqueeze(-1)  # [nA, nGh, nGw, 1]
            scores = paddle.reshape(p_conf, shape=[nA * nGh * nGw, 1])
            scores_list.append(scores)

        boxes_results = paddle.stack(boxes_list)
        scores_results = paddle.stack(scores_list)
        return boxes_results, scores_results
964

965 966 967 968 969 970 971
    def __call__(self, yolo_head_out, anchors):
        bbox_pred_list = []
        for i, head_out in enumerate(yolo_head_out):
            stride = self.downsample_ratio // 2**i
            anc_w, anc_h = anchors[i][0::2], anchors[i][1::2]
            anchor_vec = np.stack((anc_w, anc_h), axis=1) / stride
            nA = len(anc_w)
972 973
            boxes, scores = self._postprocessing_by_level(nA, stride, head_out,
                                                          anchor_vec)
974 975
            bbox_pred_list.append(paddle.concat([boxes, scores], axis=-1))

976 977 978 979 980 981
        yolo_boxes_scores = paddle.concat(bbox_pred_list, axis=1)
        boxes_idx_over_conf_thr = paddle.nonzero(
            yolo_boxes_scores[:, :, -1] > self.conf_thresh)
        boxes_idx_over_conf_thr.stop_gradient = True

        return boxes_idx_over_conf_thr, yolo_boxes_scores
982 983


G
Guanghua Yu 已提交
984
@register
985
@serializable
G
Guanghua Yu 已提交
986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
class MaskMatrixNMS(object):
    """
    Matrix NMS for multi-class masks.
    Args:
        update_threshold (float): Updated threshold of categroy score in second time.
        pre_nms_top_n (int): Number of total instance to be kept per image before NMS
        post_nms_top_n (int): Number of total instance to be kept per image after NMS.
        kernel (str):  'linear' or 'gaussian'.
        sigma (float): std in gaussian method.
    Input:
        seg_preds (Variable): shape (n, h, w), segmentation feature maps
        seg_masks (Variable): shape (n, h, w), segmentation feature maps
        cate_labels (Variable): shape (n), mask labels in descending order
        cate_scores (Variable): shape (n), mask scores in descending order
        sum_masks (Variable): a float tensor of the sum of seg_masks
    Returns:
        Variable: cate_scores, tensors of shape (n)
    """

    def __init__(self,
                 update_threshold=0.05,
                 pre_nms_top_n=500,
                 post_nms_top_n=100,
                 kernel='gaussian',
                 sigma=2.0):
        super(MaskMatrixNMS, self).__init__()
        self.update_threshold = update_threshold
        self.pre_nms_top_n = pre_nms_top_n
        self.post_nms_top_n = post_nms_top_n
        self.kernel = kernel
        self.sigma = sigma

    def _sort_score(self, scores, top_num):
        if paddle.shape(scores)[0] > top_num:
            return paddle.topk(scores, top_num)[1]
        else:
            return paddle.argsort(scores, descending=True)

    def __call__(self,
                 seg_preds,
                 seg_masks,
                 cate_labels,
                 cate_scores,
                 sum_masks=None):
        # sort and keep top nms_pre
        sort_inds = self._sort_score(cate_scores, self.pre_nms_top_n)
        seg_masks = paddle.gather(seg_masks, index=sort_inds)
        seg_preds = paddle.gather(seg_preds, index=sort_inds)
        sum_masks = paddle.gather(sum_masks, index=sort_inds)
        cate_scores = paddle.gather(cate_scores, index=sort_inds)
        cate_labels = paddle.gather(cate_labels, index=sort_inds)

        seg_masks = paddle.flatten(seg_masks, start_axis=1, stop_axis=-1)
        # inter.
        inter_matrix = paddle.mm(seg_masks, paddle.transpose(seg_masks, [1, 0]))
        n_samples = paddle.shape(cate_labels)
        # union.
        sum_masks_x = paddle.expand(sum_masks, shape=[n_samples, n_samples])
        # iou.
        iou_matrix = (inter_matrix / (
            sum_masks_x + paddle.transpose(sum_masks_x, [1, 0]) - inter_matrix))
        iou_matrix = paddle.triu(iou_matrix, diagonal=1)
        # label_specific matrix.
        cate_labels_x = paddle.expand(cate_labels, shape=[n_samples, n_samples])
        label_matrix = paddle.cast(
            (cate_labels_x == paddle.transpose(cate_labels_x, [1, 0])),
            'float32')
        label_matrix = paddle.triu(label_matrix, diagonal=1)

        # IoU compensation
        compensate_iou = paddle.max((iou_matrix * label_matrix), axis=0)
        compensate_iou = paddle.expand(
            compensate_iou, shape=[n_samples, n_samples])
        compensate_iou = paddle.transpose(compensate_iou, [1, 0])

        # IoU decay
        decay_iou = iou_matrix * label_matrix

        # matrix nms
        if self.kernel == 'gaussian':
            decay_matrix = paddle.exp(-1 * self.sigma * (decay_iou**2))
            compensate_matrix = paddle.exp(-1 * self.sigma *
                                           (compensate_iou**2))
            decay_coefficient = paddle.min(decay_matrix / compensate_matrix,
                                           axis=0)
        elif self.kernel == 'linear':
            decay_matrix = (1 - decay_iou) / (1 - compensate_iou)
            decay_coefficient = paddle.min(decay_matrix, axis=0)
        else:
            raise NotImplementedError

        # update the score.
        cate_scores = cate_scores * decay_coefficient
        y = paddle.zeros(shape=paddle.shape(cate_scores), dtype='float32')
        keep = paddle.where(cate_scores >= self.update_threshold, cate_scores,
                            y)
        keep = paddle.nonzero(keep)
        keep = paddle.squeeze(keep, axis=[1])
        # Prevent empty and increase fake data
        keep = paddle.concat(
            [keep, paddle.cast(paddle.shape(cate_scores)[0] - 1, 'int64')])

        seg_preds = paddle.gather(seg_preds, index=keep)
        cate_scores = paddle.gather(cate_scores, index=keep)
        cate_labels = paddle.gather(cate_labels, index=keep)

        # sort and keep top_k
        sort_inds = self._sort_score(cate_scores, self.post_nms_top_n)
        seg_preds = paddle.gather(seg_preds, index=sort_inds)
        cate_scores = paddle.gather(cate_scores, index=sort_inds)
        cate_labels = paddle.gather(cate_labels, index=sort_inds)
        return seg_preds, cate_scores, cate_labels
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195


def Conv2d(in_channels,
           out_channels,
           kernel_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=1,
           bias=True,
           weight_init=Normal(std=0.001),
           bias_init=Constant(0.)):
    weight_attr = paddle.framework.ParamAttr(initializer=weight_init)
    if bias:
        bias_attr = paddle.framework.ParamAttr(initializer=bias_init)
    else:
        bias_attr = False
    conv = nn.Conv2D(
        in_channels,
        out_channels,
        kernel_size,
        stride,
        padding,
        dilation,
        groups,
        weight_attr=weight_attr,
        bias_attr=bias_attr)
    return conv


def ConvTranspose2d(in_channels,
                    out_channels,
                    kernel_size,
                    stride=1,
                    padding=0,
                    output_padding=0,
                    groups=1,
                    bias=True,
                    dilation=1,
                    weight_init=Normal(std=0.001),
                    bias_init=Constant(0.)):
    weight_attr = paddle.framework.ParamAttr(initializer=weight_init)
    if bias:
        bias_attr = paddle.framework.ParamAttr(initializer=bias_init)
    else:
        bias_attr = False
    conv = nn.Conv2DTranspose(
        in_channels,
        out_channels,
        kernel_size,
        stride,
        padding,
        output_padding,
        dilation,
        groups,
        weight_attr=weight_attr,
        bias_attr=bias_attr)
    return conv


def BatchNorm2d(num_features, eps=1e-05, momentum=0.9, affine=True):
    if not affine:
        weight_attr = False
        bias_attr = False
    else:
        weight_attr = None
        bias_attr = None
    batchnorm = nn.BatchNorm2D(
        num_features,
        momentum,
        eps,
        weight_attr=weight_attr,
        bias_attr=bias_attr)
    return batchnorm


def ReLU():
    return nn.ReLU()


def Upsample(scale_factor=None, mode='nearest', align_corners=False):
    return nn.Upsample(None, scale_factor, mode, align_corners)


def MaxPool(kernel_size, stride, padding, ceil_mode=False):
    return nn.MaxPool2D(kernel_size, stride, padding, ceil_mode=ceil_mode)


class Concat(nn.Layer):
    def __init__(self, dim=0):
        super(Concat, self).__init__()
        self.dim = dim

    def forward(self, inputs):
        return paddle.concat(inputs, axis=self.dim)

    def extra_repr(self):
        return 'dim={}'.format(self.dim)
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371


class MultiHeadAttention(nn.Layer):
    """
    Attention mapps queries and a set of key-value pairs to outputs, and
    Multi-Head Attention performs multiple parallel attention to jointly attending
    to information from different representation subspaces.

    Please refer to `Attention Is All You Need <https://arxiv.org/pdf/1706.03762.pdf>`_
    for more details.

    Parameters:
        embed_dim (int): The expected feature size in the input and output.
        num_heads (int): The number of heads in multi-head attention.
        dropout (float, optional): The dropout probability used on attention
            weights to drop some attention targets. 0 for no dropout. Default 0
        kdim (int, optional): The feature size in key. If None, assumed equal to
            `embed_dim`. Default None.
        vdim (int, optional): The feature size in value. If None, assumed equal to
            `embed_dim`. Default None.
        need_weights (bool, optional): Indicate whether to return the attention
            weights. Default False.

    Examples:

        .. code-block:: python

            import paddle

            # encoder input: [batch_size, sequence_length, d_model]
            query = paddle.rand((2, 4, 128))
            # self attention mask: [batch_size, num_heads, query_len, query_len]
            attn_mask = paddle.rand((2, 2, 4, 4))
            multi_head_attn = paddle.nn.MultiHeadAttention(128, 2)
            output = multi_head_attn(query, None, None, attn_mask=attn_mask)  # [2, 4, 128]
    """

    def __init__(self,
                 embed_dim,
                 num_heads,
                 dropout=0.,
                 kdim=None,
                 vdim=None,
                 need_weights=False):
        super(MultiHeadAttention, self).__init__()
        self.embed_dim = embed_dim
        self.kdim = kdim if kdim is not None else embed_dim
        self.vdim = vdim if vdim is not None else embed_dim
        self._qkv_same_embed_dim = self.kdim == embed_dim and self.vdim == embed_dim

        self.num_heads = num_heads
        self.dropout = dropout
        self.need_weights = need_weights

        self.head_dim = embed_dim // num_heads
        assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"

        if self._qkv_same_embed_dim:
            self.in_proj_weight = self.create_parameter(
                shape=[embed_dim, 3 * embed_dim],
                attr=None,
                dtype=self._dtype,
                is_bias=False)
            self.in_proj_bias = self.create_parameter(
                shape=[3 * embed_dim],
                attr=None,
                dtype=self._dtype,
                is_bias=True)
        else:
            self.q_proj = nn.Linear(embed_dim, embed_dim)
            self.k_proj = nn.Linear(self.kdim, embed_dim)
            self.v_proj = nn.Linear(self.vdim, embed_dim)

        self.out_proj = nn.Linear(embed_dim, embed_dim)
        self._type_list = ('q_proj', 'k_proj', 'v_proj')

        self._reset_parameters()

    def _reset_parameters(self):
        for p in self.parameters():
            if p.dim() > 1:
                xavier_uniform_(p)
            else:
                constant_(p)

    def compute_qkv(self, tensor, index):
        if self._qkv_same_embed_dim:
            tensor = F.linear(
                x=tensor,
                weight=self.in_proj_weight[:, index * self.embed_dim:(index + 1)
                                           * self.embed_dim],
                bias=self.in_proj_bias[index * self.embed_dim:(index + 1) *
                                       self.embed_dim]
                if self.in_proj_bias is not None else None)
        else:
            tensor = getattr(self, self._type_list[index])(tensor)
        tensor = tensor.reshape(
            [0, 0, self.num_heads, self.head_dim]).transpose([0, 2, 1, 3])
        return tensor

    def forward(self, query, key=None, value=None, attn_mask=None):
        r"""
        Applies multi-head attention to map queries and a set of key-value pairs
        to outputs.

        Parameters:
            query (Tensor): The queries for multi-head attention. It is a
                tensor with shape `[batch_size, query_length, embed_dim]`. The
                data type should be float32 or float64.
            key (Tensor, optional): The keys for multi-head attention. It is
                a tensor with shape `[batch_size, key_length, kdim]`. The
                data type should be float32 or float64. If None, use `query` as
                `key`. Default None.
            value (Tensor, optional): The values for multi-head attention. It
                is a tensor with shape `[batch_size, value_length, vdim]`.
                The data type should be float32 or float64. If None, use `query` as
                `value`. Default None.
            attn_mask (Tensor, optional): A tensor used in multi-head attention
                to prevents attention to some unwanted positions, usually the
                paddings or the subsequent positions. It is a tensor with shape
                broadcasted to `[batch_size, n_head, sequence_length, sequence_length]`.
                When the data type is bool, the unwanted positions have `False`
                values and the others have `True` values. When the data type is
                int, the unwanted positions have 0 values and the others have 1
                values. When the data type is float, the unwanted positions have
                `-INF` values and the others have 0 values. It can be None when
                nothing wanted or needed to be prevented attention to. Default None.

        Returns:
            Tensor|tuple: It is a tensor that has the same shape and data type \
                as `query`, representing attention output. Or a tuple if \
                `need_weights` is True or `cache` is not None. If `need_weights` \
                is True, except for attention output, the tuple also includes \
                the attention weights tensor shaped `[batch_size, num_heads, query_length, key_length]`. \
                If `cache` is not None, the tuple then includes the new cache \
                having the same type as `cache`, and if it is `StaticCache`, it \
                is same as the input `cache`, if it is `Cache`, the new cache \
                reserves tensors concatanating raw tensors with intermediate \
                results of current query.
        """
        key = query if key is None else key
        value = query if value is None else value
        # compute q ,k ,v
        q, k, v = (self.compute_qkv(t, i)
                   for i, t in enumerate([query, key, value]))

        # scale dot product attention
        product = paddle.matmul(x=q, y=k, transpose_y=True)
        scaling = float(self.head_dim)**-0.5
        product = product * scaling

        if attn_mask is not None:
            # Support bool or int mask
            attn_mask = _convert_attention_mask(attn_mask, product.dtype)
            product = product + attn_mask
        weights = F.softmax(product)
        if self.dropout:
            weights = F.dropout(
                weights,
                self.dropout,
                training=self.training,
                mode="upscale_in_train")

        out = paddle.matmul(weights, v)

        # combine heads
        out = paddle.transpose(out, perm=[0, 2, 1, 3])
        out = paddle.reshape(x=out, shape=[0, 0, out.shape[2] * out.shape[3]])

        # project to output
        out = self.out_proj(out)

        outs = [out]
        if self.need_weights:
            outs.append(weights)
        return out if len(outs) == 1 else tuple(outs)