Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
4f96dc2f
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
4f96dc2f
编写于
6月 28, 2021
作者:
G
Guanghua Yu
提交者:
GitHub
6月 28, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add solov2 enhance model (#3517)
* add solov2 enhance model
上级
5f9b0bc3
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
165 addition
and
43 deletion
+165
-43
configs/solov2/README.md
configs/solov2/README.md
+14
-0
configs/solov2/_base_/solov2_light_reader.yml
configs/solov2/_base_/solov2_light_reader.yml
+47
-0
configs/solov2/solov2_r50_enhance_coco.yml
configs/solov2/solov2_r50_enhance_coco.yml
+50
-0
ppdet/modeling/heads/solov2_head.py
ppdet/modeling/heads/solov2_head.py
+12
-2
ppdet/modeling/layers.py
ppdet/modeling/layers.py
+41
-0
ppdet/modeling/necks/yolo_fpn.py
ppdet/modeling/necks/yolo_fpn.py
+1
-41
未找到文件。
configs/solov2/README.md
浏览文件 @
4f96dc2f
...
...
@@ -27,6 +27,20 @@ SOLOv2 (Segmenting Objects by Locations) is a fast instance segmentation framewo
-
SOLOv2 is trained on COCO train2017 dataset and evaluated on val2017 results of
`mAP(IoU=0.5:0.95)`
.
## Enhanced model
| Backbone | Input size | Lr schd | V100 FP32(FPS) | Mask AP
<sup>
val
</sup>
| Download | Configs |
| :---------------------: | :-------------------: | :-----: | :------------: | :-----: | :---------: | :------------------------: |
| Light-R50-VD-DCN-FPN | 512 | 3x | 38.6 | 39.0 |
[
model
](
https://paddledet.bj.bcebos.com/models/solov2_r50_enhance_coco.pdparams
)
|
[
config
](
https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/solov2/solov2_r50_enhance_coco.yml
)
|
**Optimizing method of enhanced model:**
-
Better backbone network: ResNet50vd-DCN
-
A better pre-training model for knowledge distillation
-
[
Exponential Moving Average
](
https://www.investopedia.com/terms/e/ema.asp
)
-
Synchronized Batch Normalization
-
Multi-scale training
-
More data augmentation methods
-
DropBlock
## Citations
```
@article{wang2020solov2,
...
...
configs/solov2/_base_/solov2_light_reader.yml
0 → 100644
浏览文件 @
4f96dc2f
worker_num
:
2
TrainReader
:
sample_transforms
:
-
Decode
:
{}
-
Poly2Mask
:
{}
-
RandomDistort
:
{}
-
RandomCrop
:
{}
-
RandomResize
:
{
interp
:
1
,
target_size
:
[[
352
,
852
],
[
384
,
852
],
[
416
,
852
],
[
448
,
852
],
[
480
,
852
],
[
512
,
852
]],
keep_ratio
:
True
}
-
RandomFlip
:
{}
-
NormalizeImage
:
{
is_scale
:
true
,
mean
:
[
0.485
,
0.456
,
0.406
],
std
:
[
0.229
,
0.224
,
0.225
]}
-
Permute
:
{}
batch_transforms
:
-
PadBatch
:
{
pad_to_stride
:
32
}
-
Gt2Solov2Target
:
{
num_grids
:
[
40
,
36
,
24
,
16
,
12
],
scale_ranges
:
[[
1
,
96
],
[
48
,
192
],
[
96
,
384
],
[
192
,
768
],
[
384
,
2048
]],
coord_sigma
:
0.2
}
batch_size
:
2
shuffle
:
true
drop_last
:
true
EvalReader
:
sample_transforms
:
-
Decode
:
{}
-
NormalizeImage
:
{
is_scale
:
true
,
mean
:
[
0.485
,
0.456
,
0.406
],
std
:
[
0.229
,
0.224
,
0.225
]}
-
Resize
:
{
interp
:
1
,
target_size
:
[
512
,
852
],
keep_ratio
:
True
}
-
Permute
:
{}
batch_transforms
:
-
PadBatch
:
{
pad_to_stride
:
32
}
batch_size
:
1
shuffle
:
false
drop_last
:
false
TestReader
:
sample_transforms
:
-
Decode
:
{}
-
NormalizeImage
:
{
is_scale
:
true
,
mean
:
[
0.485
,
0.456
,
0.406
],
std
:
[
0.229
,
0.224
,
0.225
]}
-
Resize
:
{
interp
:
1
,
target_size
:
[
512
,
852
],
keep_ratio
:
True
}
-
Permute
:
{}
batch_transforms
:
-
PadBatch
:
{
pad_to_stride
:
32
}
batch_size
:
1
shuffle
:
false
drop_last
:
false
configs/solov2/solov2_r50_enhance_coco.yml
0 → 100644
浏览文件 @
4f96dc2f
_BASE_
:
[
'
../datasets/coco_instance.yml'
,
'
../runtime.yml'
,
'
_base_/solov2_r50_fpn.yml'
,
'
_base_/optimizer_1x.yml'
,
'
_base_/solov2_light_reader.yml'
,
]
pretrain_weights
:
https://paddledet.bj.bcebos.com/models/pretrained/ResNet50_vd_ssld_v2_pretrained.pdparams
weights
:
output/solov2_r50_fpn_3x_coco/model_final
epoch
:
36
use_ema
:
true
ema_decay
:
0.9998
ResNet
:
depth
:
50
variant
:
d
freeze_at
:
0
freeze_norm
:
false
norm_type
:
sync_bn
return_idx
:
[
0
,
1
,
2
,
3
]
dcn_v2_stages
:
[
1
,
2
,
3
]
lr_mult_list
:
[
0.05
,
0.05
,
0.1
,
0.15
]
num_stages
:
4
SOLOv2Head
:
seg_feat_channels
:
256
stacked_convs
:
3
num_grids
:
[
40
,
36
,
24
,
16
,
12
]
kernel_out_channels
:
128
solov2_loss
:
SOLOv2Loss
mask_nms
:
MaskMatrixNMS
dcn_v2_stages
:
[
2
]
drop_block
:
True
SOLOv2MaskHead
:
mid_channels
:
128
out_channels
:
128
start_level
:
0
end_level
:
3
use_dcn_in_tower
:
True
LearningRate
:
base_lr
:
0.01
schedulers
:
-
!PiecewiseDecay
gamma
:
0.1
milestones
:
[
24
,
33
]
-
!LinearWarmup
start_factor
:
0.
steps
:
1000
ppdet/modeling/heads/solov2_head.py
浏览文件 @
4f96dc2f
...
...
@@ -22,7 +22,7 @@ import paddle.nn as nn
import
paddle.nn.functional
as
F
from
paddle.nn.initializer
import
Normal
,
Constant
from
ppdet.modeling.layers
import
ConvNormLayer
,
MaskMatrixNMS
from
ppdet.modeling.layers
import
ConvNormLayer
,
MaskMatrixNMS
,
DropBlock
from
ppdet.core.workspace
import
register
from
six.moves
import
zip
...
...
@@ -182,7 +182,8 @@ class SOLOv2Head(nn.Layer):
score_threshold
=
0.1
,
mask_threshold
=
0.5
,
mask_nms
=
None
,
norm_type
=
'gn'
):
norm_type
=
'gn'
,
drop_block
=
False
):
super
(
SOLOv2Head
,
self
).
__init__
()
self
.
num_classes
=
num_classes
self
.
in_channels
=
in_channels
...
...
@@ -198,6 +199,7 @@ class SOLOv2Head(nn.Layer):
self
.
score_threshold
=
score_threshold
self
.
mask_threshold
=
mask_threshold
self
.
norm_type
=
norm_type
self
.
drop_block
=
drop_block
self
.
kernel_pred_convs
=
[]
self
.
cate_pred_convs
=
[]
...
...
@@ -250,6 +252,10 @@ class SOLOv2Head(nn.Layer):
bias_attr
=
ParamAttr
(
initializer
=
Constant
(
value
=
float
(
-
np
.
log
((
1
-
0.01
)
/
0.01
))))))
if
self
.
drop_block
:
self
.
drop_block_fun
=
DropBlock
(
block_size
=
3
,
keep_prob
=
0.9
,
name
=
'solo_cate.dropblock'
)
def
_points_nms
(
self
,
heat
,
kernel_size
=
2
):
hmax
=
F
.
max_pool2d
(
heat
,
kernel_size
=
kernel_size
,
stride
=
1
,
padding
=
1
)
keep
=
paddle
.
cast
((
hmax
[:,
:,
:
-
1
,
:
-
1
]
==
heat
),
'float32'
)
...
...
@@ -318,10 +324,14 @@ class SOLOv2Head(nn.Layer):
for
kernel_layer
in
self
.
kernel_pred_convs
:
kernel_feat
=
F
.
relu
(
kernel_layer
(
kernel_feat
))
if
self
.
drop_block
:
kernel_feat
=
self
.
drop_block_fun
(
kernel_feat
)
kernel_pred
=
self
.
solo_kernel
(
kernel_feat
)
# cate branch
for
cate_layer
in
self
.
cate_pred_convs
:
cate_feat
=
F
.
relu
(
cate_layer
(
cate_feat
))
if
self
.
drop_block
:
cate_feat
=
self
.
drop_block_fun
(
cate_feat
)
cate_pred
=
self
.
solo_cate
(
cate_feat
)
if
not
self
.
training
:
...
...
ppdet/modeling/layers.py
浏览文件 @
4f96dc2f
...
...
@@ -250,6 +250,47 @@ class LiteConv(nn.Layer):
return
out
class
DropBlock
(
nn
.
Layer
):
def
__init__
(
self
,
block_size
,
keep_prob
,
name
,
data_format
=
'NCHW'
):
"""
DropBlock layer, see https://arxiv.org/abs/1810.12890
Args:
block_size (int): block size
keep_prob (int): keep probability
name (str): layer name
data_format (str): data format, NCHW or NHWC
"""
super
(
DropBlock
,
self
).
__init__
()
self
.
block_size
=
block_size
self
.
keep_prob
=
keep_prob
self
.
name
=
name
self
.
data_format
=
data_format
def
forward
(
self
,
x
):
if
not
self
.
training
or
self
.
keep_prob
==
1
:
return
x
else
:
gamma
=
(
1.
-
self
.
keep_prob
)
/
(
self
.
block_size
**
2
)
if
self
.
data_format
==
'NCHW'
:
shape
=
x
.
shape
[
2
:]
else
:
shape
=
x
.
shape
[
1
:
3
]
for
s
in
shape
:
gamma
*=
s
/
(
s
-
self
.
block_size
+
1
)
matrix
=
paddle
.
cast
(
paddle
.
rand
(
x
.
shape
,
x
.
dtype
)
<
gamma
,
x
.
dtype
)
mask_inv
=
F
.
max_pool2d
(
matrix
,
self
.
block_size
,
stride
=
1
,
padding
=
self
.
block_size
//
2
,
data_format
=
self
.
data_format
)
mask
=
1.
-
mask_inv
y
=
x
*
mask
*
(
mask
.
numel
()
/
mask
.
sum
())
return
y
@
register
@
serializable
class
AnchorGeneratorSSD
(
object
):
...
...
ppdet/modeling/necks/yolo_fpn.py
浏览文件 @
4f96dc2f
...
...
@@ -17,6 +17,7 @@ import paddle.nn as nn
import
paddle.nn.functional
as
F
from
paddle
import
ParamAttr
from
ppdet.core.workspace
import
register
,
serializable
from
ppdet.modeling.layers
import
DropBlock
from
..backbones.darknet
import
ConvBNLayer
from
..shape_spec
import
ShapeSpec
...
...
@@ -173,47 +174,6 @@ class SPP(nn.Layer):
return
y
class
DropBlock
(
nn
.
Layer
):
def
__init__
(
self
,
block_size
,
keep_prob
,
name
,
data_format
=
'NCHW'
):
"""
DropBlock layer, see https://arxiv.org/abs/1810.12890
Args:
block_size (int): block size
keep_prob (int): keep probability
name (str): layer name
data_format (str): data format, NCHW or NHWC
"""
super
(
DropBlock
,
self
).
__init__
()
self
.
block_size
=
block_size
self
.
keep_prob
=
keep_prob
self
.
name
=
name
self
.
data_format
=
data_format
def
forward
(
self
,
x
):
if
not
self
.
training
or
self
.
keep_prob
==
1
:
return
x
else
:
gamma
=
(
1.
-
self
.
keep_prob
)
/
(
self
.
block_size
**
2
)
if
self
.
data_format
==
'NCHW'
:
shape
=
x
.
shape
[
2
:]
else
:
shape
=
x
.
shape
[
1
:
3
]
for
s
in
shape
:
gamma
*=
s
/
(
s
-
self
.
block_size
+
1
)
matrix
=
paddle
.
cast
(
paddle
.
rand
(
x
.
shape
,
x
.
dtype
)
<
gamma
,
x
.
dtype
)
mask_inv
=
F
.
max_pool2d
(
matrix
,
self
.
block_size
,
stride
=
1
,
padding
=
self
.
block_size
//
2
,
data_format
=
self
.
data_format
)
mask
=
1.
-
mask_inv
y
=
x
*
mask
*
(
mask
.
numel
()
/
mask
.
sum
())
return
y
class
CoordConv
(
nn
.
Layer
):
def
__init__
(
self
,
ch_in
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录