layers.py 41.4 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
16
import six
Q
qingqing01 已提交
17 18 19 20
import numpy as np
from numbers import Integral

import paddle
G
Guanghua Yu 已提交
21 22
import paddle.nn as nn
from paddle import ParamAttr
Q
qingqing01 已提交
23
from paddle import to_tensor
G
Guanghua Yu 已提交
24 25
from paddle.nn import Conv2D, BatchNorm2D, GroupNorm
import paddle.nn.functional as F
W
wangguanzhong 已提交
26
from paddle.nn.initializer import Normal, Constant, XavierUniform
G
Guanghua Yu 已提交
27 28
from paddle.regularizer import L2Decay

Q
qingqing01 已提交
29
from ppdet.core.workspace import register, serializable
30
from ppdet.modeling.bbox_utils import delta2bbox
Q
qingqing01 已提交
31
from . import ops
32

F
Feng Ni 已提交
33
from paddle.vision.ops import DeformConv2D
Q
qingqing01 已提交
34 35 36 37 38 39 40 41


def _to_list(l):
    if isinstance(l, (list, tuple)):
        return list(l)
    return [l]


F
Feng Ni 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54
class DeformableConvV2(nn.Layer):
    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=1,
                 weight_attr=None,
                 bias_attr=None,
                 lr_scale=1,
                 regularizer=None,
F
FlyingQianMM 已提交
55 56 57
                 skip_quant=False,
                 dcn_bias_regularizer=L2Decay(0.),
                 dcn_bias_lr_scale=2.):
F
Feng Ni 已提交
58 59 60 61 62
        super(DeformableConvV2, self).__init__()
        self.offset_channel = 2 * kernel_size**2
        self.mask_channel = kernel_size**2

        if lr_scale == 1 and regularizer is None:
W
wangxinxin08 已提交
63
            offset_bias_attr = ParamAttr(initializer=Constant(0.))
F
Feng Ni 已提交
64 65 66 67
        else:
            offset_bias_attr = ParamAttr(
                initializer=Constant(0.),
                learning_rate=lr_scale,
W
wangxinxin08 已提交
68
                regularizer=regularizer)
F
Feng Ni 已提交
69 70 71 72 73 74
        self.conv_offset = nn.Conv2D(
            in_channels,
            3 * kernel_size**2,
            kernel_size,
            stride=stride,
            padding=(kernel_size - 1) // 2,
W
wangxinxin08 已提交
75
            weight_attr=ParamAttr(initializer=Constant(0.0)),
F
Feng Ni 已提交
76
            bias_attr=offset_bias_attr)
G
Guanghua Yu 已提交
77 78
        if skip_quant:
            self.conv_offset.skip_quant = True
F
Feng Ni 已提交
79 80 81 82 83

        if bias_attr:
            # in FCOS-DCN head, specifically need learning_rate and regularizer
            dcn_bias_attr = ParamAttr(
                initializer=Constant(value=0),
F
FlyingQianMM 已提交
84 85
                regularizer=dcn_bias_regularizer,
                learning_rate=dcn_bias_lr_scale)
F
Feng Ni 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
        else:
            # in ResNet backbone, do not need bias
            dcn_bias_attr = False
        self.conv_dcn = DeformConv2D(
            in_channels,
            out_channels,
            kernel_size,
            stride=stride,
            padding=(kernel_size - 1) // 2 * dilation,
            dilation=dilation,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=dcn_bias_attr)

    def forward(self, x):
        offset_mask = self.conv_offset(x)
        offset, mask = paddle.split(
            offset_mask,
            num_or_sections=[self.offset_channel, self.mask_channel],
            axis=1)
        mask = F.sigmoid(mask)
        y = self.conv_dcn(x, offset, mask=mask)
        return y


G
Guanghua Yu 已提交
111 112 113 114 115 116
class ConvNormLayer(nn.Layer):
    def __init__(self,
                 ch_in,
                 ch_out,
                 filter_size,
                 stride,
W
wangguanzhong 已提交
117
                 groups=1,
G
Guanghua Yu 已提交
118
                 norm_type='bn',
F
Feng Ni 已提交
119
                 norm_decay=0.,
G
Guanghua Yu 已提交
120 121
                 norm_groups=32,
                 use_dcn=False,
F
Feng Ni 已提交
122 123
                 bias_on=False,
                 lr_scale=1.,
F
Feng Ni 已提交
124 125 126
                 freeze_norm=False,
                 initializer=Normal(
                     mean=0., std=0.01),
F
FlyingQianMM 已提交
127 128 129
                 skip_quant=False,
                 dcn_lr_scale=2.,
                 dcn_regularizer=L2Decay(0.)):
G
Guanghua Yu 已提交
130 131 132
        super(ConvNormLayer, self).__init__()
        assert norm_type in ['bn', 'sync_bn', 'gn']

F
Feng Ni 已提交
133 134
        if bias_on:
            bias_attr = ParamAttr(
135
                initializer=Constant(value=0.), learning_rate=lr_scale)
F
Feng Ni 已提交
136 137 138
        else:
            bias_attr = False

F
Feng Ni 已提交
139 140 141 142 143 144 145
        if not use_dcn:
            self.conv = nn.Conv2D(
                in_channels=ch_in,
                out_channels=ch_out,
                kernel_size=filter_size,
                stride=stride,
                padding=(filter_size - 1) // 2,
W
wangguanzhong 已提交
146
                groups=groups,
F
Feng Ni 已提交
147
                weight_attr=ParamAttr(
148
                    initializer=initializer, learning_rate=1.),
F
Feng Ni 已提交
149
                bias_attr=bias_attr)
G
Guanghua Yu 已提交
150 151
            if skip_quant:
                self.conv.skip_quant = True
F
Feng Ni 已提交
152 153 154 155 156 157 158 159
        else:
            # in FCOS-DCN head, specifically need learning_rate and regularizer
            self.conv = DeformableConvV2(
                in_channels=ch_in,
                out_channels=ch_out,
                kernel_size=filter_size,
                stride=stride,
                padding=(filter_size - 1) // 2,
W
wangguanzhong 已提交
160
                groups=groups,
F
Feng Ni 已提交
161
                weight_attr=ParamAttr(
162
                    initializer=initializer, learning_rate=1.),
F
Feng Ni 已提交
163
                bias_attr=True,
F
FlyingQianMM 已提交
164 165
                lr_scale=dcn_lr_scale,
                regularizer=dcn_regularizer,
166 167
                dcn_bias_regularizer=dcn_regularizer,
                dcn_bias_lr_scale=dcn_lr_scale,
168
                skip_quant=skip_quant)
G
Guanghua Yu 已提交
169

F
Feng Ni 已提交
170
        norm_lr = 0. if freeze_norm else 1.
G
Guanghua Yu 已提交
171
        param_attr = ParamAttr(
F
FlyingQianMM 已提交
172 173
            learning_rate=norm_lr,
            regularizer=L2Decay(norm_decay) if norm_decay is not None else None)
G
Guanghua Yu 已提交
174
        bias_attr = ParamAttr(
F
FlyingQianMM 已提交
175 176
            learning_rate=norm_lr,
            regularizer=L2Decay(norm_decay) if norm_decay is not None else None)
F
Feng Ni 已提交
177
        if norm_type == 'bn':
F
Feng Ni 已提交
178
            self.norm = nn.BatchNorm2D(
G
Guanghua Yu 已提交
179
                ch_out, weight_attr=param_attr, bias_attr=bias_attr)
F
Feng Ni 已提交
180 181 182
        elif norm_type == 'sync_bn':
            self.norm = nn.SyncBatchNorm(
                ch_out, weight_attr=param_attr, bias_attr=bias_attr)
G
Guanghua Yu 已提交
183
        elif norm_type == 'gn':
F
Feng Ni 已提交
184
            self.norm = nn.GroupNorm(
G
Guanghua Yu 已提交
185 186 187 188 189 190 191 192 193 194 195
                num_groups=norm_groups,
                num_channels=ch_out,
                weight_attr=param_attr,
                bias_attr=bias_attr)

    def forward(self, inputs):
        out = self.conv(inputs)
        out = self.norm(out)
        return out


W
wangguanzhong 已提交
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
class LiteConv(nn.Layer):
    def __init__(self,
                 in_channels,
                 out_channels,
                 stride=1,
                 with_act=True,
                 norm_type='sync_bn',
                 name=None):
        super(LiteConv, self).__init__()
        self.lite_conv = nn.Sequential()
        conv1 = ConvNormLayer(
            in_channels,
            in_channels,
            filter_size=5,
            stride=stride,
            groups=in_channels,
            norm_type=norm_type,
213
            initializer=XavierUniform())
W
wangguanzhong 已提交
214 215 216 217 218 219
        conv2 = ConvNormLayer(
            in_channels,
            out_channels,
            filter_size=1,
            stride=stride,
            norm_type=norm_type,
220
            initializer=XavierUniform())
W
wangguanzhong 已提交
221 222 223 224 225 226
        conv3 = ConvNormLayer(
            out_channels,
            out_channels,
            filter_size=1,
            stride=stride,
            norm_type=norm_type,
227
            initializer=XavierUniform())
W
wangguanzhong 已提交
228 229 230 231 232 233 234
        conv4 = ConvNormLayer(
            out_channels,
            out_channels,
            filter_size=5,
            stride=stride,
            groups=out_channels,
            norm_type=norm_type,
235
            initializer=XavierUniform())
W
wangguanzhong 已提交
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
        conv_list = [conv1, conv2, conv3, conv4]
        self.lite_conv.add_sublayer('conv1', conv1)
        self.lite_conv.add_sublayer('relu6_1', nn.ReLU6())
        self.lite_conv.add_sublayer('conv2', conv2)
        if with_act:
            self.lite_conv.add_sublayer('relu6_2', nn.ReLU6())
        self.lite_conv.add_sublayer('conv3', conv3)
        self.lite_conv.add_sublayer('relu6_3', nn.ReLU6())
        self.lite_conv.add_sublayer('conv4', conv4)
        if with_act:
            self.lite_conv.add_sublayer('relu6_4', nn.ReLU6())

    def forward(self, inputs):
        out = self.lite_conv(inputs)
        return out


Q
qingqing01 已提交
253 254 255 256 257 258 259 260
@register
@serializable
class AnchorGeneratorSSD(object):
    def __init__(self,
                 steps=[8, 16, 32, 64, 100, 300],
                 aspect_ratios=[[2.], [2., 3.], [2., 3.], [2., 3.], [2.], [2.]],
                 min_ratio=15,
                 max_ratio=90,
261
                 base_size=300,
Q
qingqing01 已提交
262 263 264 265 266 267 268 269 270 271
                 min_sizes=[30.0, 60.0, 111.0, 162.0, 213.0, 264.0],
                 max_sizes=[60.0, 111.0, 162.0, 213.0, 264.0, 315.0],
                 offset=0.5,
                 flip=True,
                 clip=False,
                 min_max_aspect_ratios_order=False):
        self.steps = steps
        self.aspect_ratios = aspect_ratios
        self.min_ratio = min_ratio
        self.max_ratio = max_ratio
272
        self.base_size = base_size
Q
qingqing01 已提交
273 274 275 276 277 278 279
        self.min_sizes = min_sizes
        self.max_sizes = max_sizes
        self.offset = offset
        self.flip = flip
        self.clip = clip
        self.min_max_aspect_ratios_order = min_max_aspect_ratios_order

280 281 282 283 284 285 286 287 288 289 290 291
        if self.min_sizes == [] and self.max_sizes == []:
            num_layer = len(aspect_ratios)
            step = int(
                math.floor(((self.max_ratio - self.min_ratio)) / (num_layer - 2
                                                                  )))
            for ratio in six.moves.range(self.min_ratio, self.max_ratio + 1,
                                         step):
                self.min_sizes.append(self.base_size * ratio / 100.)
                self.max_sizes.append(self.base_size * (ratio + step) / 100.)
            self.min_sizes = [self.base_size * .10] + self.min_sizes
            self.max_sizes = [self.base_size * .20] + self.max_sizes

Q
qingqing01 已提交
292
        self.num_priors = []
293 294
        for aspect_ratio, min_size, max_size in zip(
                aspect_ratios, self.min_sizes, self.max_sizes):
295 296 297 298 299 300
            if isinstance(min_size, (list, tuple)):
                self.num_priors.append(
                    len(_to_list(min_size)) + len(_to_list(max_size)))
            else:
                self.num_priors.append((len(aspect_ratio) * 2 + 1) * len(
                    _to_list(min_size)) + len(_to_list(max_size)))
Q
qingqing01 已提交
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324

    def __call__(self, inputs, image):
        boxes = []
        for input, min_size, max_size, aspect_ratio, step in zip(
                inputs, self.min_sizes, self.max_sizes, self.aspect_ratios,
                self.steps):
            box, _ = ops.prior_box(
                input=input,
                image=image,
                min_sizes=_to_list(min_size),
                max_sizes=_to_list(max_size),
                aspect_ratios=aspect_ratio,
                flip=self.flip,
                clip=self.clip,
                steps=[step, step],
                offset=self.offset,
                min_max_aspect_ratios_order=self.min_max_aspect_ratios_order)
            boxes.append(paddle.reshape(box, [-1, 4]))
        return boxes


@register
@serializable
class RCNNBox(object):
W
wangguanzhong 已提交
325 326
    __shared__ = ['num_classes']

Q
qingqing01 已提交
327
    def __init__(self,
328
                 prior_box_var=[10., 10., 5., 5.],
Q
qingqing01 已提交
329
                 code_type="decode_center_size",
W
wangguanzhong 已提交
330 331
                 box_normalized=False,
                 num_classes=80):
Q
qingqing01 已提交
332 333 334 335
        super(RCNNBox, self).__init__()
        self.prior_box_var = prior_box_var
        self.code_type = code_type
        self.box_normalized = box_normalized
W
wangguanzhong 已提交
336
        self.num_classes = num_classes
Q
qingqing01 已提交
337 338

    def __call__(self, bbox_head_out, rois, im_shape, scale_factor):
C
cnn 已提交
339 340 341 342 343
        bbox_pred = bbox_head_out[0]
        cls_prob = bbox_head_out[1]
        roi = rois[0]
        rois_num = rois[1]

344
        origin_shape = paddle.floor(im_shape / scale_factor + 0.5)
Q
qingqing01 已提交
345 346
        scale_list = []
        origin_shape_list = []
347

C
cnn 已提交
348 349 350 351
        batch_size = paddle.slice(paddle.shape(im_shape), [0], [0], [1])
        # bbox_pred.shape: [N, C*4]
        for idx in range(batch_size):
            roi_per_im = roi[idx]
Q
qingqing01 已提交
352
            rois_num_per_im = rois_num[idx]
353
            expand_im_shape = paddle.expand(im_shape[idx, :],
Q
qingqing01 已提交
354 355 356 357 358
                                            [rois_num_per_im, 2])
            origin_shape_list.append(expand_im_shape)

        origin_shape = paddle.concat(origin_shape_list)

F
Feng Ni 已提交
359 360
        # bbox_pred.shape: [N, C*4]
        # C=num_classes in faster/mask rcnn(bbox_head), C=1 in cascade rcnn(cascade_head)
361
        bbox = paddle.concat(roi)
G
Guanghua Yu 已提交
362 363 364 365
        if bbox.shape[0] == 0:
            bbox = paddle.zeros([0, bbox_pred.shape[1]], dtype='float32')
        else:
            bbox = delta2bbox(bbox_pred, bbox, self.prior_box_var)
366 367
        scores = cls_prob[:, :-1]

F
Feng Ni 已提交
368 369 370
        # bbox.shape: [N, C, 4]
        # bbox.shape[1] must be equal to scores.shape[1]
        bbox_num_class = bbox.shape[1]
W
wangguanzhong 已提交
371 372 373
        if bbox_num_class == 1:
            bbox = paddle.tile(bbox, [1, self.num_classes, 1])

374 375 376
        origin_h = paddle.unsqueeze(origin_shape[:, 0], axis=1)
        origin_w = paddle.unsqueeze(origin_shape[:, 1], axis=1)
        zeros = paddle.zeros_like(origin_h)
Q
qingqing01 已提交
377 378 379 380 381 382
        x1 = paddle.maximum(paddle.minimum(bbox[:, :, 0], origin_w), zeros)
        y1 = paddle.maximum(paddle.minimum(bbox[:, :, 1], origin_h), zeros)
        x2 = paddle.maximum(paddle.minimum(bbox[:, :, 2], origin_w), zeros)
        y2 = paddle.maximum(paddle.minimum(bbox[:, :, 3], origin_h), zeros)
        bbox = paddle.stack([x1, y1, x2, y2], axis=-1)
        bboxes = (bbox, rois_num)
383
        return bboxes, scores
Q
qingqing01 已提交
384 385 386 387 388 389 390 391 392 393


@register
@serializable
class MultiClassNMS(object):
    def __init__(self,
                 score_threshold=.05,
                 nms_top_k=-1,
                 keep_top_k=100,
                 nms_threshold=.5,
394
                 normalized=True,
Q
qingqing01 已提交
395
                 nms_eta=1.0,
396
                 return_index=False,
Q
qingqing01 已提交
397 398 399 400 401 402 403 404
                 return_rois_num=True):
        super(MultiClassNMS, self).__init__()
        self.score_threshold = score_threshold
        self.nms_top_k = nms_top_k
        self.keep_top_k = keep_top_k
        self.nms_threshold = nms_threshold
        self.normalized = normalized
        self.nms_eta = nms_eta
405
        self.return_index = return_index
Q
qingqing01 已提交
406 407
        self.return_rois_num = return_rois_num

408 409 410 411 412 413 414 415 416 417 418 419 420 421
    def __call__(self, bboxes, score, background_label=-1):
        """
        bboxes (Tensor|List[Tensor]): 1. (Tensor) Predicted bboxes with shape 
                                         [N, M, 4], N is the batch size and M
                                         is the number of bboxes
                                      2. (List[Tensor]) bboxes and bbox_num,
                                         bboxes have shape of [M, C, 4], C
                                         is the class number and bbox_num means
                                         the number of bboxes of each batch with
                                         shape [N,] 
        score (Tensor): Predicted scores with shape [N, C, M] or [M, C]
        background_label (int): Ignore the background label; For example, RCNN
                                is num_classes and YOLO is -1. 
        """
Q
qingqing01 已提交
422 423 424 425
        kwargs = self.__dict__.copy()
        if isinstance(bboxes, tuple):
            bboxes, bbox_num = bboxes
            kwargs.update({'rois_num': bbox_num})
426 427
        if background_label > -1:
            kwargs.update({'background_label': background_label})
Q
qingqing01 已提交
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
        return ops.multiclass_nms(bboxes, score, **kwargs)


@register
@serializable
class MatrixNMS(object):
    __append_doc__ = True

    def __init__(self,
                 score_threshold=.05,
                 post_threshold=.05,
                 nms_top_k=-1,
                 keep_top_k=100,
                 use_gaussian=False,
                 gaussian_sigma=2.,
                 normalized=False,
                 background_label=0):
        super(MatrixNMS, self).__init__()
        self.score_threshold = score_threshold
        self.post_threshold = post_threshold
        self.nms_top_k = nms_top_k
        self.keep_top_k = keep_top_k
        self.normalized = normalized
        self.use_gaussian = use_gaussian
        self.gaussian_sigma = gaussian_sigma
        self.background_label = background_label

455
    def __call__(self, bbox, score, *args):
W
wangxinxin08 已提交
456 457 458 459 460 461 462 463 464 465 466 467
        return ops.matrix_nms(
            bboxes=bbox,
            scores=score,
            score_threshold=self.score_threshold,
            post_threshold=self.post_threshold,
            nms_top_k=self.nms_top_k,
            keep_top_k=self.keep_top_k,
            use_gaussian=self.use_gaussian,
            gaussian_sigma=self.gaussian_sigma,
            background_label=self.background_label,
            normalized=self.normalized)

Q
qingqing01 已提交
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520

@register
@serializable
class YOLOBox(object):
    __shared__ = ['num_classes']

    def __init__(self,
                 num_classes=80,
                 conf_thresh=0.005,
                 downsample_ratio=32,
                 clip_bbox=True,
                 scale_x_y=1.):
        self.num_classes = num_classes
        self.conf_thresh = conf_thresh
        self.downsample_ratio = downsample_ratio
        self.clip_bbox = clip_bbox
        self.scale_x_y = scale_x_y

    def __call__(self,
                 yolo_head_out,
                 anchors,
                 im_shape,
                 scale_factor,
                 var_weight=None):
        boxes_list = []
        scores_list = []
        origin_shape = im_shape / scale_factor
        origin_shape = paddle.cast(origin_shape, 'int32')
        for i, head_out in enumerate(yolo_head_out):
            boxes, scores = ops.yolo_box(head_out, origin_shape, anchors[i],
                                         self.num_classes, self.conf_thresh,
                                         self.downsample_ratio // 2**i,
                                         self.clip_bbox, self.scale_x_y)
            boxes_list.append(boxes)
            scores_list.append(paddle.transpose(scores, perm=[0, 2, 1]))
        yolo_boxes = paddle.concat(boxes_list, axis=1)
        yolo_scores = paddle.concat(scores_list, axis=2)
        return yolo_boxes, yolo_scores


@register
@serializable
class SSDBox(object):
    def __init__(self, is_normalized=True):
        self.is_normalized = is_normalized
        self.norm_delta = float(not self.is_normalized)

    def __call__(self,
                 preds,
                 prior_boxes,
                 im_shape,
                 scale_factor,
                 var_weight=None):
521
        boxes, scores = preds
Q
qingqing01 已提交
522 523 524 525 526 527 528 529 530 531 532 533
        outputs = []
        for box, score, prior_box in zip(boxes, scores, prior_boxes):
            pb_w = prior_box[:, 2] - prior_box[:, 0] + self.norm_delta
            pb_h = prior_box[:, 3] - prior_box[:, 1] + self.norm_delta
            pb_x = prior_box[:, 0] + pb_w * 0.5
            pb_y = prior_box[:, 1] + pb_h * 0.5
            out_x = pb_x + box[:, :, 0] * pb_w * 0.1
            out_y = pb_y + box[:, :, 1] * pb_h * 0.1
            out_w = paddle.exp(box[:, :, 2] * 0.2) * pb_w
            out_h = paddle.exp(box[:, :, 3] * 0.2) * pb_h

            if self.is_normalized:
K
Kaipeng Deng 已提交
534 535 536 537
                h = paddle.unsqueeze(
                    im_shape[:, 0] / scale_factor[:, 0], axis=-1)
                w = paddle.unsqueeze(
                    im_shape[:, 1] / scale_factor[:, 1], axis=-1)
Q
qingqing01 已提交
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
                output = paddle.stack(
                    [(out_x - out_w / 2.) * w, (out_y - out_h / 2.) * h,
                     (out_x + out_w / 2.) * w, (out_y + out_h / 2.) * h],
                    axis=-1)
            else:
                output = paddle.stack(
                    [
                        out_x - out_w / 2., out_y - out_h / 2.,
                        out_x + out_w / 2. - 1., out_y + out_h / 2. - 1.
                    ],
                    axis=-1)
            outputs.append(output)
        boxes = paddle.concat(outputs, axis=1)

        scores = F.softmax(paddle.concat(scores, axis=1))
        scores = paddle.transpose(scores, [0, 2, 1])

        return boxes, scores


@register
@serializable
class AnchorGrid(object):
    """Generate anchor grid

    Args:
        image_size (int or list): input image size, may be a single integer or
            list of [h, w]. Default: 512
        min_level (int): min level of the feature pyramid. Default: 3
        max_level (int): max level of the feature pyramid. Default: 7
        anchor_base_scale: base anchor scale. Default: 4
        num_scales: number of anchor scales. Default: 3
        aspect_ratios: aspect ratios. default: [[1, 1], [1.4, 0.7], [0.7, 1.4]]
    """

    def __init__(self,
                 image_size=512,
                 min_level=3,
                 max_level=7,
                 anchor_base_scale=4,
                 num_scales=3,
                 aspect_ratios=[[1, 1], [1.4, 0.7], [0.7, 1.4]]):
        super(AnchorGrid, self).__init__()
        if isinstance(image_size, Integral):
            self.image_size = [image_size, image_size]
        else:
            self.image_size = image_size
        for dim in self.image_size:
            assert dim % 2 ** max_level == 0, \
                "image size should be multiple of the max level stride"
        self.min_level = min_level
        self.max_level = max_level
        self.anchor_base_scale = anchor_base_scale
        self.num_scales = num_scales
        self.aspect_ratios = aspect_ratios

    @property
    def base_cell(self):
        if not hasattr(self, '_base_cell'):
            self._base_cell = self.make_cell()
        return self._base_cell

    def make_cell(self):
        scales = [2**(i / self.num_scales) for i in range(self.num_scales)]
        scales = np.array(scales)
        ratios = np.array(self.aspect_ratios)
        ws = np.outer(scales, ratios[:, 0]).reshape(-1, 1)
        hs = np.outer(scales, ratios[:, 1]).reshape(-1, 1)
        anchors = np.hstack((-0.5 * ws, -0.5 * hs, 0.5 * ws, 0.5 * hs))
        return anchors

    def make_grid(self, stride):
        cell = self.base_cell * stride * self.anchor_base_scale
        x_steps = np.arange(stride // 2, self.image_size[1], stride)
        y_steps = np.arange(stride // 2, self.image_size[0], stride)
        offset_x, offset_y = np.meshgrid(x_steps, y_steps)
        offset_x = offset_x.flatten()
        offset_y = offset_y.flatten()
        offsets = np.stack((offset_x, offset_y, offset_x, offset_y), axis=-1)
        offsets = offsets[:, np.newaxis, :]
        return (cell + offsets).reshape(-1, 4)

    def generate(self):
        return [
            self.make_grid(2**l)
            for l in range(self.min_level, self.max_level + 1)
        ]

    def __call__(self):
        if not hasattr(self, '_anchor_vars'):
            anchor_vars = []
            helper = LayerHelper('anchor_grid')
            for idx, l in enumerate(range(self.min_level, self.max_level + 1)):
                stride = 2**l
                anchors = self.make_grid(stride)
                var = helper.create_parameter(
                    attr=ParamAttr(name='anchors_{}'.format(idx)),
                    shape=anchors.shape,
                    dtype='float32',
                    stop_gradient=True,
                    default_initializer=NumpyArrayInitializer(anchors))
                anchor_vars.append(var)
                var.persistable = True
            self._anchor_vars = anchor_vars

        return self._anchor_vars
G
Guanghua Yu 已提交
644 645 646 647


@register
@serializable
F
Feng Ni 已提交
648
class FCOSBox(object):
F
Feng Ni 已提交
649
    __shared__ = ['num_classes']
F
Feng Ni 已提交
650

F
Feng Ni 已提交
651
    def __init__(self, num_classes=80):
F
Feng Ni 已提交
652 653 654 655 656
        super(FCOSBox, self).__init__()
        self.num_classes = num_classes

    def _merge_hw(self, inputs, ch_type="channel_first"):
        """
F
Feng Ni 已提交
657
        Merge h and w of the feature map into one dimension.
F
Feng Ni 已提交
658
        Args:
F
Feng Ni 已提交
659 660
            inputs (Tensor): Tensor of the input feature map
            ch_type (str): "channel_first" or "channel_last" style
F
Feng Ni 已提交
661
        Return:
F
Feng Ni 已提交
662
            new_shape (Tensor): The new shape after h and w merged
F
Feng Ni 已提交
663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
        """
        shape_ = paddle.shape(inputs)
        bs, ch, hi, wi = shape_[0], shape_[1], shape_[2], shape_[3]
        img_size = hi * wi
        img_size.stop_gradient = True
        if ch_type == "channel_first":
            new_shape = paddle.concat([bs, ch, img_size])
        elif ch_type == "channel_last":
            new_shape = paddle.concat([bs, img_size, ch])
        else:
            raise KeyError("Wrong ch_type %s" % ch_type)
        new_shape.stop_gradient = True
        return new_shape

    def _postprocessing_by_level(self, locations, box_cls, box_reg, box_ctn,
                                 scale_factor):
        """
F
Feng Ni 已提交
680
        Postprocess each layer of the output with corresponding locations.
F
Feng Ni 已提交
681
        Args:
F
Feng Ni 已提交
682 683 684 685 686 687
            locations (Tensor): anchor points for current layer, [H*W, 2]
            box_cls (Tensor): categories prediction, [N, C, H, W], 
                C is the number of classes
            box_reg (Tensor): bounding box prediction, [N, 4, H, W]
            box_ctn (Tensor): centerness prediction, [N, 1, H, W]
            scale_factor (Tensor): [h_scale, w_scale] for input images
F
Feng Ni 已提交
688
        Return:
F
Feng Ni 已提交
689
            box_cls_ch_last (Tensor): score for each category, in [N, C, M]
F
Feng Ni 已提交
690
                C is the number of classes and M is the number of anchor points
F
Feng Ni 已提交
691
            box_reg_decoding (Tensor): decoded bounding box, in [N, M, 4]
F
Feng Ni 已提交
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
                last dimension is [x1, y1, x2, y2]
        """
        act_shape_cls = self._merge_hw(box_cls)
        box_cls_ch_last = paddle.reshape(x=box_cls, shape=act_shape_cls)
        box_cls_ch_last = F.sigmoid(box_cls_ch_last)

        act_shape_reg = self._merge_hw(box_reg)
        box_reg_ch_last = paddle.reshape(x=box_reg, shape=act_shape_reg)
        box_reg_ch_last = paddle.transpose(box_reg_ch_last, perm=[0, 2, 1])
        box_reg_decoding = paddle.stack(
            [
                locations[:, 0] - box_reg_ch_last[:, :, 0],
                locations[:, 1] - box_reg_ch_last[:, :, 1],
                locations[:, 0] + box_reg_ch_last[:, :, 2],
                locations[:, 1] + box_reg_ch_last[:, :, 3]
            ],
            axis=1)
        box_reg_decoding = paddle.transpose(box_reg_decoding, perm=[0, 2, 1])

        act_shape_ctn = self._merge_hw(box_ctn)
        box_ctn_ch_last = paddle.reshape(x=box_ctn, shape=act_shape_ctn)
        box_ctn_ch_last = F.sigmoid(box_ctn_ch_last)

        # recover the location to original image
        im_scale = paddle.concat([scale_factor, scale_factor], axis=1)
        box_reg_decoding = box_reg_decoding / im_scale
        box_cls_ch_last = box_cls_ch_last * box_ctn_ch_last
        return box_cls_ch_last, box_reg_decoding

    def __call__(self, locations, cls_logits, bboxes_reg, centerness,
                 scale_factor):
        pred_boxes_ = []
        pred_scores_ = []
        for pts, cls, box, ctn in zip(locations, cls_logits, bboxes_reg,
                                      centerness):
            pred_scores_lvl, pred_boxes_lvl = self._postprocessing_by_level(
                pts, cls, box, ctn, scale_factor)
            pred_boxes_.append(pred_boxes_lvl)
            pred_scores_.append(pred_scores_lvl)
        pred_boxes = paddle.concat(pred_boxes_, axis=1)
        pred_scores = paddle.concat(pred_scores_, axis=2)
        return pred_boxes, pred_scores


736
@register
F
Feng Ni 已提交
737 738 739 740 741 742 743 744 745 746
class TTFBox(object):
    __shared__ = ['down_ratio']

    def __init__(self, max_per_img=100, score_thresh=0.01, down_ratio=4):
        super(TTFBox, self).__init__()
        self.max_per_img = max_per_img
        self.score_thresh = score_thresh
        self.down_ratio = down_ratio

    def _simple_nms(self, heat, kernel=3):
F
Feng Ni 已提交
747 748 749
        """
        Use maxpool to filter the max score, get local peaks.
        """
F
Feng Ni 已提交
750 751 752 753 754 755
        pad = (kernel - 1) // 2
        hmax = F.max_pool2d(heat, kernel, stride=1, padding=pad)
        keep = paddle.cast(hmax == heat, 'float32')
        return heat * keep

    def _topk(self, scores):
F
Feng Ni 已提交
756 757 758
        """
        Select top k scores and decode to get xy coordinates.
        """
F
Feng Ni 已提交
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
        k = self.max_per_img
        shape_fm = paddle.shape(scores)
        shape_fm.stop_gradient = True
        cat, height, width = shape_fm[1], shape_fm[2], shape_fm[3]
        # batch size is 1
        scores_r = paddle.reshape(scores, [cat, -1])
        topk_scores, topk_inds = paddle.topk(scores_r, k)
        topk_scores, topk_inds = paddle.topk(scores_r, k)
        topk_ys = topk_inds // width
        topk_xs = topk_inds % width

        topk_score_r = paddle.reshape(topk_scores, [-1])
        topk_score, topk_ind = paddle.topk(topk_score_r, k)
        k_t = paddle.full(paddle.shape(topk_ind), k, dtype='int64')
        topk_clses = paddle.cast(paddle.floor_divide(topk_ind, k_t), 'float32')

        topk_inds = paddle.reshape(topk_inds, [-1])
        topk_ys = paddle.reshape(topk_ys, [-1, 1])
        topk_xs = paddle.reshape(topk_xs, [-1, 1])
        topk_inds = paddle.gather(topk_inds, topk_ind)
        topk_ys = paddle.gather(topk_ys, topk_ind)
        topk_xs = paddle.gather(topk_xs, topk_ind)

        return topk_score, topk_inds, topk_clses, topk_ys, topk_xs

    def __call__(self, hm, wh, im_shape, scale_factor):
        heatmap = F.sigmoid(hm)
        heat = self._simple_nms(heatmap)
        scores, inds, clses, ys, xs = self._topk(heat)
        ys = paddle.cast(ys, 'float32') * self.down_ratio
        xs = paddle.cast(xs, 'float32') * self.down_ratio
        scores = paddle.tensor.unsqueeze(scores, [1])
        clses = paddle.tensor.unsqueeze(clses, [1])

        wh_t = paddle.transpose(wh, [0, 2, 3, 1])
        wh = paddle.reshape(wh_t, [-1, paddle.shape(wh_t)[-1]])
        wh = paddle.gather(wh, inds)

        x1 = xs - wh[:, 0:1]
        y1 = ys - wh[:, 1:2]
        x2 = xs + wh[:, 2:3]
        y2 = ys + wh[:, 3:4]

        bboxes = paddle.concat([x1, y1, x2, y2], axis=1)

        scale_y = scale_factor[:, 0:1]
        scale_x = scale_factor[:, 1:2]
        scale_expand = paddle.concat(
            [scale_x, scale_y, scale_x, scale_y], axis=1)
        boxes_shape = paddle.shape(bboxes)
        boxes_shape.stop_gradient = True
        scale_expand = paddle.expand(scale_expand, shape=boxes_shape)
        bboxes = paddle.divide(bboxes, scale_expand)
        results = paddle.concat([clses, scores, bboxes], axis=1)
        # hack: append result with cls=-1 and score=1. to avoid all scores
        # are less than score_thresh which may cause error in gather.
        fill_r = paddle.to_tensor(np.array([[-1, 1, 0, 0, 0, 0]]))
        fill_r = paddle.cast(fill_r, results.dtype)
        results = paddle.concat([results, fill_r])
        scores = results[:, 1]
        valid_ind = paddle.nonzero(scores > self.score_thresh)
        results = paddle.gather(results, valid_ind)
        return results, paddle.shape(results)[0:1]


824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
@register
@serializable
class JDEBox(object):
    __shared__ = ['num_classes']

    def __init__(self, num_classes=1, conf_thresh=0.3, downsample_ratio=32):
        self.num_classes = num_classes
        self.conf_thresh = conf_thresh
        self.downsample_ratio = downsample_ratio

    def generate_anchor(self, nGh, nGw, anchor_wh):
        nA = len(anchor_wh)
        yv, xv = paddle.meshgrid([paddle.arange(nGh), paddle.arange(nGw)])
        mesh = paddle.stack(
            (xv, yv), axis=0).cast(dtype='float32')  # 2 x nGh x nGw
        meshs = paddle.tile(mesh, [nA, 1, 1, 1])

        anchor_offset_mesh = anchor_wh[:, :, None][:, :, :, None].repeat(
            int(nGh), axis=-2).repeat(
                int(nGw), axis=-1)
        anchor_offset_mesh = paddle.to_tensor(
            anchor_offset_mesh.astype(np.float32))
        # nA x 2 x nGh x nGw

        anchor_mesh = paddle.concat([meshs, anchor_offset_mesh], axis=1)
        anchor_mesh = paddle.transpose(anchor_mesh,
                                       [0, 2, 3, 1])  # (nA x nGh x nGw) x 4
        return anchor_mesh

    def decode_delta(self, delta, fg_anchor_list):
        px, py, pw, ph = fg_anchor_list[:, 0], fg_anchor_list[:,1], \
                        fg_anchor_list[:, 2], fg_anchor_list[:,3]
        dx, dy, dw, dh = delta[:, 0], delta[:, 1], delta[:, 2], delta[:, 3]
        gx = pw * dx + px
        gy = ph * dy + py
        gw = pw * paddle.exp(dw)
        gh = ph * paddle.exp(dh)
        gx1 = gx - gw * 0.5
        gy1 = gy - gh * 0.5
        gx2 = gx + gw * 0.5
        gy2 = gy + gh * 0.5
        return paddle.stack([gx1, gy1, gx2, gy2], axis=1)

    def decode_delta_map(self, delta_map, anchors):
868
        nB, nA, nGh, nGw, _ = delta_map.shape[:]
869 870 871 872 873 874 875 876 877
        anchor_mesh = self.generate_anchor(nGh, nGw, anchors)
        # only support bs=1
        anchor_mesh = paddle.unsqueeze(anchor_mesh, 0)

        pred_list = self.decode_delta(
            paddle.reshape(
                delta_map, shape=[-1, 4]),
            paddle.reshape(
                anchor_mesh, shape=[-1, 4]))
878
        pred_map = paddle.reshape(pred_list, shape=[nB, nA * nGh * nGw, 4])
879 880
        return pred_map

881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898
    def _postprocessing_by_level(self, nA, stride, head_out, anchor_vec):
        boxes_shape = head_out.shape
        nB, nGh, nGw = 1, boxes_shape[-2], boxes_shape[-1]
        # only support bs=1
        p = paddle.reshape(
            head_out, shape=[nB, nA, self.num_classes + 5, nGh, nGw])
        p = paddle.transpose(p, perm=[0, 1, 3, 4, 2])  # [nB, 4, nGh, nGw, 6]
        p_box = p[:, :, :, :, :4]
        boxes = self.decode_delta_map(p_box, anchor_vec)  # [nB, 4*nGh*nGw, 4]
        boxes = boxes * stride

        p_conf = paddle.transpose(
            p[:, :, :, :, 4:6], perm=[0, 4, 1, 2, 3])  # [nB, 2, 4, 19, 34]
        p_conf = F.softmax(
            p_conf, axis=1)[:, 1, :, :, :].unsqueeze(-1)  # [nB, 4, 19, 34, 1]
        scores = paddle.reshape(p_conf, shape=[nB, nA * nGh * nGw, 1])
        return boxes, scores

899 900 901 902 903 904 905
    def __call__(self, yolo_head_out, anchors):
        bbox_pred_list = []
        for i, head_out in enumerate(yolo_head_out):
            stride = self.downsample_ratio // 2**i
            anc_w, anc_h = anchors[i][0::2], anchors[i][1::2]
            anchor_vec = np.stack((anc_w, anc_h), axis=1) / stride
            nA = len(anc_w)
906 907
            boxes, scores = self._postprocessing_by_level(nA, stride, head_out,
                                                          anchor_vec)
908 909
            bbox_pred_list.append(paddle.concat([boxes, scores], axis=-1))

910 911 912 913 914 915
        yolo_boxes_scores = paddle.concat(bbox_pred_list, axis=1)
        boxes_idx_over_conf_thr = paddle.nonzero(
            yolo_boxes_scores[:, :, -1] > self.conf_thresh)
        boxes_idx_over_conf_thr.stop_gradient = True

        return boxes_idx_over_conf_thr, yolo_boxes_scores
916 917


G
Guanghua Yu 已提交
918
@register
919
@serializable
G
Guanghua Yu 已提交
920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
class MaskMatrixNMS(object):
    """
    Matrix NMS for multi-class masks.
    Args:
        update_threshold (float): Updated threshold of categroy score in second time.
        pre_nms_top_n (int): Number of total instance to be kept per image before NMS
        post_nms_top_n (int): Number of total instance to be kept per image after NMS.
        kernel (str):  'linear' or 'gaussian'.
        sigma (float): std in gaussian method.
    Input:
        seg_preds (Variable): shape (n, h, w), segmentation feature maps
        seg_masks (Variable): shape (n, h, w), segmentation feature maps
        cate_labels (Variable): shape (n), mask labels in descending order
        cate_scores (Variable): shape (n), mask scores in descending order
        sum_masks (Variable): a float tensor of the sum of seg_masks
    Returns:
        Variable: cate_scores, tensors of shape (n)
    """

    def __init__(self,
                 update_threshold=0.05,
                 pre_nms_top_n=500,
                 post_nms_top_n=100,
                 kernel='gaussian',
                 sigma=2.0):
        super(MaskMatrixNMS, self).__init__()
        self.update_threshold = update_threshold
        self.pre_nms_top_n = pre_nms_top_n
        self.post_nms_top_n = post_nms_top_n
        self.kernel = kernel
        self.sigma = sigma

    def _sort_score(self, scores, top_num):
        if paddle.shape(scores)[0] > top_num:
            return paddle.topk(scores, top_num)[1]
        else:
            return paddle.argsort(scores, descending=True)

    def __call__(self,
                 seg_preds,
                 seg_masks,
                 cate_labels,
                 cate_scores,
                 sum_masks=None):
        # sort and keep top nms_pre
        sort_inds = self._sort_score(cate_scores, self.pre_nms_top_n)
        seg_masks = paddle.gather(seg_masks, index=sort_inds)
        seg_preds = paddle.gather(seg_preds, index=sort_inds)
        sum_masks = paddle.gather(sum_masks, index=sort_inds)
        cate_scores = paddle.gather(cate_scores, index=sort_inds)
        cate_labels = paddle.gather(cate_labels, index=sort_inds)

        seg_masks = paddle.flatten(seg_masks, start_axis=1, stop_axis=-1)
        # inter.
        inter_matrix = paddle.mm(seg_masks, paddle.transpose(seg_masks, [1, 0]))
        n_samples = paddle.shape(cate_labels)
        # union.
        sum_masks_x = paddle.expand(sum_masks, shape=[n_samples, n_samples])
        # iou.
        iou_matrix = (inter_matrix / (
            sum_masks_x + paddle.transpose(sum_masks_x, [1, 0]) - inter_matrix))
        iou_matrix = paddle.triu(iou_matrix, diagonal=1)
        # label_specific matrix.
        cate_labels_x = paddle.expand(cate_labels, shape=[n_samples, n_samples])
        label_matrix = paddle.cast(
            (cate_labels_x == paddle.transpose(cate_labels_x, [1, 0])),
            'float32')
        label_matrix = paddle.triu(label_matrix, diagonal=1)

        # IoU compensation
        compensate_iou = paddle.max((iou_matrix * label_matrix), axis=0)
        compensate_iou = paddle.expand(
            compensate_iou, shape=[n_samples, n_samples])
        compensate_iou = paddle.transpose(compensate_iou, [1, 0])

        # IoU decay
        decay_iou = iou_matrix * label_matrix

        # matrix nms
        if self.kernel == 'gaussian':
            decay_matrix = paddle.exp(-1 * self.sigma * (decay_iou**2))
            compensate_matrix = paddle.exp(-1 * self.sigma *
                                           (compensate_iou**2))
            decay_coefficient = paddle.min(decay_matrix / compensate_matrix,
                                           axis=0)
        elif self.kernel == 'linear':
            decay_matrix = (1 - decay_iou) / (1 - compensate_iou)
            decay_coefficient = paddle.min(decay_matrix, axis=0)
        else:
            raise NotImplementedError

        # update the score.
        cate_scores = cate_scores * decay_coefficient
        y = paddle.zeros(shape=paddle.shape(cate_scores), dtype='float32')
        keep = paddle.where(cate_scores >= self.update_threshold, cate_scores,
                            y)
        keep = paddle.nonzero(keep)
        keep = paddle.squeeze(keep, axis=[1])
        # Prevent empty and increase fake data
        keep = paddle.concat(
            [keep, paddle.cast(paddle.shape(cate_scores)[0] - 1, 'int64')])

        seg_preds = paddle.gather(seg_preds, index=keep)
        cate_scores = paddle.gather(cate_scores, index=keep)
        cate_labels = paddle.gather(cate_labels, index=keep)

        # sort and keep top_k
        sort_inds = self._sort_score(cate_scores, self.post_nms_top_n)
        seg_preds = paddle.gather(seg_preds, index=sort_inds)
        cate_scores = paddle.gather(cate_scores, index=sort_inds)
        cate_labels = paddle.gather(cate_labels, index=sort_inds)
        return seg_preds, cate_scores, cate_labels
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129


def Conv2d(in_channels,
           out_channels,
           kernel_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=1,
           bias=True,
           weight_init=Normal(std=0.001),
           bias_init=Constant(0.)):
    weight_attr = paddle.framework.ParamAttr(initializer=weight_init)
    if bias:
        bias_attr = paddle.framework.ParamAttr(initializer=bias_init)
    else:
        bias_attr = False
    conv = nn.Conv2D(
        in_channels,
        out_channels,
        kernel_size,
        stride,
        padding,
        dilation,
        groups,
        weight_attr=weight_attr,
        bias_attr=bias_attr)
    return conv


def ConvTranspose2d(in_channels,
                    out_channels,
                    kernel_size,
                    stride=1,
                    padding=0,
                    output_padding=0,
                    groups=1,
                    bias=True,
                    dilation=1,
                    weight_init=Normal(std=0.001),
                    bias_init=Constant(0.)):
    weight_attr = paddle.framework.ParamAttr(initializer=weight_init)
    if bias:
        bias_attr = paddle.framework.ParamAttr(initializer=bias_init)
    else:
        bias_attr = False
    conv = nn.Conv2DTranspose(
        in_channels,
        out_channels,
        kernel_size,
        stride,
        padding,
        output_padding,
        dilation,
        groups,
        weight_attr=weight_attr,
        bias_attr=bias_attr)
    return conv


def BatchNorm2d(num_features, eps=1e-05, momentum=0.9, affine=True):
    if not affine:
        weight_attr = False
        bias_attr = False
    else:
        weight_attr = None
        bias_attr = None
    batchnorm = nn.BatchNorm2D(
        num_features,
        momentum,
        eps,
        weight_attr=weight_attr,
        bias_attr=bias_attr)
    return batchnorm


def ReLU():
    return nn.ReLU()


def Upsample(scale_factor=None, mode='nearest', align_corners=False):
    return nn.Upsample(None, scale_factor, mode, align_corners)


def MaxPool(kernel_size, stride, padding, ceil_mode=False):
    return nn.MaxPool2D(kernel_size, stride, padding, ceil_mode=ceil_mode)


class Concat(nn.Layer):
    def __init__(self, dim=0):
        super(Concat, self).__init__()
        self.dim = dim

    def forward(self, inputs):
        return paddle.concat(inputs, axis=self.dim)

    def extra_repr(self):
        return 'dim={}'.format(self.dim)