layers.py 34.5 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
16
import six
Q
qingqing01 已提交
17 18 19 20
import numpy as np
from numbers import Integral

import paddle
G
Guanghua Yu 已提交
21 22
import paddle.nn as nn
from paddle import ParamAttr
Q
qingqing01 已提交
23
from paddle import to_tensor
G
Guanghua Yu 已提交
24 25 26 27 28
from paddle.nn import Conv2D, BatchNorm2D, GroupNorm
import paddle.nn.functional as F
from paddle.nn.initializer import Normal, Constant
from paddle.regularizer import L2Decay

Q
qingqing01 已提交
29
from ppdet.core.workspace import register, serializable
30
from ppdet.modeling.bbox_utils import delta2bbox
Q
qingqing01 已提交
31
from . import ops
32

F
Feng Ni 已提交
33
from paddle.vision.ops import DeformConv2D
Q
qingqing01 已提交
34 35 36 37 38 39 40 41


def _to_list(l):
    if isinstance(l, (list, tuple)):
        return list(l)
    return [l]


F
Feng Ni 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54
class DeformableConvV2(nn.Layer):
    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=1,
                 weight_attr=None,
                 bias_attr=None,
                 lr_scale=1,
                 regularizer=None,
G
Guanghua Yu 已提交
55
                 skip_quant=False,
F
Feng Ni 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
                 name=None):
        super(DeformableConvV2, self).__init__()
        self.offset_channel = 2 * kernel_size**2
        self.mask_channel = kernel_size**2

        if lr_scale == 1 and regularizer is None:
            offset_bias_attr = ParamAttr(
                initializer=Constant(0.),
                name='{}._conv_offset.bias'.format(name))
        else:
            offset_bias_attr = ParamAttr(
                initializer=Constant(0.),
                learning_rate=lr_scale,
                regularizer=regularizer,
                name='{}._conv_offset.bias'.format(name))
        self.conv_offset = nn.Conv2D(
            in_channels,
            3 * kernel_size**2,
            kernel_size,
            stride=stride,
            padding=(kernel_size - 1) // 2,
            weight_attr=ParamAttr(
                initializer=Constant(0.0),
                name='{}._conv_offset.weight'.format(name)),
            bias_attr=offset_bias_attr)
G
Guanghua Yu 已提交
81 82
        if skip_quant:
            self.conv_offset.skip_quant = True
F
Feng Ni 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115

        if bias_attr:
            # in FCOS-DCN head, specifically need learning_rate and regularizer
            dcn_bias_attr = ParamAttr(
                name=name + "_bias",
                initializer=Constant(value=0),
                regularizer=L2Decay(0.),
                learning_rate=2.)
        else:
            # in ResNet backbone, do not need bias
            dcn_bias_attr = False
        self.conv_dcn = DeformConv2D(
            in_channels,
            out_channels,
            kernel_size,
            stride=stride,
            padding=(kernel_size - 1) // 2 * dilation,
            dilation=dilation,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=dcn_bias_attr)

    def forward(self, x):
        offset_mask = self.conv_offset(x)
        offset, mask = paddle.split(
            offset_mask,
            num_or_sections=[self.offset_channel, self.mask_channel],
            axis=1)
        mask = F.sigmoid(mask)
        y = self.conv_dcn(x, offset, mask=mask)
        return y


G
Guanghua Yu 已提交
116 117 118 119 120 121 122
class ConvNormLayer(nn.Layer):
    def __init__(self,
                 ch_in,
                 ch_out,
                 filter_size,
                 stride,
                 norm_type='bn',
F
Feng Ni 已提交
123
                 norm_decay=0.,
G
Guanghua Yu 已提交
124 125 126
                 norm_groups=32,
                 use_dcn=False,
                 norm_name=None,
F
Feng Ni 已提交
127 128
                 bias_on=False,
                 lr_scale=1.,
F
Feng Ni 已提交
129 130 131
                 freeze_norm=False,
                 initializer=Normal(
                     mean=0., std=0.01),
G
Guanghua Yu 已提交
132
                 skip_quant=False,
G
Guanghua Yu 已提交
133 134 135 136
                 name=None):
        super(ConvNormLayer, self).__init__()
        assert norm_type in ['bn', 'sync_bn', 'gn']

F
Feng Ni 已提交
137 138 139 140 141 142 143 144
        if bias_on:
            bias_attr = ParamAttr(
                name=name + "_bias",
                initializer=Constant(value=0.),
                learning_rate=lr_scale)
        else:
            bias_attr = False

F
Feng Ni 已提交
145 146 147 148 149 150 151 152 153 154
        if not use_dcn:
            self.conv = nn.Conv2D(
                in_channels=ch_in,
                out_channels=ch_out,
                kernel_size=filter_size,
                stride=stride,
                padding=(filter_size - 1) // 2,
                groups=1,
                weight_attr=ParamAttr(
                    name=name + "_weight",
F
Feng Ni 已提交
155
                    initializer=initializer,
F
Feng Ni 已提交
156 157
                    learning_rate=1.),
                bias_attr=bias_attr)
G
Guanghua Yu 已提交
158 159
            if skip_quant:
                self.conv.skip_quant = True
F
Feng Ni 已提交
160 161 162 163 164 165 166 167 168 169 170
        else:
            # in FCOS-DCN head, specifically need learning_rate and regularizer
            self.conv = DeformableConvV2(
                in_channels=ch_in,
                out_channels=ch_out,
                kernel_size=filter_size,
                stride=stride,
                padding=(filter_size - 1) // 2,
                groups=1,
                weight_attr=ParamAttr(
                    name=name + "_weight",
F
Feng Ni 已提交
171
                    initializer=initializer,
F
Feng Ni 已提交
172 173 174
                    learning_rate=1.),
                bias_attr=True,
                lr_scale=2.,
F
Feng Ni 已提交
175
                regularizer=L2Decay(norm_decay),
G
Guanghua Yu 已提交
176
                skip_quant=skip_quant,
F
Feng Ni 已提交
177
                name=name)
G
Guanghua Yu 已提交
178

F
Feng Ni 已提交
179
        norm_lr = 0. if freeze_norm else 1.
G
Guanghua Yu 已提交
180 181
        param_attr = ParamAttr(
            name=norm_name + "_scale",
F
Feng Ni 已提交
182 183
            learning_rate=norm_lr,
            regularizer=L2Decay(norm_decay))
G
Guanghua Yu 已提交
184 185
        bias_attr = ParamAttr(
            name=norm_name + "_offset",
F
Feng Ni 已提交
186 187 188
            learning_rate=norm_lr,
            regularizer=L2Decay(norm_decay))
        if norm_type == 'bn':
F
Feng Ni 已提交
189
            self.norm = nn.BatchNorm2D(
G
Guanghua Yu 已提交
190
                ch_out, weight_attr=param_attr, bias_attr=bias_attr)
F
Feng Ni 已提交
191 192 193
        elif norm_type == 'sync_bn':
            self.norm = nn.SyncBatchNorm(
                ch_out, weight_attr=param_attr, bias_attr=bias_attr)
G
Guanghua Yu 已提交
194
        elif norm_type == 'gn':
F
Feng Ni 已提交
195
            self.norm = nn.GroupNorm(
G
Guanghua Yu 已提交
196 197 198 199 200 201 202 203 204 205 206
                num_groups=norm_groups,
                num_channels=ch_out,
                weight_attr=param_attr,
                bias_attr=bias_attr)

    def forward(self, inputs):
        out = self.conv(inputs)
        out = self.norm(out)
        return out


Q
qingqing01 已提交
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
@register
@serializable
class AnchorGeneratorRPN(object):
    def __init__(self,
                 anchor_sizes=[32, 64, 128, 256, 512],
                 aspect_ratios=[0.5, 1.0, 2.0],
                 stride=[16.0, 16.0],
                 variance=[1.0, 1.0, 1.0, 1.0],
                 anchor_start_size=None):
        super(AnchorGeneratorRPN, self).__init__()
        self.anchor_sizes = anchor_sizes
        self.aspect_ratios = aspect_ratios
        self.stride = stride
        self.variance = variance
        self.anchor_start_size = anchor_start_size

    def __call__(self, input, level=None):
        anchor_sizes = self.anchor_sizes if (
            level is None or self.anchor_start_size is None) else (
                self.anchor_start_size * 2**level)
        stride = self.stride if (
            level is None or self.anchor_start_size is None) else (
                self.stride[0] * (2.**level), self.stride[1] * (2.**level))
        anchor, var = ops.anchor_generator(
            input=input,
            anchor_sizes=anchor_sizes,
            aspect_ratios=self.aspect_ratios,
            stride=stride,
            variance=self.variance)
        return anchor, var


@register
@serializable
class AnchorGeneratorSSD(object):
    def __init__(self,
                 steps=[8, 16, 32, 64, 100, 300],
                 aspect_ratios=[[2.], [2., 3.], [2., 3.], [2., 3.], [2.], [2.]],
                 min_ratio=15,
                 max_ratio=90,
247
                 base_size=300,
Q
qingqing01 已提交
248 249 250 251 252 253 254 255 256 257
                 min_sizes=[30.0, 60.0, 111.0, 162.0, 213.0, 264.0],
                 max_sizes=[60.0, 111.0, 162.0, 213.0, 264.0, 315.0],
                 offset=0.5,
                 flip=True,
                 clip=False,
                 min_max_aspect_ratios_order=False):
        self.steps = steps
        self.aspect_ratios = aspect_ratios
        self.min_ratio = min_ratio
        self.max_ratio = max_ratio
258
        self.base_size = base_size
Q
qingqing01 已提交
259 260 261 262 263 264 265
        self.min_sizes = min_sizes
        self.max_sizes = max_sizes
        self.offset = offset
        self.flip = flip
        self.clip = clip
        self.min_max_aspect_ratios_order = min_max_aspect_ratios_order

266 267 268 269 270 271 272 273 274 275 276 277
        if self.min_sizes == [] and self.max_sizes == []:
            num_layer = len(aspect_ratios)
            step = int(
                math.floor(((self.max_ratio - self.min_ratio)) / (num_layer - 2
                                                                  )))
            for ratio in six.moves.range(self.min_ratio, self.max_ratio + 1,
                                         step):
                self.min_sizes.append(self.base_size * ratio / 100.)
                self.max_sizes.append(self.base_size * (ratio + step) / 100.)
            self.min_sizes = [self.base_size * .10] + self.min_sizes
            self.max_sizes = [self.base_size * .20] + self.max_sizes

Q
qingqing01 已提交
278
        self.num_priors = []
279 280
        for aspect_ratio, min_size, max_size in zip(
                aspect_ratios, self.min_sizes, self.max_sizes):
281 282 283 284 285 286
            if isinstance(min_size, (list, tuple)):
                self.num_priors.append(
                    len(_to_list(min_size)) + len(_to_list(max_size)))
            else:
                self.num_priors.append((len(aspect_ratio) * 2 + 1) * len(
                    _to_list(min_size)) + len(_to_list(max_size)))
Q
qingqing01 已提交
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310

    def __call__(self, inputs, image):
        boxes = []
        for input, min_size, max_size, aspect_ratio, step in zip(
                inputs, self.min_sizes, self.max_sizes, self.aspect_ratios,
                self.steps):
            box, _ = ops.prior_box(
                input=input,
                image=image,
                min_sizes=_to_list(min_size),
                max_sizes=_to_list(max_size),
                aspect_ratios=aspect_ratio,
                flip=self.flip,
                clip=self.clip,
                steps=[step, step],
                offset=self.offset,
                min_max_aspect_ratios_order=self.min_max_aspect_ratios_order)
            boxes.append(paddle.reshape(box, [-1, 4]))
        return boxes


@register
@serializable
class RCNNBox(object):
W
wangguanzhong 已提交
311 312
    __shared__ = ['num_classes']

Q
qingqing01 已提交
313
    def __init__(self,
314
                 prior_box_var=[10., 10., 5., 5.],
Q
qingqing01 已提交
315
                 code_type="decode_center_size",
W
wangguanzhong 已提交
316 317
                 box_normalized=False,
                 num_classes=80):
Q
qingqing01 已提交
318 319 320 321
        super(RCNNBox, self).__init__()
        self.prior_box_var = prior_box_var
        self.code_type = code_type
        self.box_normalized = box_normalized
W
wangguanzhong 已提交
322
        self.num_classes = num_classes
Q
qingqing01 已提交
323 324 325 326

    def __call__(self, bbox_head_out, rois, im_shape, scale_factor):
        bbox_pred, cls_prob = bbox_head_out
        roi, rois_num = rois
327
        origin_shape = paddle.floor(im_shape / scale_factor + 0.5)
Q
qingqing01 已提交
328 329
        scale_list = []
        origin_shape_list = []
330
        for idx, roi_per_im in enumerate(roi):
Q
qingqing01 已提交
331
            rois_num_per_im = rois_num[idx]
332
            expand_im_shape = paddle.expand(im_shape[idx, :],
Q
qingqing01 已提交
333 334 335 336 337
                                            [rois_num_per_im, 2])
            origin_shape_list.append(expand_im_shape)

        origin_shape = paddle.concat(origin_shape_list)

F
Feng Ni 已提交
338 339
        # bbox_pred.shape: [N, C*4]
        # C=num_classes in faster/mask rcnn(bbox_head), C=1 in cascade rcnn(cascade_head)
340
        bbox = paddle.concat(roi)
G
Guanghua Yu 已提交
341 342 343 344
        if bbox.shape[0] == 0:
            bbox = paddle.zeros([0, bbox_pred.shape[1]], dtype='float32')
        else:
            bbox = delta2bbox(bbox_pred, bbox, self.prior_box_var)
345 346
        scores = cls_prob[:, :-1]

F
Feng Ni 已提交
347 348 349
        # bbox.shape: [N, C, 4]
        # bbox.shape[1] must be equal to scores.shape[1]
        bbox_num_class = bbox.shape[1]
W
wangguanzhong 已提交
350 351 352
        if bbox_num_class == 1:
            bbox = paddle.tile(bbox, [1, self.num_classes, 1])

353 354 355
        origin_h = paddle.unsqueeze(origin_shape[:, 0], axis=1)
        origin_w = paddle.unsqueeze(origin_shape[:, 1], axis=1)
        zeros = paddle.zeros_like(origin_h)
Q
qingqing01 已提交
356 357 358 359 360 361
        x1 = paddle.maximum(paddle.minimum(bbox[:, :, 0], origin_w), zeros)
        y1 = paddle.maximum(paddle.minimum(bbox[:, :, 1], origin_h), zeros)
        x2 = paddle.maximum(paddle.minimum(bbox[:, :, 2], origin_w), zeros)
        y2 = paddle.maximum(paddle.minimum(bbox[:, :, 3], origin_h), zeros)
        bbox = paddle.stack([x1, y1, x2, y2], axis=-1)
        bboxes = (bbox, rois_num)
362
        return bboxes, scores
Q
qingqing01 已提交
363 364 365 366 367 368 369 370 371 372


@register
@serializable
class MultiClassNMS(object):
    def __init__(self,
                 score_threshold=.05,
                 nms_top_k=-1,
                 keep_top_k=100,
                 nms_threshold=.5,
373
                 normalized=True,
Q
qingqing01 已提交
374 375 376 377 378 379 380 381 382 383 384
                 nms_eta=1.0,
                 return_rois_num=True):
        super(MultiClassNMS, self).__init__()
        self.score_threshold = score_threshold
        self.nms_top_k = nms_top_k
        self.keep_top_k = keep_top_k
        self.nms_threshold = nms_threshold
        self.normalized = normalized
        self.nms_eta = nms_eta
        self.return_rois_num = return_rois_num

385 386 387 388 389 390 391 392 393 394 395 396 397 398
    def __call__(self, bboxes, score, background_label=-1):
        """
        bboxes (Tensor|List[Tensor]): 1. (Tensor) Predicted bboxes with shape 
                                         [N, M, 4], N is the batch size and M
                                         is the number of bboxes
                                      2. (List[Tensor]) bboxes and bbox_num,
                                         bboxes have shape of [M, C, 4], C
                                         is the class number and bbox_num means
                                         the number of bboxes of each batch with
                                         shape [N,] 
        score (Tensor): Predicted scores with shape [N, C, M] or [M, C]
        background_label (int): Ignore the background label; For example, RCNN
                                is num_classes and YOLO is -1. 
        """
Q
qingqing01 已提交
399 400 401 402
        kwargs = self.__dict__.copy()
        if isinstance(bboxes, tuple):
            bboxes, bbox_num = bboxes
            kwargs.update({'rois_num': bbox_num})
403 404
        if background_label > -1:
            kwargs.update({'background_label': background_label})
Q
qingqing01 已提交
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
        return ops.multiclass_nms(bboxes, score, **kwargs)


@register
@serializable
class MatrixNMS(object):
    __append_doc__ = True

    def __init__(self,
                 score_threshold=.05,
                 post_threshold=.05,
                 nms_top_k=-1,
                 keep_top_k=100,
                 use_gaussian=False,
                 gaussian_sigma=2.,
                 normalized=False,
                 background_label=0):
        super(MatrixNMS, self).__init__()
        self.score_threshold = score_threshold
        self.post_threshold = post_threshold
        self.nms_top_k = nms_top_k
        self.keep_top_k = keep_top_k
        self.normalized = normalized
        self.use_gaussian = use_gaussian
        self.gaussian_sigma = gaussian_sigma
        self.background_label = background_label

432
    def __call__(self, bbox, score, *args):
W
wangxinxin08 已提交
433 434 435 436 437 438 439 440 441 442 443 444
        return ops.matrix_nms(
            bboxes=bbox,
            scores=score,
            score_threshold=self.score_threshold,
            post_threshold=self.post_threshold,
            nms_top_k=self.nms_top_k,
            keep_top_k=self.keep_top_k,
            use_gaussian=self.use_gaussian,
            gaussian_sigma=self.gaussian_sigma,
            background_label=self.background_label,
            normalized=self.normalized)

Q
qingqing01 已提交
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497

@register
@serializable
class YOLOBox(object):
    __shared__ = ['num_classes']

    def __init__(self,
                 num_classes=80,
                 conf_thresh=0.005,
                 downsample_ratio=32,
                 clip_bbox=True,
                 scale_x_y=1.):
        self.num_classes = num_classes
        self.conf_thresh = conf_thresh
        self.downsample_ratio = downsample_ratio
        self.clip_bbox = clip_bbox
        self.scale_x_y = scale_x_y

    def __call__(self,
                 yolo_head_out,
                 anchors,
                 im_shape,
                 scale_factor,
                 var_weight=None):
        boxes_list = []
        scores_list = []
        origin_shape = im_shape / scale_factor
        origin_shape = paddle.cast(origin_shape, 'int32')
        for i, head_out in enumerate(yolo_head_out):
            boxes, scores = ops.yolo_box(head_out, origin_shape, anchors[i],
                                         self.num_classes, self.conf_thresh,
                                         self.downsample_ratio // 2**i,
                                         self.clip_bbox, self.scale_x_y)
            boxes_list.append(boxes)
            scores_list.append(paddle.transpose(scores, perm=[0, 2, 1]))
        yolo_boxes = paddle.concat(boxes_list, axis=1)
        yolo_scores = paddle.concat(scores_list, axis=2)
        return yolo_boxes, yolo_scores


@register
@serializable
class SSDBox(object):
    def __init__(self, is_normalized=True):
        self.is_normalized = is_normalized
        self.norm_delta = float(not self.is_normalized)

    def __call__(self,
                 preds,
                 prior_boxes,
                 im_shape,
                 scale_factor,
                 var_weight=None):
498
        boxes, scores = preds
Q
qingqing01 已提交
499 500 501 502 503 504 505 506 507 508 509 510
        outputs = []
        for box, score, prior_box in zip(boxes, scores, prior_boxes):
            pb_w = prior_box[:, 2] - prior_box[:, 0] + self.norm_delta
            pb_h = prior_box[:, 3] - prior_box[:, 1] + self.norm_delta
            pb_x = prior_box[:, 0] + pb_w * 0.5
            pb_y = prior_box[:, 1] + pb_h * 0.5
            out_x = pb_x + box[:, :, 0] * pb_w * 0.1
            out_y = pb_y + box[:, :, 1] * pb_h * 0.1
            out_w = paddle.exp(box[:, :, 2] * 0.2) * pb_w
            out_h = paddle.exp(box[:, :, 3] * 0.2) * pb_h

            if self.is_normalized:
K
Kaipeng Deng 已提交
511 512 513 514
                h = paddle.unsqueeze(
                    im_shape[:, 0] / scale_factor[:, 0], axis=-1)
                w = paddle.unsqueeze(
                    im_shape[:, 1] / scale_factor[:, 1], axis=-1)
Q
qingqing01 已提交
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
                output = paddle.stack(
                    [(out_x - out_w / 2.) * w, (out_y - out_h / 2.) * h,
                     (out_x + out_w / 2.) * w, (out_y + out_h / 2.) * h],
                    axis=-1)
            else:
                output = paddle.stack(
                    [
                        out_x - out_w / 2., out_y - out_h / 2.,
                        out_x + out_w / 2. - 1., out_y + out_h / 2. - 1.
                    ],
                    axis=-1)
            outputs.append(output)
        boxes = paddle.concat(outputs, axis=1)

        scores = F.softmax(paddle.concat(scores, axis=1))
        scores = paddle.transpose(scores, [0, 2, 1])

        return boxes, scores


@register
@serializable
class AnchorGrid(object):
    """Generate anchor grid

    Args:
        image_size (int or list): input image size, may be a single integer or
            list of [h, w]. Default: 512
        min_level (int): min level of the feature pyramid. Default: 3
        max_level (int): max level of the feature pyramid. Default: 7
        anchor_base_scale: base anchor scale. Default: 4
        num_scales: number of anchor scales. Default: 3
        aspect_ratios: aspect ratios. default: [[1, 1], [1.4, 0.7], [0.7, 1.4]]
    """

    def __init__(self,
                 image_size=512,
                 min_level=3,
                 max_level=7,
                 anchor_base_scale=4,
                 num_scales=3,
                 aspect_ratios=[[1, 1], [1.4, 0.7], [0.7, 1.4]]):
        super(AnchorGrid, self).__init__()
        if isinstance(image_size, Integral):
            self.image_size = [image_size, image_size]
        else:
            self.image_size = image_size
        for dim in self.image_size:
            assert dim % 2 ** max_level == 0, \
                "image size should be multiple of the max level stride"
        self.min_level = min_level
        self.max_level = max_level
        self.anchor_base_scale = anchor_base_scale
        self.num_scales = num_scales
        self.aspect_ratios = aspect_ratios

    @property
    def base_cell(self):
        if not hasattr(self, '_base_cell'):
            self._base_cell = self.make_cell()
        return self._base_cell

    def make_cell(self):
        scales = [2**(i / self.num_scales) for i in range(self.num_scales)]
        scales = np.array(scales)
        ratios = np.array(self.aspect_ratios)
        ws = np.outer(scales, ratios[:, 0]).reshape(-1, 1)
        hs = np.outer(scales, ratios[:, 1]).reshape(-1, 1)
        anchors = np.hstack((-0.5 * ws, -0.5 * hs, 0.5 * ws, 0.5 * hs))
        return anchors

    def make_grid(self, stride):
        cell = self.base_cell * stride * self.anchor_base_scale
        x_steps = np.arange(stride // 2, self.image_size[1], stride)
        y_steps = np.arange(stride // 2, self.image_size[0], stride)
        offset_x, offset_y = np.meshgrid(x_steps, y_steps)
        offset_x = offset_x.flatten()
        offset_y = offset_y.flatten()
        offsets = np.stack((offset_x, offset_y, offset_x, offset_y), axis=-1)
        offsets = offsets[:, np.newaxis, :]
        return (cell + offsets).reshape(-1, 4)

    def generate(self):
        return [
            self.make_grid(2**l)
            for l in range(self.min_level, self.max_level + 1)
        ]

    def __call__(self):
        if not hasattr(self, '_anchor_vars'):
            anchor_vars = []
            helper = LayerHelper('anchor_grid')
            for idx, l in enumerate(range(self.min_level, self.max_level + 1)):
                stride = 2**l
                anchors = self.make_grid(stride)
                var = helper.create_parameter(
                    attr=ParamAttr(name='anchors_{}'.format(idx)),
                    shape=anchors.shape,
                    dtype='float32',
                    stop_gradient=True,
                    default_initializer=NumpyArrayInitializer(anchors))
                anchor_vars.append(var)
                var.persistable = True
            self._anchor_vars = anchor_vars

        return self._anchor_vars
G
Guanghua Yu 已提交
621 622 623 624


@register
@serializable
F
Feng Ni 已提交
625
class FCOSBox(object):
F
Feng Ni 已提交
626
    __shared__ = ['num_classes']
F
Feng Ni 已提交
627

F
Feng Ni 已提交
628
    def __init__(self, num_classes=80):
F
Feng Ni 已提交
629 630 631 632 633
        super(FCOSBox, self).__init__()
        self.num_classes = num_classes

    def _merge_hw(self, inputs, ch_type="channel_first"):
        """
F
Feng Ni 已提交
634
        Merge h and w of the feature map into one dimension.
F
Feng Ni 已提交
635
        Args:
F
Feng Ni 已提交
636 637
            inputs (Tensor): Tensor of the input feature map
            ch_type (str): "channel_first" or "channel_last" style
F
Feng Ni 已提交
638
        Return:
F
Feng Ni 已提交
639
            new_shape (Tensor): The new shape after h and w merged
F
Feng Ni 已提交
640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
        """
        shape_ = paddle.shape(inputs)
        bs, ch, hi, wi = shape_[0], shape_[1], shape_[2], shape_[3]
        img_size = hi * wi
        img_size.stop_gradient = True
        if ch_type == "channel_first":
            new_shape = paddle.concat([bs, ch, img_size])
        elif ch_type == "channel_last":
            new_shape = paddle.concat([bs, img_size, ch])
        else:
            raise KeyError("Wrong ch_type %s" % ch_type)
        new_shape.stop_gradient = True
        return new_shape

    def _postprocessing_by_level(self, locations, box_cls, box_reg, box_ctn,
                                 scale_factor):
        """
F
Feng Ni 已提交
657
        Postprocess each layer of the output with corresponding locations.
F
Feng Ni 已提交
658
        Args:
F
Feng Ni 已提交
659 660 661 662 663 664
            locations (Tensor): anchor points for current layer, [H*W, 2]
            box_cls (Tensor): categories prediction, [N, C, H, W], 
                C is the number of classes
            box_reg (Tensor): bounding box prediction, [N, 4, H, W]
            box_ctn (Tensor): centerness prediction, [N, 1, H, W]
            scale_factor (Tensor): [h_scale, w_scale] for input images
F
Feng Ni 已提交
665
        Return:
F
Feng Ni 已提交
666
            box_cls_ch_last (Tensor): score for each category, in [N, C, M]
F
Feng Ni 已提交
667
                C is the number of classes and M is the number of anchor points
F
Feng Ni 已提交
668
            box_reg_decoding (Tensor): decoded bounding box, in [N, M, 4]
F
Feng Ni 已提交
669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
                last dimension is [x1, y1, x2, y2]
        """
        act_shape_cls = self._merge_hw(box_cls)
        box_cls_ch_last = paddle.reshape(x=box_cls, shape=act_shape_cls)
        box_cls_ch_last = F.sigmoid(box_cls_ch_last)

        act_shape_reg = self._merge_hw(box_reg)
        box_reg_ch_last = paddle.reshape(x=box_reg, shape=act_shape_reg)
        box_reg_ch_last = paddle.transpose(box_reg_ch_last, perm=[0, 2, 1])
        box_reg_decoding = paddle.stack(
            [
                locations[:, 0] - box_reg_ch_last[:, :, 0],
                locations[:, 1] - box_reg_ch_last[:, :, 1],
                locations[:, 0] + box_reg_ch_last[:, :, 2],
                locations[:, 1] + box_reg_ch_last[:, :, 3]
            ],
            axis=1)
        box_reg_decoding = paddle.transpose(box_reg_decoding, perm=[0, 2, 1])

        act_shape_ctn = self._merge_hw(box_ctn)
        box_ctn_ch_last = paddle.reshape(x=box_ctn, shape=act_shape_ctn)
        box_ctn_ch_last = F.sigmoid(box_ctn_ch_last)

        # recover the location to original image
        im_scale = paddle.concat([scale_factor, scale_factor], axis=1)
        box_reg_decoding = box_reg_decoding / im_scale
        box_cls_ch_last = box_cls_ch_last * box_ctn_ch_last
        return box_cls_ch_last, box_reg_decoding

    def __call__(self, locations, cls_logits, bboxes_reg, centerness,
                 scale_factor):
        pred_boxes_ = []
        pred_scores_ = []
        for pts, cls, box, ctn in zip(locations, cls_logits, bboxes_reg,
                                      centerness):
            pred_scores_lvl, pred_boxes_lvl = self._postprocessing_by_level(
                pts, cls, box, ctn, scale_factor)
            pred_boxes_.append(pred_boxes_lvl)
            pred_scores_.append(pred_scores_lvl)
        pred_boxes = paddle.concat(pred_boxes_, axis=1)
        pred_scores = paddle.concat(pred_scores_, axis=2)
        return pred_boxes, pred_scores


713
@register
F
Feng Ni 已提交
714 715 716 717 718 719 720 721 722 723
class TTFBox(object):
    __shared__ = ['down_ratio']

    def __init__(self, max_per_img=100, score_thresh=0.01, down_ratio=4):
        super(TTFBox, self).__init__()
        self.max_per_img = max_per_img
        self.score_thresh = score_thresh
        self.down_ratio = down_ratio

    def _simple_nms(self, heat, kernel=3):
F
Feng Ni 已提交
724 725 726
        """
        Use maxpool to filter the max score, get local peaks.
        """
F
Feng Ni 已提交
727 728 729 730 731 732
        pad = (kernel - 1) // 2
        hmax = F.max_pool2d(heat, kernel, stride=1, padding=pad)
        keep = paddle.cast(hmax == heat, 'float32')
        return heat * keep

    def _topk(self, scores):
F
Feng Ni 已提交
733 734 735
        """
        Select top k scores and decode to get xy coordinates.
        """
F
Feng Ni 已提交
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
        k = self.max_per_img
        shape_fm = paddle.shape(scores)
        shape_fm.stop_gradient = True
        cat, height, width = shape_fm[1], shape_fm[2], shape_fm[3]
        # batch size is 1
        scores_r = paddle.reshape(scores, [cat, -1])
        topk_scores, topk_inds = paddle.topk(scores_r, k)
        topk_scores, topk_inds = paddle.topk(scores_r, k)
        topk_ys = topk_inds // width
        topk_xs = topk_inds % width

        topk_score_r = paddle.reshape(topk_scores, [-1])
        topk_score, topk_ind = paddle.topk(topk_score_r, k)
        k_t = paddle.full(paddle.shape(topk_ind), k, dtype='int64')
        topk_clses = paddle.cast(paddle.floor_divide(topk_ind, k_t), 'float32')

        topk_inds = paddle.reshape(topk_inds, [-1])
        topk_ys = paddle.reshape(topk_ys, [-1, 1])
        topk_xs = paddle.reshape(topk_xs, [-1, 1])
        topk_inds = paddle.gather(topk_inds, topk_ind)
        topk_ys = paddle.gather(topk_ys, topk_ind)
        topk_xs = paddle.gather(topk_xs, topk_ind)

        return topk_score, topk_inds, topk_clses, topk_ys, topk_xs

    def __call__(self, hm, wh, im_shape, scale_factor):
        heatmap = F.sigmoid(hm)
        heat = self._simple_nms(heatmap)
        scores, inds, clses, ys, xs = self._topk(heat)
        ys = paddle.cast(ys, 'float32') * self.down_ratio
        xs = paddle.cast(xs, 'float32') * self.down_ratio
        scores = paddle.tensor.unsqueeze(scores, [1])
        clses = paddle.tensor.unsqueeze(clses, [1])

        wh_t = paddle.transpose(wh, [0, 2, 3, 1])
        wh = paddle.reshape(wh_t, [-1, paddle.shape(wh_t)[-1]])
        wh = paddle.gather(wh, inds)

        x1 = xs - wh[:, 0:1]
        y1 = ys - wh[:, 1:2]
        x2 = xs + wh[:, 2:3]
        y2 = ys + wh[:, 3:4]

        bboxes = paddle.concat([x1, y1, x2, y2], axis=1)

        scale_y = scale_factor[:, 0:1]
        scale_x = scale_factor[:, 1:2]
        scale_expand = paddle.concat(
            [scale_x, scale_y, scale_x, scale_y], axis=1)
        boxes_shape = paddle.shape(bboxes)
        boxes_shape.stop_gradient = True
        scale_expand = paddle.expand(scale_expand, shape=boxes_shape)
        bboxes = paddle.divide(bboxes, scale_expand)
        results = paddle.concat([clses, scores, bboxes], axis=1)
        # hack: append result with cls=-1 and score=1. to avoid all scores
        # are less than score_thresh which may cause error in gather.
        fill_r = paddle.to_tensor(np.array([[-1, 1, 0, 0, 0, 0]]))
        fill_r = paddle.cast(fill_r, results.dtype)
        results = paddle.concat([results, fill_r])
        scores = results[:, 1]
        valid_ind = paddle.nonzero(scores > self.score_thresh)
        results = paddle.gather(results, valid_ind)
        return results, paddle.shape(results)[0:1]


G
Guanghua Yu 已提交
801
@register
802
@serializable
G
Guanghua Yu 已提交
803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
class MaskMatrixNMS(object):
    """
    Matrix NMS for multi-class masks.
    Args:
        update_threshold (float): Updated threshold of categroy score in second time.
        pre_nms_top_n (int): Number of total instance to be kept per image before NMS
        post_nms_top_n (int): Number of total instance to be kept per image after NMS.
        kernel (str):  'linear' or 'gaussian'.
        sigma (float): std in gaussian method.
    Input:
        seg_preds (Variable): shape (n, h, w), segmentation feature maps
        seg_masks (Variable): shape (n, h, w), segmentation feature maps
        cate_labels (Variable): shape (n), mask labels in descending order
        cate_scores (Variable): shape (n), mask scores in descending order
        sum_masks (Variable): a float tensor of the sum of seg_masks
    Returns:
        Variable: cate_scores, tensors of shape (n)
    """

    def __init__(self,
                 update_threshold=0.05,
                 pre_nms_top_n=500,
                 post_nms_top_n=100,
                 kernel='gaussian',
                 sigma=2.0):
        super(MaskMatrixNMS, self).__init__()
        self.update_threshold = update_threshold
        self.pre_nms_top_n = pre_nms_top_n
        self.post_nms_top_n = post_nms_top_n
        self.kernel = kernel
        self.sigma = sigma

    def _sort_score(self, scores, top_num):
        if paddle.shape(scores)[0] > top_num:
            return paddle.topk(scores, top_num)[1]
        else:
            return paddle.argsort(scores, descending=True)

    def __call__(self,
                 seg_preds,
                 seg_masks,
                 cate_labels,
                 cate_scores,
                 sum_masks=None):
        # sort and keep top nms_pre
        sort_inds = self._sort_score(cate_scores, self.pre_nms_top_n)
        seg_masks = paddle.gather(seg_masks, index=sort_inds)
        seg_preds = paddle.gather(seg_preds, index=sort_inds)
        sum_masks = paddle.gather(sum_masks, index=sort_inds)
        cate_scores = paddle.gather(cate_scores, index=sort_inds)
        cate_labels = paddle.gather(cate_labels, index=sort_inds)

        seg_masks = paddle.flatten(seg_masks, start_axis=1, stop_axis=-1)
        # inter.
        inter_matrix = paddle.mm(seg_masks, paddle.transpose(seg_masks, [1, 0]))
        n_samples = paddle.shape(cate_labels)
        # union.
        sum_masks_x = paddle.expand(sum_masks, shape=[n_samples, n_samples])
        # iou.
        iou_matrix = (inter_matrix / (
            sum_masks_x + paddle.transpose(sum_masks_x, [1, 0]) - inter_matrix))
        iou_matrix = paddle.triu(iou_matrix, diagonal=1)
        # label_specific matrix.
        cate_labels_x = paddle.expand(cate_labels, shape=[n_samples, n_samples])
        label_matrix = paddle.cast(
            (cate_labels_x == paddle.transpose(cate_labels_x, [1, 0])),
            'float32')
        label_matrix = paddle.triu(label_matrix, diagonal=1)

        # IoU compensation
        compensate_iou = paddle.max((iou_matrix * label_matrix), axis=0)
        compensate_iou = paddle.expand(
            compensate_iou, shape=[n_samples, n_samples])
        compensate_iou = paddle.transpose(compensate_iou, [1, 0])

        # IoU decay
        decay_iou = iou_matrix * label_matrix

        # matrix nms
        if self.kernel == 'gaussian':
            decay_matrix = paddle.exp(-1 * self.sigma * (decay_iou**2))
            compensate_matrix = paddle.exp(-1 * self.sigma *
                                           (compensate_iou**2))
            decay_coefficient = paddle.min(decay_matrix / compensate_matrix,
                                           axis=0)
        elif self.kernel == 'linear':
            decay_matrix = (1 - decay_iou) / (1 - compensate_iou)
            decay_coefficient = paddle.min(decay_matrix, axis=0)
        else:
            raise NotImplementedError

        # update the score.
        cate_scores = cate_scores * decay_coefficient
        y = paddle.zeros(shape=paddle.shape(cate_scores), dtype='float32')
        keep = paddle.where(cate_scores >= self.update_threshold, cate_scores,
                            y)
        keep = paddle.nonzero(keep)
        keep = paddle.squeeze(keep, axis=[1])
        # Prevent empty and increase fake data
        keep = paddle.concat(
            [keep, paddle.cast(paddle.shape(cate_scores)[0] - 1, 'int64')])

        seg_preds = paddle.gather(seg_preds, index=keep)
        cate_scores = paddle.gather(cate_scores, index=keep)
        cate_labels = paddle.gather(cate_labels, index=keep)

        # sort and keep top_k
        sort_inds = self._sort_score(cate_scores, self.post_nms_top_n)
        seg_preds = paddle.gather(seg_preds, index=sort_inds)
        cate_scores = paddle.gather(cate_scores, index=sort_inds)
        cate_labels = paddle.gather(cate_labels, index=sort_inds)
        return seg_preds, cate_scores, cate_labels