Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
f239d898
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
f239d898
编写于
4月 12, 2021
作者:
W
wangxinxin08
提交者:
GitHub
4月 12, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add senet (#2553)
* add senet * add annotations according to review
上级
7b8c9eab
变更
12
隐藏空白更改
内联
并排
Showing
12 changed file
with
287 addition
and
138 deletion
+287
-138
configs/dcn/cascade_rcnn_dcn_x101_vd_64x4d_fpn_1x_coco.yml
configs/dcn/cascade_rcnn_dcn_x101_vd_64x4d_fpn_1x_coco.yml
+0
-1
configs/dcn/faster_rcnn_dcn_x101_vd_64x4d_fpn_1x_coco.yml
configs/dcn/faster_rcnn_dcn_x101_vd_64x4d_fpn_1x_coco.yml
+0
-1
configs/dcn/mask_rcnn_dcn_x101_vd_64x4d_fpn_1x_coco.yml
configs/dcn/mask_rcnn_dcn_x101_vd_64x4d_fpn_1x_coco.yml
+0
-1
configs/faster_rcnn/faster_rcnn_x101_vd_64x4d_fpn_1x_coco.yml
...igs/faster_rcnn/faster_rcnn_x101_vd_64x4d_fpn_1x_coco.yml
+0
-1
configs/faster_rcnn/faster_rcnn_x101_vd_64x4d_fpn_2x_coco.yml
...igs/faster_rcnn/faster_rcnn_x101_vd_64x4d_fpn_2x_coco.yml
+0
-1
configs/mask_rcnn/mask_rcnn_x101_vd_64x4d_fpn_1x_coco.yml
configs/mask_rcnn/mask_rcnn_x101_vd_64x4d_fpn_1x_coco.yml
+0
-1
configs/mask_rcnn/mask_rcnn_x101_vd_64x4d_fpn_2x_coco.yml
configs/mask_rcnn/mask_rcnn_x101_vd_64x4d_fpn_2x_coco.yml
+0
-1
ppdet/modeling/backbones/__init__.py
ppdet/modeling/backbones/__init__.py
+2
-0
ppdet/modeling/backbones/resnet.py
ppdet/modeling/backbones/resnet.py
+140
-118
ppdet/modeling/backbones/senet.py
ppdet/modeling/backbones/senet.py
+140
-0
ppdet/modeling/layers.py
ppdet/modeling/layers.py
+4
-11
ppdet/modeling/necks/ttf_fpn.py
ppdet/modeling/necks/ttf_fpn.py
+1
-2
未找到文件。
configs/dcn/cascade_rcnn_dcn_x101_vd_64x4d_fpn_1x_coco.yml
浏览文件 @
f239d898
...
...
@@ -8,7 +8,6 @@ ResNet:
depth
:
101
groups
:
64
base_width
:
4
base_channels
:
64
variant
:
d
norm_type
:
bn
freeze_at
:
0
...
...
configs/dcn/faster_rcnn_dcn_x101_vd_64x4d_fpn_1x_coco.yml
浏览文件 @
f239d898
...
...
@@ -9,7 +9,6 @@ ResNet:
depth
:
101
groups
:
64
base_width
:
4
base_channels
:
64
variant
:
d
norm_type
:
bn
freeze_at
:
0
...
...
configs/dcn/mask_rcnn_dcn_x101_vd_64x4d_fpn_1x_coco.yml
浏览文件 @
f239d898
...
...
@@ -10,7 +10,6 @@ ResNet:
variant
:
d
groups
:
64
base_width
:
4
base_channels
:
64
norm_type
:
bn
freeze_at
:
0
return_idx
:
[
0
,
1
,
2
,
3
]
...
...
configs/faster_rcnn/faster_rcnn_x101_vd_64x4d_fpn_1x_coco.yml
浏览文件 @
f239d898
...
...
@@ -10,7 +10,6 @@ ResNet:
depth
:
101
groups
:
64
base_width
:
4
base_channels
:
64
variant
:
d
norm_type
:
bn
freeze_at
:
0
...
...
configs/faster_rcnn/faster_rcnn_x101_vd_64x4d_fpn_2x_coco.yml
浏览文件 @
f239d898
...
...
@@ -10,7 +10,6 @@ ResNet:
depth
:
101
groups
:
64
base_width
:
4
base_channels
:
64
variant
:
d
norm_type
:
bn
freeze_at
:
0
...
...
configs/mask_rcnn/mask_rcnn_x101_vd_64x4d_fpn_1x_coco.yml
浏览文件 @
f239d898
...
...
@@ -11,7 +11,6 @@ ResNet:
variant
:
d
groups
:
64
base_width
:
4
base_channels
:
64
norm_type
:
bn
freeze_at
:
0
return_idx
:
[
0
,
1
,
2
,
3
]
...
...
configs/mask_rcnn/mask_rcnn_x101_vd_64x4d_fpn_2x_coco.yml
浏览文件 @
f239d898
...
...
@@ -11,7 +11,6 @@ ResNet:
variant
:
d
groups
:
64
base_width
:
4
base_channels
:
64
norm_type
:
bn
freeze_at
:
0
return_idx
:
[
0
,
1
,
2
,
3
]
...
...
ppdet/modeling/backbones/__init__.py
浏览文件 @
f239d898
...
...
@@ -20,6 +20,7 @@ from . import mobilenet_v3
from
.
import
hrnet
from
.
import
blazenet
from
.
import
ghostnet
from
.
import
senet
from
.vgg
import
*
from
.resnet
import
*
...
...
@@ -29,3 +30,4 @@ from .mobilenet_v3 import *
from
.hrnet
import
*
from
.blazenet
import
*
from
.ghostnet
import
*
from
.senet
import
*
ppdet/modeling/backbones/resnet.py
浏览文件 @
f239d898
...
...
@@ -20,11 +20,12 @@ import paddle.nn as nn
import
paddle.nn.functional
as
F
from
ppdet.core.workspace
import
register
,
serializable
from
paddle.regularizer
import
L2Decay
from
paddle.nn.initializer
import
Uniform
from
ppdet.modeling.layers
import
DeformableConvV2
from
.name_adapter
import
NameAdapter
from
..shape_spec
import
ShapeSpec
__all__
=
[
'ResNet'
,
'Res5Head'
]
__all__
=
[
'ResNet'
,
'Res5Head'
,
'Blocks'
,
'BasicBlock'
,
'BottleNeck'
]
ResNet_cfg
=
{
18
:
[
2
,
2
,
2
,
2
],
...
...
@@ -41,15 +42,13 @@ class ConvNormLayer(nn.Layer):
ch_out
,
filter_size
,
stride
,
name_adapter
,
groups
=
1
,
act
=
None
,
norm_type
=
'bn'
,
norm_decay
=
0.
,
freeze_norm
=
True
,
lr
=
1.0
,
dcn_v2
=
False
,
name
=
None
):
dcn_v2
=
False
):
super
(
ConvNormLayer
,
self
).
__init__
()
assert
norm_type
in
[
'bn'
,
'sync_bn'
]
self
.
norm_type
=
norm_type
...
...
@@ -63,8 +62,7 @@ class ConvNormLayer(nn.Layer):
stride
=
stride
,
padding
=
(
filter_size
-
1
)
//
2
,
groups
=
groups
,
weight_attr
=
paddle
.
ParamAttr
(
learning_rate
=
lr
,
),
weight_attr
=
paddle
.
ParamAttr
(
learning_rate
=
lr
),
bias_attr
=
False
)
else
:
self
.
conv
=
DeformableConvV2
(
...
...
@@ -74,12 +72,9 @@ class ConvNormLayer(nn.Layer):
stride
=
stride
,
padding
=
(
filter_size
-
1
)
//
2
,
groups
=
groups
,
weight_attr
=
paddle
.
ParamAttr
(
learning_rate
=
lr
,
),
bias_attr
=
False
,
name
=
name
)
weight_attr
=
paddle
.
ParamAttr
(
learning_rate
=
lr
),
bias_attr
=
False
)
bn_name
=
name_adapter
.
fix_conv_norm_name
(
name
)
norm_lr
=
0.
if
freeze_norm
else
lr
param_attr
=
paddle
.
ParamAttr
(
learning_rate
=
norm_lr
,
...
...
@@ -116,24 +111,58 @@ class ConvNormLayer(nn.Layer):
return
out
class
SELayer
(
nn
.
Layer
):
def
__init__
(
self
,
ch
,
reduction_ratio
=
16
):
super
(
SELayer
,
self
).
__init__
()
self
.
pool
=
nn
.
AdaptiveAvgPool2D
(
1
)
stdv
=
1.0
/
math
.
sqrt
(
ch
)
c_
=
ch
//
reduction_ratio
self
.
squeeze
=
nn
.
Linear
(
ch
,
c_
,
weight_attr
=
paddle
.
ParamAttr
(
initializer
=
Uniform
(
-
stdv
,
stdv
)),
bias_attr
=
True
)
stdv
=
1.0
/
math
.
sqrt
(
c_
)
self
.
extract
=
nn
.
Linear
(
c_
,
ch
,
weight_attr
=
paddle
.
ParamAttr
(
initializer
=
Uniform
(
-
stdv
,
stdv
)),
bias_attr
=
True
)
def
forward
(
self
,
inputs
):
out
=
self
.
pool
(
inputs
)
out
=
paddle
.
squeeze
(
out
,
axis
=
[
2
,
3
])
out
=
self
.
squeeze
(
out
)
out
=
F
.
relu
(
out
)
out
=
self
.
extract
(
out
)
out
=
F
.
sigmoid
(
out
)
out
=
paddle
.
unsqueeze
(
out
,
axis
=
[
2
,
3
])
scale
=
out
*
inputs
return
scale
class
BasicBlock
(
nn
.
Layer
):
expansion
=
1
def
__init__
(
self
,
ch_in
,
ch_out
,
stride
,
shortcut
,
name_adapter
,
name
,
variant
=
'b'
,
groups
=
1
,
base_width
=
64
,
lr
=
1.0
,
norm_type
=
'bn'
,
norm_decay
=
0.
,
freeze_norm
=
True
,
dcn_v2
=
False
):
dcn_v2
=
False
,
std_senet
=
False
):
super
(
BasicBlock
,
self
).
__init__
()
assert
dcn_v2
is
False
,
"Not implemented yet."
conv_name1
,
conv_name2
,
shortcut_name
=
name_adapter
.
fix_basicblock_name
(
name
)
assert
groups
==
1
and
base_width
==
64
,
'BasicBlock only supports groups=1 and base_width=64'
self
.
shortcut
=
shortcut
if
not
shortcut
:
...
...
@@ -150,54 +179,52 @@ class BasicBlock(nn.Layer):
ch_out
=
ch_out
,
filter_size
=
1
,
stride
=
1
,
name_adapter
=
name_adapter
,
norm_type
=
norm_type
,
norm_decay
=
norm_decay
,
freeze_norm
=
freeze_norm
,
lr
=
lr
,
name
=
shortcut_name
))
lr
=
lr
))
else
:
self
.
short
=
ConvNormLayer
(
ch_in
=
ch_in
,
ch_out
=
ch_out
,
filter_size
=
1
,
stride
=
stride
,
name_adapter
=
name_adapter
,
norm_type
=
norm_type
,
norm_decay
=
norm_decay
,
freeze_norm
=
freeze_norm
,
lr
=
lr
,
name
=
shortcut_name
)
lr
=
lr
)
self
.
branch2a
=
ConvNormLayer
(
ch_in
=
ch_in
,
ch_out
=
ch_out
,
filter_size
=
3
,
stride
=
stride
,
name_adapter
=
name_adapter
,
act
=
'relu'
,
norm_type
=
norm_type
,
norm_decay
=
norm_decay
,
freeze_norm
=
freeze_norm
,
lr
=
lr
,
name
=
conv_name1
)
lr
=
lr
)
self
.
branch2b
=
ConvNormLayer
(
ch_in
=
ch_out
,
ch_out
=
ch_out
,
filter_size
=
3
,
stride
=
1
,
name_adapter
=
name_adapter
,
act
=
None
,
norm_type
=
norm_type
,
norm_decay
=
norm_decay
,
freeze_norm
=
freeze_norm
,
lr
=
lr
,
name
=
conv_name2
)
lr
=
lr
)
self
.
std_senet
=
std_senet
if
self
.
std_senet
:
self
.
se
=
SELayer
(
ch_out
)
def
forward
(
self
,
inputs
):
out
=
self
.
branch2a
(
inputs
)
out
=
self
.
branch2b
(
out
)
if
self
.
std_senet
:
out
=
self
.
se
(
out
)
if
self
.
shortcut
:
short
=
inputs
...
...
@@ -211,22 +238,23 @@ class BasicBlock(nn.Layer):
class
BottleNeck
(
nn
.
Layer
):
expansion
=
4
def
__init__
(
self
,
ch_in
,
ch_out
,
stride
,
shortcut
,
name_adapter
,
name
,
variant
=
'b'
,
groups
=
1
,
base_width
=
4
,
base_channels
=
64
,
lr
=
1.0
,
norm_type
=
'bn'
,
norm_decay
=
0.
,
freeze_norm
=
True
,
dcn_v2
=
False
):
dcn_v2
=
False
,
std_senet
=
False
):
super
(
BottleNeck
,
self
).
__init__
()
if
variant
==
'a'
:
stride1
,
stride2
=
stride
,
1
...
...
@@ -234,15 +262,7 @@ class BottleNeck(nn.Layer):
stride1
,
stride2
=
1
,
stride
# ResNeXt
if
groups
==
1
:
width
=
ch_out
else
:
width
=
int
(
math
.
floor
(
ch_out
*
(
base_width
*
1.0
/
base_channels
))
*
groups
)
conv_name1
,
conv_name2
,
conv_name3
,
\
shortcut_name
=
name_adapter
.
fix_bottleneck_name
(
name
)
width
=
int
(
ch_out
*
(
base_width
/
64.
))
*
groups
self
.
shortcut
=
shortcut
if
not
shortcut
:
...
...
@@ -256,75 +276,73 @@ class BottleNeck(nn.Layer):
'conv'
,
ConvNormLayer
(
ch_in
=
ch_in
,
ch_out
=
ch_out
*
4
,
ch_out
=
ch_out
*
self
.
expansion
,
filter_size
=
1
,
stride
=
1
,
name_adapter
=
name_adapter
,
norm_type
=
norm_type
,
norm_decay
=
norm_decay
,
freeze_norm
=
freeze_norm
,
lr
=
lr
,
name
=
shortcut_name
))
lr
=
lr
))
else
:
self
.
short
=
ConvNormLayer
(
ch_in
=
ch_in
,
ch_out
=
ch_out
*
4
,
ch_out
=
ch_out
*
self
.
expansion
,
filter_size
=
1
,
stride
=
stride
,
name_adapter
=
name_adapter
,
norm_type
=
norm_type
,
norm_decay
=
norm_decay
,
freeze_norm
=
freeze_norm
,
lr
=
lr
,
name
=
shortcut_name
)
lr
=
lr
)
self
.
branch2a
=
ConvNormLayer
(
ch_in
=
ch_in
,
ch_out
=
width
,
filter_size
=
1
,
stride
=
stride1
,
name_adapter
=
name_adapter
,
groups
=
1
,
act
=
'relu'
,
norm_type
=
norm_type
,
norm_decay
=
norm_decay
,
freeze_norm
=
freeze_norm
,
lr
=
lr
,
name
=
conv_name1
)
lr
=
lr
)
self
.
branch2b
=
ConvNormLayer
(
ch_in
=
width
,
ch_out
=
width
,
filter_size
=
3
,
stride
=
stride2
,
name_adapter
=
name_adapter
,
groups
=
groups
,
act
=
'relu'
,
norm_type
=
norm_type
,
norm_decay
=
norm_decay
,
freeze_norm
=
freeze_norm
,
lr
=
lr
,
dcn_v2
=
dcn_v2
,
name
=
conv_name2
)
dcn_v2
=
dcn_v2
)
self
.
branch2c
=
ConvNormLayer
(
ch_in
=
width
,
ch_out
=
ch_out
*
4
,
ch_out
=
ch_out
*
self
.
expansion
,
filter_size
=
1
,
stride
=
1
,
name_adapter
=
name_adapter
,
groups
=
1
,
norm_type
=
norm_type
,
norm_decay
=
norm_decay
,
freeze_norm
=
freeze_norm
,
lr
=
lr
,
name
=
conv_name3
)
lr
=
lr
)
self
.
std_senet
=
std_senet
if
self
.
std_senet
:
self
.
se
=
SELayer
(
ch_out
*
self
.
expansion
)
def
forward
(
self
,
inputs
):
out
=
self
.
branch2a
(
inputs
)
out
=
self
.
branch2b
(
out
)
out
=
self
.
branch2c
(
out
)
if
self
.
std_senet
:
out
=
self
.
se
(
out
)
if
self
.
shortcut
:
short
=
inputs
else
:
...
...
@@ -338,7 +356,7 @@ class BottleNeck(nn.Layer):
class
Blocks
(
nn
.
Layer
):
def
__init__
(
self
,
depth
,
block
,
ch_in
,
ch_out
,
count
,
...
...
@@ -346,55 +364,37 @@ class Blocks(nn.Layer):
stage_num
,
variant
=
'b'
,
groups
=
1
,
base_width
=-
1
,
base_channels
=-
1
,
base_width
=
64
,
lr
=
1.0
,
norm_type
=
'bn'
,
norm_decay
=
0.
,
freeze_norm
=
True
,
dcn_v2
=
False
):
dcn_v2
=
False
,
std_senet
=
False
):
super
(
Blocks
,
self
).
__init__
()
self
.
blocks
=
[]
for
i
in
range
(
count
):
conv_name
=
name_adapter
.
fix_layer_warp_name
(
stage_num
,
count
,
i
)
if
depth
>=
50
:
block
=
self
.
add_sublayer
(
conv_name
,
BottleNeck
(
ch_in
=
ch_in
if
i
==
0
else
ch_out
*
4
,
ch_out
=
ch_out
,
stride
=
2
if
i
==
0
and
stage_num
!=
2
else
1
,
shortcut
=
False
if
i
==
0
else
True
,
name_adapter
=
name_adapter
,
name
=
conv_name
,
variant
=
variant
,
groups
=
groups
,
base_width
=
base_width
,
base_channels
=
base_channels
,
lr
=
lr
,
norm_type
=
norm_type
,
norm_decay
=
norm_decay
,
freeze_norm
=
freeze_norm
,
dcn_v2
=
dcn_v2
))
else
:
ch_in
=
ch_in
//
4
if
i
>
0
else
ch_in
block
=
self
.
add_sublayer
(
conv_name
,
BasicBlock
(
ch_in
=
ch_in
if
i
==
0
else
ch_out
,
ch_out
=
ch_out
,
stride
=
2
if
i
==
0
and
stage_num
!=
2
else
1
,
shortcut
=
False
if
i
==
0
else
True
,
name_adapter
=
name_adapter
,
name
=
conv_name
,
variant
=
variant
,
lr
=
lr
,
norm_type
=
norm_type
,
norm_decay
=
norm_decay
,
freeze_norm
=
freeze_norm
,
dcn_v2
=
dcn_v2
))
self
.
blocks
.
append
(
block
)
layer
=
self
.
add_sublayer
(
conv_name
,
block
(
ch_in
=
ch_in
,
ch_out
=
ch_out
,
stride
=
2
if
i
==
0
and
stage_num
!=
2
else
1
,
shortcut
=
False
if
i
==
0
else
True
,
variant
=
variant
,
groups
=
groups
,
base_width
=
base_width
,
lr
=
lr
,
norm_type
=
norm_type
,
norm_decay
=
norm_decay
,
freeze_norm
=
freeze_norm
,
dcn_v2
=
dcn_v2
,
std_senet
=
std_senet
))
self
.
blocks
.
append
(
layer
)
if
i
==
0
:
ch_in
=
ch_out
*
block
.
expansion
def
forward
(
self
,
inputs
):
block_out
=
inputs
...
...
@@ -410,23 +410,47 @@ class ResNet(nn.Layer):
def
__init__
(
self
,
depth
=
50
,
ch_in
=
64
,
variant
=
'b'
,
lr_mult_list
=
[
1.0
,
1.0
,
1.0
,
1.0
],
groups
=
1
,
base_width
=-
1
,
base_channels
=-
1
,
base_width
=
64
,
norm_type
=
'bn'
,
norm_decay
=
0
,
freeze_norm
=
True
,
freeze_at
=
0
,
return_idx
=
[
0
,
1
,
2
,
3
],
dcn_v2_stages
=
[
-
1
],
num_stages
=
4
):
num_stages
=
4
,
std_senet
=
False
):
"""
Residual Network, see https://arxiv.org/abs/1512.03385
Args:
depth (int): ResNet depth, should be 18, 34, 50, 101, 152.
ch_in (int): output channel of first stage, default 64
variant (str): ResNet variant, supports 'a', 'b', 'c', 'd' currently
lr_mult_list (list): learning rate ratio of different resnet stages(2,3,4,5),
lower learning rate ratio is need for pretrained model
got using distillation(default as [1.0, 1.0, 1.0, 1.0]).
groups (int): group convolution cardinality
base_width (int): base width of each group convolution
norm_type (str): normalization type, 'bn', 'sync_bn' or 'affine_channel'
norm_decay (float): weight decay for normalization layer weights
freeze_norm (bool): freeze normalization layers
freeze_at (int): freeze the backbone at which stage
return_idx (list): index of the stages whose feature maps are returned
dcn_v2_stages (list): index of stages who select deformable conv v2
num_stages (int): total num of stages
std_senet (bool): whether use senet, default True
"""
super
(
ResNet
,
self
).
__init__
()
self
.
_model_type
=
'ResNet'
if
groups
==
1
else
'ResNeXt'
assert
num_stages
>=
1
and
num_stages
<=
4
self
.
depth
=
depth
self
.
variant
=
variant
self
.
groups
=
groups
self
.
base_width
=
base_width
self
.
norm_type
=
norm_type
self
.
norm_decay
=
norm_decay
self
.
freeze_norm
=
freeze_norm
...
...
@@ -456,12 +480,12 @@ class ResNet(nn.Layer):
conv1_name
=
na
.
fix_c1_stage_name
()
if
variant
in
[
'c'
,
'd'
]:
conv_def
=
[
[
3
,
3
2
,
3
,
2
,
"conv1_1"
],
[
32
,
3
2
,
3
,
1
,
"conv1_2"
],
[
32
,
64
,
3
,
1
,
"conv1_3"
],
[
3
,
ch_in
//
2
,
3
,
2
,
"conv1_1"
],
[
ch_in
//
2
,
ch_in
//
2
,
3
,
1
,
"conv1_2"
],
[
ch_in
//
2
,
ch_in
,
3
,
1
,
"conv1_3"
],
]
else
:
conv_def
=
[[
3
,
64
,
7
,
2
,
conv1_name
]]
conv_def
=
[[
3
,
ch_in
,
7
,
2
,
conv1_name
]]
self
.
conv1
=
nn
.
Sequential
()
for
(
c_in
,
c_out
,
k
,
s
,
_name
)
in
conv_def
:
self
.
conv1
.
add_sublayer
(
...
...
@@ -471,20 +495,18 @@ class ResNet(nn.Layer):
ch_out
=
c_out
,
filter_size
=
k
,
stride
=
s
,
name_adapter
=
na
,
groups
=
1
,
act
=
'relu'
,
norm_type
=
norm_type
,
norm_decay
=
norm_decay
,
freeze_norm
=
freeze_norm
,
lr
=
1.0
,
name
=
_name
))
lr
=
1.0
))
ch_in_list
=
[
64
,
256
,
512
,
1024
]
self
.
ch_in
=
ch_in
ch_out_list
=
[
64
,
128
,
256
,
512
]
self
.
expansion
=
4
if
depth
>=
50
else
1
block
=
BottleNeck
if
depth
>=
50
else
BasicBlock
self
.
_out_channels
=
[
self
.
expansion
*
v
for
v
in
ch_out_list
]
self
.
_out_channels
=
[
block
.
expansion
*
v
for
v
in
ch_out_list
]
self
.
_out_strides
=
[
4
,
8
,
16
,
32
]
self
.
res_layers
=
[]
...
...
@@ -495,9 +517,8 @@ class ResNet(nn.Layer):
res_layer
=
self
.
add_sublayer
(
res_name
,
Blocks
(
depth
,
ch_in_list
[
i
]
//
4
if
i
>
0
and
depth
<
50
else
ch_in_list
[
i
],
block
,
self
.
ch_in
,
ch_out_list
[
i
],
count
=
block_nums
[
i
],
name_adapter
=
na
,
...
...
@@ -505,13 +526,14 @@ class ResNet(nn.Layer):
variant
=
variant
,
groups
=
groups
,
base_width
=
base_width
,
base_channels
=
base_channels
,
lr
=
lr_mult
,
norm_type
=
norm_type
,
norm_decay
=
norm_decay
,
freeze_norm
=
freeze_norm
,
dcn_v2
=
(
i
in
self
.
dcn_v2_stages
)))
dcn_v2
=
(
i
in
self
.
dcn_v2_stages
),
std_senet
=
std_senet
))
self
.
res_layers
.
append
(
res_layer
)
self
.
ch_in
=
self
.
_out_channels
[
i
]
@
property
def
out_shape
(
self
):
...
...
ppdet/modeling/backbones/senet.py
0 → 100644
浏览文件 @
f239d898
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
paddle
import
paddle.nn
as
nn
import
paddle.nn.functional
as
F
from
ppdet.core.workspace
import
register
,
serializable
from
.resnet
import
ResNet
,
Blocks
,
BasicBlock
,
BottleNeck
__all__
=
[
'SENet'
,
'SERes5Head'
]
@
register
@
serializable
class
SENet
(
ResNet
):
__shared__
=
[
'norm_type'
]
def
__init__
(
self
,
depth
=
50
,
variant
=
'b'
,
lr_mult_list
=
[
1.0
,
1.0
,
1.0
,
1.0
],
groups
=
1
,
base_width
=
64
,
norm_type
=
'bn'
,
norm_decay
=
0
,
freeze_norm
=
True
,
freeze_at
=
0
,
return_idx
=
[
0
,
1
,
2
,
3
],
dcn_v2_stages
=
[
-
1
],
std_senet
=
True
,
num_stages
=
4
):
"""
Squeeze-and-Excitation Networks, see https://arxiv.org/abs/1709.01507
Args:
depth (int): SENet depth, should be 50, 101, 152
variant (str): ResNet variant, supports 'a', 'b', 'c', 'd' currently
lr_mult_list (list): learning rate ratio of different resnet stages(2,3,4,5),
lower learning rate ratio is need for pretrained model
got using distillation(default as [1.0, 1.0, 1.0, 1.0]).
groups (int): group convolution cardinality
base_width (int): base width of each group convolution
norm_type (str): normalization type, 'bn', 'sync_bn' or 'affine_channel'
norm_decay (float): weight decay for normalization layer weights
freeze_norm (bool): freeze normalization layers
freeze_at (int): freeze the backbone at which stage
return_idx (list): index of the stages whose feature maps are returned
dcn_v2_stages (list): index of stages who select deformable conv v2
std_senet (bool): whether use senet, default True
num_stages (int): total num of stages
"""
super
(
SENet
,
self
).
__init__
(
depth
=
depth
,
variant
=
variant
,
lr_mult_list
=
lr_mult_list
,
ch_in
=
128
,
groups
=
groups
,
base_width
=
base_width
,
norm_type
=
norm_type
,
norm_decay
=
norm_decay
,
freeze_norm
=
freeze_norm
,
freeze_at
=
freeze_at
,
return_idx
=
return_idx
,
dcn_v2_stages
=
dcn_v2_stages
,
std_senet
=
std_senet
,
num_stages
=
num_stages
)
@
register
class
SERes5Head
(
nn
.
Layer
):
def
__init__
(
self
,
depth
=
50
,
variant
=
'b'
,
lr_mult
=
1.0
,
groups
=
1
,
base_width
=
64
,
norm_type
=
'bn'
,
norm_decay
=
0
,
dcn_v2
=
False
,
freeze_norm
=
False
,
std_senet
=
True
):
"""
SERes5Head layer
Args:
depth (int): SENet depth, should be 50, 101, 152
variant (str): ResNet variant, supports 'a', 'b', 'c', 'd' currently
lr_mult (list): learning rate ratio of SERes5Head, default as 1.0.
groups (int): group convolution cardinality
base_width (int): base width of each group convolution
norm_type (str): normalization type, 'bn', 'sync_bn' or 'affine_channel'
norm_decay (float): weight decay for normalization layer weights
dcn_v2_stages (list): index of stages who select deformable conv v2
std_senet (bool): whether use senet, default True
"""
super
(
SERes5Head
,
self
).
__init__
()
ch_out
=
512
ch_in
=
256
if
depth
<
50
else
1024
na
=
NameAdapter
(
self
)
block
=
BottleNeck
if
depth
>=
50
else
BasicBlock
self
.
res5
=
Blocks
(
block
,
ch_in
,
ch_out
,
count
=
3
,
name_adapter
=
na
,
stage_num
=
5
,
variant
=
variant
,
groups
=
groups
,
base_width
=
base_width
,
lr
=
lr_mult
,
norm_type
=
norm_type
,
norm_decay
=
norm_decay
,
freeze_norm
=
freeze_norm
,
dcn_v2
=
dcn_v2
,
std_senet
=
std_senet
)
self
.
ch_out
=
ch_out
*
block
.
expansion
@
property
def
out_shape
(
self
):
return
[
ShapeSpec
(
channels
=
self
.
ch_out
,
stride
=
16
,
)]
def
forward
(
self
,
roi_feat
):
y
=
self
.
res5
(
roi_feat
)
return
y
ppdet/modeling/layers.py
浏览文件 @
f239d898
...
...
@@ -52,31 +52,25 @@ class DeformableConvV2(nn.Layer):
bias_attr
=
None
,
lr_scale
=
1
,
regularizer
=
None
,
skip_quant
=
False
,
name
=
None
):
skip_quant
=
False
):
super
(
DeformableConvV2
,
self
).
__init__
()
self
.
offset_channel
=
2
*
kernel_size
**
2
self
.
mask_channel
=
kernel_size
**
2
if
lr_scale
==
1
and
regularizer
is
None
:
offset_bias_attr
=
ParamAttr
(
initializer
=
Constant
(
0.
),
name
=
'{}._conv_offset.bias'
.
format
(
name
))
offset_bias_attr
=
ParamAttr
(
initializer
=
Constant
(
0.
))
else
:
offset_bias_attr
=
ParamAttr
(
initializer
=
Constant
(
0.
),
learning_rate
=
lr_scale
,
regularizer
=
regularizer
,
name
=
'{}._conv_offset.bias'
.
format
(
name
))
regularizer
=
regularizer
)
self
.
conv_offset
=
nn
.
Conv2D
(
in_channels
,
3
*
kernel_size
**
2
,
kernel_size
,
stride
=
stride
,
padding
=
(
kernel_size
-
1
)
//
2
,
weight_attr
=
ParamAttr
(
initializer
=
Constant
(
0.0
),
name
=
'{}._conv_offset.weight'
.
format
(
name
)),
weight_attr
=
ParamAttr
(
initializer
=
Constant
(
0.0
)),
bias_attr
=
offset_bias_attr
)
if
skip_quant
:
self
.
conv_offset
.
skip_quant
=
True
...
...
@@ -84,7 +78,6 @@ class DeformableConvV2(nn.Layer):
if
bias_attr
:
# in FCOS-DCN head, specifically need learning_rate and regularizer
dcn_bias_attr
=
ParamAttr
(
name
=
name
+
"_bias"
,
initializer
=
Constant
(
value
=
0
),
regularizer
=
L2Decay
(
0.
),
learning_rate
=
2.
)
...
...
ppdet/modeling/necks/ttf_fpn.py
浏览文件 @
f239d898
...
...
@@ -43,8 +43,7 @@ class Upsample(nn.Layer):
regularizer
=
L2Decay
(
0.
),
learning_rate
=
2.
),
lr_scale
=
2.
,
regularizer
=
L2Decay
(
0.
),
name
=
name
)
regularizer
=
L2Decay
(
0.
))
self
.
bn
=
batch_norm
(
ch_out
,
norm_type
=
'bn'
,
initializer
=
Constant
(
1.
),
name
=
name
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录