flowers.py 7.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This module will download dataset from
16
http://www.robots.ox.ac.uk/~vgg/data/flowers/102/index.html
17 18
and parse train/test set intopaddle reader creators.

19
This set contains images of flowers belonging to 102 different categories.
20 21 22 23 24 25
The images were acquired by searching the web and taking pictures. There are a
minimum of 40 images for each category.

The database was used in:

Nilsback, M-E. and Zisserman, A. Automated flower classification over a large
26 27
 number of classes.Proceedings of the Indian Conference on Computer Vision,
Graphics and Image Processing (2008)
28 29 30
http://www.robots.ox.ac.uk/~vgg/publications/papers/nilsback08.{pdf,ps.gz}.

"""
31 32 33

from __future__ import print_function

34
import itertools
35
import functools
36
from .common import download
37 38
import tarfile
import scipy.io as scio
39 40
from paddle.dataset.image import *
from paddle.reader import *
M
minqiyang 已提交
41
from paddle import compat as cpt
42 43
import os
import numpy as np
44
from multiprocessing import cpu_count
M
minqiyang 已提交
45
import six
46
from six.moves import cPickle as pickle
47 48
__all__ = ['train', 'test', 'valid']

T
tianshuo78520a 已提交
49 50 51
DATA_URL = 'http://paddlemodels.bj.bcebos.com/flowers/102flowers.tgz'
LABEL_URL = 'http://paddlemodels.bj.bcebos.com/flowers/imagelabels.mat'
SETID_URL = 'http://paddlemodels.bj.bcebos.com/flowers/setid.mat'
M
minqiyang 已提交
52
DATA_MD5 = '52808999861908f626f3c1f4e79d11fa'
53 54
LABEL_MD5 = 'e0620be6f572b9609742df49c70aed4d'
SETID_MD5 = 'a5357ecc9cb78c4bef273ce3793fc85c'
W
wanghaoshuang 已提交
55 56 57 58 59 60
# In official 'readme', tstid is the flag of test data
# and trnid is the flag of train data. But test data is more than train data.
# So we exchange the train data and test data.
TRAIN_FLAG = 'tstid'
TEST_FLAG = 'trnid'
VALID_FLAG = 'valid'
61 62


63
def default_mapper(is_train, sample):
64 65 66 67
    '''
    map image bytes data to type needed by model input layer
    '''
    img, label = sample
68
    img = load_image_bytes(img)
D
dangqingqing 已提交
69
    img = simple_transform(
D
dangqingqing 已提交
70
        img, 256, 224, is_train, mean=[103.94, 116.78, 123.68])
71 72 73
    return img.flatten().astype('float32'), label


74 75 76 77
train_mapper = functools.partial(default_mapper, True)
test_mapper = functools.partial(default_mapper, False)


78 79 80
def reader_creator(data_file,
                   label_file,
                   setid_file,
81
                   dataset_name,
82
                   mapper,
83
                   buffered_size=1024,
84 85
                   use_xmap=True,
                   cycle=False):
86
    '''
87
    1. read images from tar file and
88 89
        merge images into batch files in 102flowers.tgz_batch/
    2. get a reader to read sample from batch file
90 91

    :param data_file: downloaded data file
92
    :type data_file: string
93
    :param label_file: downloaded label file
94 95 96 97
    :type label_file: string
    :param setid_file: downloaded setid file containing information
                        about how to split dataset
    :type setid_file: string
98 99
    :param dataset_name: data set name (tstid|trnid|valid)
    :type dataset_name: string
100
    :param mapper: a function to map image bytes data to type
101 102
                    needed by model input layer
    :type mapper: callable
103 104
    :param buffered_size: the size of buffer used to process images
    :type buffered_size: int
105 106
    :param cycle: whether to cycle through the dataset
    :type cycle: bool
107 108 109
    :return: data reader
    :rtype: callable
    '''
110 111 112 113 114 115 116
    labels = scio.loadmat(label_file)['labels'][0]
    indexes = scio.loadmat(setid_file)[dataset_name][0]
    img2label = {}
    for i in indexes:
        img = "jpg/image_%05d.jpg" % i
        img2label[img] = labels[i - 1]
    file_list = batch_images_from_tar(data_file, dataset_name, img2label)
117 118

    def reader():
119 120 121 122
        while True:
            for file in open(file_list):
                file = file.strip()
                batch = None
123
                with open(file, 'rb') as f:
M
minqiyang 已提交
124 125 126 127
                    if six.PY2:
                        batch = pickle.load(f)
                    else:
                        batch = pickle.load(f, encoding='bytes')
M
minqiyang 已提交
128
                if six.PY3:
M
minqiyang 已提交
129 130 131
                    batch = cpt.to_text(batch)
                data = batch['data']
                labels = batch['label']
M
minqiyang 已提交
132
                for sample, label in six.moves.zip(data, batch['label']):
133 134 135
                    yield sample, int(label) - 1
            if not cycle:
                break
136

W
wanghaoshuang 已提交
137
    if use_xmap:
C
chengduoZH 已提交
138 139
        cpu_num = int(os.environ.get('CPU_NUM', cpu_count()))
        return xmap_readers(mapper, reader, cpu_num, buffered_size)
140 141
    else:
        return map_readers(mapper, reader)
142 143


144
def train(mapper=train_mapper, buffered_size=1024, use_xmap=True, cycle=False):
145
    '''
146 147 148
    Create flowers training set reader.
    It returns a reader, each sample in the reader is
    image pixels in [0, 1] and label in [1, 102]
149 150 151 152 153 154
    translated from original color image by steps:
    1. resize to 256*256
    2. random crop to 224*224
    3. flatten
    :param mapper:  a function to map sample.
    :type mapper: callable
155 156
    :param buffered_size: the size of buffer used to process images
    :type buffered_size: int
157 158
    :param cycle: whether to cycle through the dataset
    :type cycle: bool
159 160 161 162 163 164
    :return: train data reader
    :rtype: callable
    '''
    return reader_creator(
        download(DATA_URL, 'flowers', DATA_MD5),
        download(LABEL_URL, 'flowers', LABEL_MD5),
165 166 167 168 169 170
        download(SETID_URL, 'flowers', SETID_MD5),
        TRAIN_FLAG,
        mapper,
        buffered_size,
        use_xmap,
        cycle=cycle)
171 172


173
def test(mapper=test_mapper, buffered_size=1024, use_xmap=True, cycle=False):
174
    '''
175 176 177
    Create flowers test set reader.
    It returns a reader, each sample in the reader is
    image pixels in [0, 1] and label in [1, 102]
178 179 180 181 182 183
    translated from original color image by steps:
    1. resize to 256*256
    2. random crop to 224*224
    3. flatten
    :param mapper:  a function to map sample.
    :type mapper: callable
184 185
    :param buffered_size: the size of buffer used to process images
    :type buffered_size: int
186 187
    :param cycle: whether to cycle through the dataset
    :type cycle: bool
188 189 190 191 192 193
    :return: test data reader
    :rtype: callable
    '''
    return reader_creator(
        download(DATA_URL, 'flowers', DATA_MD5),
        download(LABEL_URL, 'flowers', LABEL_MD5),
194 195 196 197 198 199
        download(SETID_URL, 'flowers', SETID_MD5),
        TEST_FLAG,
        mapper,
        buffered_size,
        use_xmap,
        cycle=cycle)
200 201


202
def valid(mapper=test_mapper, buffered_size=1024, use_xmap=True):
203
    '''
204 205 206
    Create flowers validation set reader.
    It returns a reader, each sample in the reader is
    image pixels in [0, 1] and label in [1, 102]
207 208 209 210
    translated from original color image by steps:
    1. resize to 256*256
    2. random crop to 224*224
    3. flatten
211 212 213 214 215 216
    :param mapper:  a function to map sample.
    :type mapper: callable
    :param buffered_size: the size of buffer used to process images
    :type buffered_size: int
    :return: test data reader
    :rtype: callable
217 218 219 220
    '''
    return reader_creator(
        download(DATA_URL, 'flowers', DATA_MD5),
        download(LABEL_URL, 'flowers', LABEL_MD5),
W
wanghaoshuang 已提交
221 222
        download(SETID_URL, 'flowers', SETID_MD5), VALID_FLAG, mapper,
        buffered_size, use_xmap)
223 224 225 226 227 228


def fetch():
    download(DATA_URL, 'flowers', DATA_MD5)
    download(LABEL_URL, 'flowers', LABEL_MD5)
    download(SETID_URL, 'flowers', SETID_MD5)