flowers.py 7.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This module will download dataset from
16
http://www.robots.ox.ac.uk/~vgg/data/flowers/102/index.html
17 18
and parse train/test set intopaddle reader creators.

19
This set contains images of flowers belonging to 102 different categories.
20 21 22 23 24 25
The images were acquired by searching the web and taking pictures. There are a
minimum of 40 images for each category.

The database was used in:

Nilsback, M-E. and Zisserman, A. Automated flower classification over a large
26 27
 number of classes.Proceedings of the Indian Conference on Computer Vision,
Graphics and Image Processing (2008)
28 29 30
http://www.robots.ox.ac.uk/~vgg/publications/papers/nilsback08.{pdf,ps.gz}.

"""
31
import pickle
32
import itertools
33
import functools
34
from .common import download
35 36
import tarfile
import scipy.io as scio
37 38
from paddle.dataset.image import *
from paddle.reader import *
39 40
import os
import numpy as np
41
from multiprocessing import cpu_count
42 43 44 45 46
__all__ = ['train', 'test', 'valid']

DATA_URL = 'http://www.robots.ox.ac.uk/~vgg/data/flowers/102/102flowers.tgz'
LABEL_URL = 'http://www.robots.ox.ac.uk/~vgg/data/flowers/102/imagelabels.mat'
SETID_URL = 'http://www.robots.ox.ac.uk/~vgg/data/flowers/102/setid.mat'
T
tensor-tang 已提交
47
DATA_MD5 = '33bfc11892f1e405ca193ae9a9f2a118'
48 49
LABEL_MD5 = 'e0620be6f572b9609742df49c70aed4d'
SETID_MD5 = 'a5357ecc9cb78c4bef273ce3793fc85c'
W
wanghaoshuang 已提交
50 51 52 53 54 55
# In official 'readme', tstid is the flag of test data
# and trnid is the flag of train data. But test data is more than train data.
# So we exchange the train data and test data.
TRAIN_FLAG = 'tstid'
TEST_FLAG = 'trnid'
VALID_FLAG = 'valid'
56 57


58
def default_mapper(is_train, sample):
59 60 61 62
    '''
    map image bytes data to type needed by model input layer
    '''
    img, label = sample
63
    img = load_image_bytes(img)
D
dangqingqing 已提交
64
    img = simple_transform(
D
dangqingqing 已提交
65
        img, 256, 224, is_train, mean=[103.94, 116.78, 123.68])
66 67 68
    return img.flatten().astype('float32'), label


69 70 71 72
train_mapper = functools.partial(default_mapper, True)
test_mapper = functools.partial(default_mapper, False)


73 74 75
def reader_creator(data_file,
                   label_file,
                   setid_file,
76
                   dataset_name,
77
                   mapper,
78
                   buffered_size=1024,
79 80
                   use_xmap=True,
                   cycle=False):
81
    '''
82
    1. read images from tar file and
83 84
        merge images into batch files in 102flowers.tgz_batch/
    2. get a reader to read sample from batch file
85 86

    :param data_file: downloaded data file
87
    :type data_file: string
88
    :param label_file: downloaded label file
89 90 91 92
    :type label_file: string
    :param setid_file: downloaded setid file containing information
                        about how to split dataset
    :type setid_file: string
93 94
    :param dataset_name: data set name (tstid|trnid|valid)
    :type dataset_name: string
95
    :param mapper: a function to map image bytes data to type
96 97
                    needed by model input layer
    :type mapper: callable
98 99
    :param buffered_size: the size of buffer used to process images
    :type buffered_size: int
100 101
    :param cycle: whether to cycle through the dataset
    :type cycle: bool
102 103 104
    :return: data reader
    :rtype: callable
    '''
105 106 107 108 109 110 111
    labels = scio.loadmat(label_file)['labels'][0]
    indexes = scio.loadmat(setid_file)[dataset_name][0]
    img2label = {}
    for i in indexes:
        img = "jpg/image_%05d.jpg" % i
        img2label[img] = labels[i - 1]
    file_list = batch_images_from_tar(data_file, dataset_name, img2label)
112 113

    def reader():
114 115 116 117 118
        while True:
            for file in open(file_list):
                file = file.strip()
                batch = None
                with open(file, 'r') as f:
119
                    batch = pickle.load(f)
120 121
                data = batch['data']
                labels = batch['label']
122
                for sample, label in zip(data, batch['label']):
123 124 125
                    yield sample, int(label) - 1
            if not cycle:
                break
126

W
wanghaoshuang 已提交
127
    if use_xmap:
C
chengduoZH 已提交
128 129
        cpu_num = int(os.environ.get('CPU_NUM', cpu_count()))
        return xmap_readers(mapper, reader, cpu_num, buffered_size)
130 131
    else:
        return map_readers(mapper, reader)
132 133


134
def train(mapper=train_mapper, buffered_size=1024, use_xmap=True, cycle=False):
135
    '''
136 137 138
    Create flowers training set reader.
    It returns a reader, each sample in the reader is
    image pixels in [0, 1] and label in [1, 102]
139 140 141 142 143 144
    translated from original color image by steps:
    1. resize to 256*256
    2. random crop to 224*224
    3. flatten
    :param mapper:  a function to map sample.
    :type mapper: callable
145 146
    :param buffered_size: the size of buffer used to process images
    :type buffered_size: int
147 148
    :param cycle: whether to cycle through the dataset
    :type cycle: bool
149 150 151 152 153 154
    :return: train data reader
    :rtype: callable
    '''
    return reader_creator(
        download(DATA_URL, 'flowers', DATA_MD5),
        download(LABEL_URL, 'flowers', LABEL_MD5),
155 156 157 158 159 160
        download(SETID_URL, 'flowers', SETID_MD5),
        TRAIN_FLAG,
        mapper,
        buffered_size,
        use_xmap,
        cycle=cycle)
161 162


163
def test(mapper=test_mapper, buffered_size=1024, use_xmap=True, cycle=False):
164
    '''
165 166 167
    Create flowers test set reader.
    It returns a reader, each sample in the reader is
    image pixels in [0, 1] and label in [1, 102]
168 169 170 171 172 173
    translated from original color image by steps:
    1. resize to 256*256
    2. random crop to 224*224
    3. flatten
    :param mapper:  a function to map sample.
    :type mapper: callable
174 175
    :param buffered_size: the size of buffer used to process images
    :type buffered_size: int
176 177
    :param cycle: whether to cycle through the dataset
    :type cycle: bool
178 179 180 181 182 183
    :return: test data reader
    :rtype: callable
    '''
    return reader_creator(
        download(DATA_URL, 'flowers', DATA_MD5),
        download(LABEL_URL, 'flowers', LABEL_MD5),
184 185 186 187 188 189
        download(SETID_URL, 'flowers', SETID_MD5),
        TEST_FLAG,
        mapper,
        buffered_size,
        use_xmap,
        cycle=cycle)
190 191


192
def valid(mapper=test_mapper, buffered_size=1024, use_xmap=True):
193
    '''
194 195 196
    Create flowers validation set reader.
    It returns a reader, each sample in the reader is
    image pixels in [0, 1] and label in [1, 102]
197 198 199 200
    translated from original color image by steps:
    1. resize to 256*256
    2. random crop to 224*224
    3. flatten
201 202 203 204 205 206
    :param mapper:  a function to map sample.
    :type mapper: callable
    :param buffered_size: the size of buffer used to process images
    :type buffered_size: int
    :return: test data reader
    :rtype: callable
207 208 209 210
    '''
    return reader_creator(
        download(DATA_URL, 'flowers', DATA_MD5),
        download(LABEL_URL, 'flowers', LABEL_MD5),
W
wanghaoshuang 已提交
211 212
        download(SETID_URL, 'flowers', SETID_MD5), VALID_FLAG, mapper,
        buffered_size, use_xmap)
213 214 215 216 217 218


def fetch():
    download(DATA_URL, 'flowers', DATA_MD5)
    download(LABEL_URL, 'flowers', LABEL_MD5)
    download(SETID_URL, 'flowers', SETID_MD5)