flowers.py 7.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This module will download dataset from
16
http://www.robots.ox.ac.uk/~vgg/data/flowers/102/index.html
17 18
and parse train/test set intopaddle reader creators.

19
This set contains images of flowers belonging to 102 different categories.
20 21 22 23 24 25
The images were acquired by searching the web and taking pictures. There are a
minimum of 40 images for each category.

The database was used in:

Nilsback, M-E. and Zisserman, A. Automated flower classification over a large
26 27
 number of classes.Proceedings of the Indian Conference on Computer Vision,
Graphics and Image Processing (2008)
28 29 30 31
http://www.robots.ox.ac.uk/~vgg/publications/papers/nilsback08.{pdf,ps.gz}.

"""
import itertools
32
import functools
33
from .common import download
34 35
import tarfile
import scipy.io as scio
36 37
from paddle.dataset.image import *
from paddle.reader import *
38 39
import os
import numpy as np
40
from multiprocessing import cpu_count
41 42
from six.moves import cPickle as pickle
from six.moves import zip
43 44 45 46 47
__all__ = ['train', 'test', 'valid']

DATA_URL = 'http://www.robots.ox.ac.uk/~vgg/data/flowers/102/102flowers.tgz'
LABEL_URL = 'http://www.robots.ox.ac.uk/~vgg/data/flowers/102/imagelabels.mat'
SETID_URL = 'http://www.robots.ox.ac.uk/~vgg/data/flowers/102/setid.mat'
T
tensor-tang 已提交
48
DATA_MD5 = '33bfc11892f1e405ca193ae9a9f2a118'
49 50
LABEL_MD5 = 'e0620be6f572b9609742df49c70aed4d'
SETID_MD5 = 'a5357ecc9cb78c4bef273ce3793fc85c'
W
wanghaoshuang 已提交
51 52 53 54 55 56
# In official 'readme', tstid is the flag of test data
# and trnid is the flag of train data. But test data is more than train data.
# So we exchange the train data and test data.
TRAIN_FLAG = 'tstid'
TEST_FLAG = 'trnid'
VALID_FLAG = 'valid'
57 58


59
def default_mapper(is_train, sample):
60 61 62 63
    '''
    map image bytes data to type needed by model input layer
    '''
    img, label = sample
64
    img = load_image_bytes(img)
D
dangqingqing 已提交
65
    img = simple_transform(
D
dangqingqing 已提交
66
        img, 256, 224, is_train, mean=[103.94, 116.78, 123.68])
67 68 69
    return img.flatten().astype('float32'), label


70 71 72 73
train_mapper = functools.partial(default_mapper, True)
test_mapper = functools.partial(default_mapper, False)


74 75 76
def reader_creator(data_file,
                   label_file,
                   setid_file,
77
                   dataset_name,
78
                   mapper,
79
                   buffered_size=1024,
80 81
                   use_xmap=True,
                   cycle=False):
82
    '''
83
    1. read images from tar file and
84 85
        merge images into batch files in 102flowers.tgz_batch/
    2. get a reader to read sample from batch file
86 87

    :param data_file: downloaded data file
88
    :type data_file: string
89
    :param label_file: downloaded label file
90 91 92 93
    :type label_file: string
    :param setid_file: downloaded setid file containing information
                        about how to split dataset
    :type setid_file: string
94 95
    :param dataset_name: data set name (tstid|trnid|valid)
    :type dataset_name: string
96
    :param mapper: a function to map image bytes data to type
97 98
                    needed by model input layer
    :type mapper: callable
99 100
    :param buffered_size: the size of buffer used to process images
    :type buffered_size: int
101 102
    :param cycle: whether to cycle through the dataset
    :type cycle: bool
103 104 105
    :return: data reader
    :rtype: callable
    '''
106 107 108 109 110 111 112
    labels = scio.loadmat(label_file)['labels'][0]
    indexes = scio.loadmat(setid_file)[dataset_name][0]
    img2label = {}
    for i in indexes:
        img = "jpg/image_%05d.jpg" % i
        img2label[img] = labels[i - 1]
    file_list = batch_images_from_tar(data_file, dataset_name, img2label)
113 114

    def reader():
115 116 117 118
        while True:
            for file in open(file_list):
                file = file.strip()
                batch = None
119 120
                with open(file, 'rb') as f:
                    batch = pickle.loads(f.read())
121 122
                data = batch['data']
                labels = batch['label']
123
                for sample, label in zip(data, batch['label']):
124 125 126
                    yield sample, int(label) - 1
            if not cycle:
                break
127

W
wanghaoshuang 已提交
128
    if use_xmap:
C
chengduoZH 已提交
129 130
        cpu_num = int(os.environ.get('CPU_NUM', cpu_count()))
        return xmap_readers(mapper, reader, cpu_num, buffered_size)
131 132
    else:
        return map_readers(mapper, reader)
133 134


135
def train(mapper=train_mapper, buffered_size=1024, use_xmap=True, cycle=False):
136
    '''
137 138 139
    Create flowers training set reader.
    It returns a reader, each sample in the reader is
    image pixels in [0, 1] and label in [1, 102]
140 141 142 143 144 145
    translated from original color image by steps:
    1. resize to 256*256
    2. random crop to 224*224
    3. flatten
    :param mapper:  a function to map sample.
    :type mapper: callable
146 147
    :param buffered_size: the size of buffer used to process images
    :type buffered_size: int
148 149
    :param cycle: whether to cycle through the dataset
    :type cycle: bool
150 151 152 153 154 155
    :return: train data reader
    :rtype: callable
    '''
    return reader_creator(
        download(DATA_URL, 'flowers', DATA_MD5),
        download(LABEL_URL, 'flowers', LABEL_MD5),
156 157 158 159 160 161
        download(SETID_URL, 'flowers', SETID_MD5),
        TRAIN_FLAG,
        mapper,
        buffered_size,
        use_xmap,
        cycle=cycle)
162 163


164
def test(mapper=test_mapper, buffered_size=1024, use_xmap=True, cycle=False):
165
    '''
166 167 168
    Create flowers test set reader.
    It returns a reader, each sample in the reader is
    image pixels in [0, 1] and label in [1, 102]
169 170 171 172 173 174
    translated from original color image by steps:
    1. resize to 256*256
    2. random crop to 224*224
    3. flatten
    :param mapper:  a function to map sample.
    :type mapper: callable
175 176
    :param buffered_size: the size of buffer used to process images
    :type buffered_size: int
177 178
    :param cycle: whether to cycle through the dataset
    :type cycle: bool
179 180 181 182 183 184
    :return: test data reader
    :rtype: callable
    '''
    return reader_creator(
        download(DATA_URL, 'flowers', DATA_MD5),
        download(LABEL_URL, 'flowers', LABEL_MD5),
185 186 187 188 189 190
        download(SETID_URL, 'flowers', SETID_MD5),
        TEST_FLAG,
        mapper,
        buffered_size,
        use_xmap,
        cycle=cycle)
191 192


193
def valid(mapper=test_mapper, buffered_size=1024, use_xmap=True):
194
    '''
195 196 197
    Create flowers validation set reader.
    It returns a reader, each sample in the reader is
    image pixels in [0, 1] and label in [1, 102]
198 199 200 201
    translated from original color image by steps:
    1. resize to 256*256
    2. random crop to 224*224
    3. flatten
202 203 204 205 206 207
    :param mapper:  a function to map sample.
    :type mapper: callable
    :param buffered_size: the size of buffer used to process images
    :type buffered_size: int
    :return: test data reader
    :rtype: callable
208 209 210 211
    '''
    return reader_creator(
        download(DATA_URL, 'flowers', DATA_MD5),
        download(LABEL_URL, 'flowers', LABEL_MD5),
W
wanghaoshuang 已提交
212 213
        download(SETID_URL, 'flowers', SETID_MD5), VALID_FLAG, mapper,
        buffered_size, use_xmap)
214 215 216 217 218 219


def fetch():
    download(DATA_URL, 'flowers', DATA_MD5)
    download(LABEL_URL, 'flowers', LABEL_MD5)
    download(SETID_URL, 'flowers', SETID_MD5)