flowers.py 7.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This module will download dataset from
16
http://www.robots.ox.ac.uk/~vgg/data/flowers/102/index.html
17 18
and parse train/test set intopaddle reader creators.

19
This set contains images of flowers belonging to 102 different categories.
20 21 22 23 24 25
The images were acquired by searching the web and taking pictures. There are a
minimum of 40 images for each category.

The database was used in:

Nilsback, M-E. and Zisserman, A. Automated flower classification over a large
26 27
 number of classes.Proceedings of the Indian Conference on Computer Vision,
Graphics and Image Processing (2008)
28 29 30
http://www.robots.ox.ac.uk/~vgg/publications/papers/nilsback08.{pdf,ps.gz}.

"""
31 32 33

from __future__ import print_function

34
import itertools
35
import functools
36
from .common import download
37 38
import tarfile
import scipy.io as scio
39 40
from paddle.dataset.image import *
from paddle.reader import *
41 42
import os
import numpy as np
43
from multiprocessing import cpu_count
44 45
from six.moves import cPickle as pickle
from six.moves import zip
46 47 48 49 50
__all__ = ['train', 'test', 'valid']

DATA_URL = 'http://www.robots.ox.ac.uk/~vgg/data/flowers/102/102flowers.tgz'
LABEL_URL = 'http://www.robots.ox.ac.uk/~vgg/data/flowers/102/imagelabels.mat'
SETID_URL = 'http://www.robots.ox.ac.uk/~vgg/data/flowers/102/setid.mat'
T
tensor-tang 已提交
51
DATA_MD5 = '33bfc11892f1e405ca193ae9a9f2a118'
52 53
LABEL_MD5 = 'e0620be6f572b9609742df49c70aed4d'
SETID_MD5 = 'a5357ecc9cb78c4bef273ce3793fc85c'
W
wanghaoshuang 已提交
54 55 56 57 58 59
# In official 'readme', tstid is the flag of test data
# and trnid is the flag of train data. But test data is more than train data.
# So we exchange the train data and test data.
TRAIN_FLAG = 'tstid'
TEST_FLAG = 'trnid'
VALID_FLAG = 'valid'
60 61


62
def default_mapper(is_train, sample):
63 64 65 66
    '''
    map image bytes data to type needed by model input layer
    '''
    img, label = sample
67
    img = load_image_bytes(img)
D
dangqingqing 已提交
68
    img = simple_transform(
D
dangqingqing 已提交
69
        img, 256, 224, is_train, mean=[103.94, 116.78, 123.68])
70 71 72
    return img.flatten().astype('float32'), label


73 74 75 76
train_mapper = functools.partial(default_mapper, True)
test_mapper = functools.partial(default_mapper, False)


77 78 79
def reader_creator(data_file,
                   label_file,
                   setid_file,
80
                   dataset_name,
81
                   mapper,
82
                   buffered_size=1024,
83 84
                   use_xmap=True,
                   cycle=False):
85
    '''
86
    1. read images from tar file and
87 88
        merge images into batch files in 102flowers.tgz_batch/
    2. get a reader to read sample from batch file
89 90

    :param data_file: downloaded data file
91
    :type data_file: string
92
    :param label_file: downloaded label file
93 94 95 96
    :type label_file: string
    :param setid_file: downloaded setid file containing information
                        about how to split dataset
    :type setid_file: string
97 98
    :param dataset_name: data set name (tstid|trnid|valid)
    :type dataset_name: string
99
    :param mapper: a function to map image bytes data to type
100 101
                    needed by model input layer
    :type mapper: callable
102 103
    :param buffered_size: the size of buffer used to process images
    :type buffered_size: int
104 105
    :param cycle: whether to cycle through the dataset
    :type cycle: bool
106 107 108
    :return: data reader
    :rtype: callable
    '''
109 110 111 112 113 114 115
    labels = scio.loadmat(label_file)['labels'][0]
    indexes = scio.loadmat(setid_file)[dataset_name][0]
    img2label = {}
    for i in indexes:
        img = "jpg/image_%05d.jpg" % i
        img2label[img] = labels[i - 1]
    file_list = batch_images_from_tar(data_file, dataset_name, img2label)
116 117

    def reader():
118 119 120 121
        while True:
            for file in open(file_list):
                file = file.strip()
                batch = None
122
                with open(file, 'rb') as f:
123
                    batch = pickle.load(f)
124 125
                data = batch['data']
                labels = batch['label']
126
                for sample, label in zip(data, batch['label']):
127 128 129
                    yield sample, int(label) - 1
            if not cycle:
                break
130

W
wanghaoshuang 已提交
131
    if use_xmap:
C
chengduoZH 已提交
132 133
        cpu_num = int(os.environ.get('CPU_NUM', cpu_count()))
        return xmap_readers(mapper, reader, cpu_num, buffered_size)
134 135
    else:
        return map_readers(mapper, reader)
136 137


138
def train(mapper=train_mapper, buffered_size=1024, use_xmap=True, cycle=False):
139
    '''
140 141 142
    Create flowers training set reader.
    It returns a reader, each sample in the reader is
    image pixels in [0, 1] and label in [1, 102]
143 144 145 146 147 148
    translated from original color image by steps:
    1. resize to 256*256
    2. random crop to 224*224
    3. flatten
    :param mapper:  a function to map sample.
    :type mapper: callable
149 150
    :param buffered_size: the size of buffer used to process images
    :type buffered_size: int
151 152
    :param cycle: whether to cycle through the dataset
    :type cycle: bool
153 154 155 156 157 158
    :return: train data reader
    :rtype: callable
    '''
    return reader_creator(
        download(DATA_URL, 'flowers', DATA_MD5),
        download(LABEL_URL, 'flowers', LABEL_MD5),
159 160 161 162 163 164
        download(SETID_URL, 'flowers', SETID_MD5),
        TRAIN_FLAG,
        mapper,
        buffered_size,
        use_xmap,
        cycle=cycle)
165 166


167
def test(mapper=test_mapper, buffered_size=1024, use_xmap=True, cycle=False):
168
    '''
169 170 171
    Create flowers test set reader.
    It returns a reader, each sample in the reader is
    image pixels in [0, 1] and label in [1, 102]
172 173 174 175 176 177
    translated from original color image by steps:
    1. resize to 256*256
    2. random crop to 224*224
    3. flatten
    :param mapper:  a function to map sample.
    :type mapper: callable
178 179
    :param buffered_size: the size of buffer used to process images
    :type buffered_size: int
180 181
    :param cycle: whether to cycle through the dataset
    :type cycle: bool
182 183 184 185 186 187
    :return: test data reader
    :rtype: callable
    '''
    return reader_creator(
        download(DATA_URL, 'flowers', DATA_MD5),
        download(LABEL_URL, 'flowers', LABEL_MD5),
188 189 190 191 192 193
        download(SETID_URL, 'flowers', SETID_MD5),
        TEST_FLAG,
        mapper,
        buffered_size,
        use_xmap,
        cycle=cycle)
194 195


196
def valid(mapper=test_mapper, buffered_size=1024, use_xmap=True):
197
    '''
198 199 200
    Create flowers validation set reader.
    It returns a reader, each sample in the reader is
    image pixels in [0, 1] and label in [1, 102]
201 202 203 204
    translated from original color image by steps:
    1. resize to 256*256
    2. random crop to 224*224
    3. flatten
205 206 207 208 209 210
    :param mapper:  a function to map sample.
    :type mapper: callable
    :param buffered_size: the size of buffer used to process images
    :type buffered_size: int
    :return: test data reader
    :rtype: callable
211 212 213 214
    '''
    return reader_creator(
        download(DATA_URL, 'flowers', DATA_MD5),
        download(LABEL_URL, 'flowers', LABEL_MD5),
W
wanghaoshuang 已提交
215 216
        download(SETID_URL, 'flowers', SETID_MD5), VALID_FLAG, mapper,
        buffered_size, use_xmap)
217 218 219 220 221 222


def fetch():
    download(DATA_URL, 'flowers', DATA_MD5)
    download(LABEL_URL, 'flowers', LABEL_MD5)
    download(SETID_URL, 'flowers', SETID_MD5)