infer.py 30.3 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import yaml
G
Guanghua Yu 已提交
17
import glob
Q
qingqing01 已提交
18 19 20 21
from functools import reduce

import cv2
import numpy as np
C
cnn 已提交
22
import math
Q
qingqing01 已提交
23 24 25 26
import paddle
from paddle.inference import Config
from paddle.inference import create_predictor

W
wangguanzhong 已提交
27 28 29 30 31
import sys
# add deploy path of PadleDetection to sys.path
parent_path = os.path.abspath(os.path.join(__file__, *(['..'])))
sys.path.insert(0, parent_path)

32
from benchmark_utils import PaddleInferBenchmark
33
from picodet_postprocess import PicoDetPostProcess
34
from preprocess import preprocess, Resize, NormalizeImage, Permute, PadStride, LetterBoxResize, WarpAffine, decode_image
W
wangguanzhong 已提交
35
from keypoint_preprocess import EvalAffine, TopDownEvalAffine, expand_crop
G
Guanghua Yu 已提交
36
from visualize import visualize_box_mask
37
from utils import argsparser, Timer, get_current_memory_mb
G
Guanghua Yu 已提交
38

Q
qingqing01 已提交
39 40 41 42 43
# Global dictionary
SUPPORT_MODELS = {
    'YOLO',
    'RCNN',
    'SSD',
44
    'Face',
F
Feng Ni 已提交
45
    'FCOS',
G
Guanghua Yu 已提交
46
    'SOLOv2',
F
Feng Ni 已提交
47
    'TTFNet',
C
cnn 已提交
48
    'S2ANet',
G
George Ni 已提交
49 50 51
    'JDE',
    'FairMOT',
    'DeepSORT',
G
Guanghua Yu 已提交
52 53
    'GFL',
    'PicoDet',
W
wangguanzhong 已提交
54
    'CenterNet',
S
shangliang Xu 已提交
55
    'TOOD',
W
wangguanzhong 已提交
56
    'StrongBaseline',
Q
qingqing01 已提交
57 58 59
}


W
wangguanzhong 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
def bench_log(detector, img_list, model_info, batch_size=1, name=None):
    mems = {
        'cpu_rss_mb': detector.cpu_mem / len(img_list),
        'gpu_rss_mb': detector.gpu_mem / len(img_list),
        'gpu_util': detector.gpu_util * 100 / len(img_list)
    }
    perf_info = detector.det_times.report(average=True)
    data_info = {
        'batch_size': batch_size,
        'shape': "dynamic_shape",
        'data_num': perf_info['img_num']
    }
    log = PaddleInferBenchmark(detector.config, model_info, data_info,
                               perf_info, mems)
    log(name)


Q
qingqing01 已提交
77 78 79
class Detector(object):
    """
    Args:
80
        pred_config (object): config of model, defined by `Config(model_dir)`
Q
qingqing01 已提交
81
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
G
Guanghua Yu 已提交
82
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
83
        run_mode (str): mode of running(paddle/trt_fp32/trt_fp16)
84
        batch_size (int): size of pre batch in inference
85 86 87
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
88 89 90 91
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
        enable_mkldnn (bool): whether to open MKLDNN
92
        enable_mkldnn_bfloat16 (bool): whether to turn on mkldnn bfloat16
W
wangguanzhong 已提交
93 94
        output_dir (str): The path of output
        threshold (float): The threshold of score for visualization
Q
qingqing01 已提交
95 96
    """

W
wangguanzhong 已提交
97 98 99 100 101 102 103 104 105 106 107 108
    def __init__(
            self,
            model_dir,
            device='CPU',
            run_mode='paddle',
            batch_size=1,
            trt_min_shape=1,
            trt_max_shape=1280,
            trt_opt_shape=640,
            trt_calib_mode=False,
            cpu_threads=1,
            enable_mkldnn=False,
109
            enable_mkldnn_bfloat16=False,
W
wangguanzhong 已提交
110 111 112
            output_dir='output',
            threshold=0.5, ):
        self.pred_config = self.set_config(model_dir)
113
        self.predictor, self.config = load_predictor(
Q
qingqing01 已提交
114 115
            model_dir,
            run_mode=run_mode,
116
            batch_size=batch_size,
Q
qingqing01 已提交
117
            min_subgraph_size=self.pred_config.min_subgraph_size,
G
Guanghua Yu 已提交
118
            device=device,
119
            use_dynamic_shape=self.pred_config.use_dynamic_shape,
120 121
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
G
Guanghua Yu 已提交
122
            trt_opt_shape=trt_opt_shape,
123 124
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
125 126
            enable_mkldnn=enable_mkldnn,
            enable_mkldnn_bfloat16=enable_mkldnn_bfloat16)
G
Guanghua Yu 已提交
127 128
        self.det_times = Timer()
        self.cpu_mem, self.gpu_mem, self.gpu_util = 0, 0, 0
W
wangguanzhong 已提交
129 130 131 132 133 134
        self.batch_size = batch_size
        self.output_dir = output_dir
        self.threshold = threshold

    def set_config(self, model_dir):
        return PredictConfig(model_dir)
Q
qingqing01 已提交
135

C
cnn 已提交
136
    def preprocess(self, image_list):
Q
qingqing01 已提交
137 138 139 140 141
        preprocess_ops = []
        for op_info in self.pred_config.preprocess_infos:
            new_op_info = op_info.copy()
            op_type = new_op_info.pop('type')
            preprocess_ops.append(eval(op_type)(**new_op_info))
C
cnn 已提交
142 143 144 145

        input_im_lst = []
        input_im_info_lst = []
        for im_path in image_list:
146
            im, im_info = preprocess(im_path, preprocess_ops)
C
cnn 已提交
147 148 149
            input_im_lst.append(im)
            input_im_info_lst.append(im_info)
        inputs = create_inputs(input_im_lst, input_im_info_lst)
W
wangguanzhong 已提交
150 151 152 153 154
        input_names = self.predictor.get_input_names()
        for i in range(len(input_names)):
            input_tensor = self.predictor.get_input_handle(input_names[i])
            input_tensor.copy_from_cpu(inputs[input_names[i]])

Q
qingqing01 已提交
155 156
        return inputs

W
wangguanzhong 已提交
157
    def postprocess(self, inputs, result):
Q
qingqing01 已提交
158
        # postprocess output of predictor
W
wangguanzhong 已提交
159 160 161 162 163 164
        np_boxes_num = result['boxes_num']
        if np_boxes_num[0] <= 0:
            print('[WARNNING] No object detected.')
            result = {'boxes': np.zeros([0, 6]), 'boxes_num': [0]}
        result = {k: v for k, v in result.items() if v is not None}
        return result
Q
qingqing01 已提交
165

W
wangguanzhong 已提交
166
    def predict(self, repeats=1):
Q
qingqing01 已提交
167 168
        '''
        Args:
W
wangguanzhong 已提交
169
            repeats (int): repeats number for prediction
Q
qingqing01 已提交
170
        Returns:
W
wangguanzhong 已提交
171
            result (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box,
Q
qingqing01 已提交
172
                            matix element:[class, score, x_min, y_min, x_max, y_max]
W
wangguanzhong 已提交
173
                            MaskRCNN's result include 'masks': np.ndarray:
G
Guanghua Yu 已提交
174
                            shape: [N, im_h, im_w]
Q
qingqing01 已提交
175
        '''
W
wangguanzhong 已提交
176
        # model prediction
W
wangguanzhong 已提交
177
        np_boxes, np_masks = None, None
Q
qingqing01 已提交
178 179 180 181 182
        for i in range(repeats):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            boxes_tensor = self.predictor.get_output_handle(output_names[0])
            np_boxes = boxes_tensor.copy_to_cpu()
C
cnn 已提交
183 184
            boxes_num = self.predictor.get_output_handle(output_names[1])
            np_boxes_num = boxes_num.copy_to_cpu()
G
Guanghua Yu 已提交
185
            if self.pred_config.mask:
Q
qingqing01 已提交
186 187
                masks_tensor = self.predictor.get_output_handle(output_names[2])
                np_masks = masks_tensor.copy_to_cpu()
W
wangguanzhong 已提交
188 189 190 191 192 193 194 195 196 197 198 199 200 201
        result = dict(boxes=np_boxes, masks=np_masks, boxes_num=np_boxes_num)
        return result

    def merge_batch_result(self, batch_result):
        if len(batch_result) == 1:
            return batch_result[0]
        res_key = batch_result[0].keys()
        results = {k: [] for k in res_key}
        for res in batch_result:
            for k, v in res.items():
                results[k].append(v)
        for k, v in results.items():
            results[k] = np.concatenate(v)
        return results
Q
qingqing01 已提交
202

W
wangguanzhong 已提交
203 204
    def get_timer(self):
        return self.det_times
W
wangguanzhong 已提交
205

W
wangguanzhong 已提交
206 207 208 209 210 211
    def predict_image(self,
                      image_list,
                      run_benchmark=False,
                      repeats=1,
                      visual=True):
        batch_loop_cnt = math.ceil(float(len(image_list)) / self.batch_size)
Q
qingqing01 已提交
212
        results = []
W
wangguanzhong 已提交
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
        for i in range(batch_loop_cnt):
            start_index = i * self.batch_size
            end_index = min((i + 1) * self.batch_size, len(image_list))
            batch_image_list = image_list[start_index:end_index]
            if run_benchmark:
                # preprocess
                inputs = self.preprocess(batch_image_list)  # warmup
                self.det_times.preprocess_time_s.start()
                inputs = self.preprocess(batch_image_list)
                self.det_times.preprocess_time_s.end()

                # model prediction
                result = self.predict(repeats=repeats)  # warmup
                self.det_times.inference_time_s.start()
                result = self.predict(repeats=repeats)
                self.det_times.inference_time_s.end(repeats=repeats)

                # postprocess
                result_warmup = self.postprocess(inputs, result)  # warmup
                self.det_times.postprocess_time_s.start()
                result = self.postprocess(inputs, result)
                self.det_times.postprocess_time_s.end()
                self.det_times.img_num += len(batch_image_list)

                cm, gm, gu = get_current_memory_mb()
                self.cpu_mem += cm
                self.gpu_mem += gm
                self.gpu_util += gu
            else:
                # preprocess
                self.det_times.preprocess_time_s.start()
                inputs = self.preprocess(batch_image_list)
                self.det_times.preprocess_time_s.end()

                # model prediction
                self.det_times.inference_time_s.start()
                result = self.predict()
                self.det_times.inference_time_s.end()

                # postprocess
                self.det_times.postprocess_time_s.start()
                result = self.postprocess(inputs, result)
                self.det_times.postprocess_time_s.end()
                self.det_times.img_num += len(batch_image_list)

                if visual:
                    visualize(
                        batch_image_list,
                        result,
                        self.pred_config.labels,
                        output_dir=self.output_dir,
                        threshold=self.threshold)

            results.append(result)
            if visual:
                print('Test iter {}'.format(i))

        results = self.merge_batch_result(results)
Q
qingqing01 已提交
271 272
        return results

W
wangguanzhong 已提交
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
    def predict_video(self, video_file, camera_id):
        video_out_name = 'output.mp4'
        if camera_id != -1:
            capture = cv2.VideoCapture(camera_id)
        else:
            capture = cv2.VideoCapture(video_file)
            video_out_name = os.path.split(video_file)[-1]
        # Get Video info : resolution, fps, frame count
        width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
        height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
        fps = int(capture.get(cv2.CAP_PROP_FPS))
        frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
        print("fps: %d, frame_count: %d" % (fps, frame_count))

        if not os.path.exists(self.output_dir):
            os.makedirs(self.output_dir)
        out_path = os.path.join(self.output_dir, video_out_name)
        fourcc = cv2.VideoWriter_fourcc(*'mp4v')
        writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
        index = 1
        while (1):
            ret, frame = capture.read()
            if not ret:
                break
            print('detect frame: %d' % (index))
            index += 1
            results = self.predict_image([frame], visual=False)

            im = visualize_box_mask(
                frame,
                results,
                self.pred_config.labels,
                threshold=self.threshold)
            im = np.array(im)
            writer.write(im)
            if camera_id != -1:
                cv2.imshow('Mask Detection', im)
                if cv2.waitKey(1) & 0xFF == ord('q'):
                    break
        writer.release()
W
wangguanzhong 已提交
313

Q
qingqing01 已提交
314

G
Guanghua Yu 已提交
315 316 317 318
class DetectorSOLOv2(Detector):
    """
    Args:
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
G
Guanghua Yu 已提交
319
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
320
        run_mode (str): mode of running(paddle/trt_fp32/trt_fp16)
321
        batch_size (int): size of pre batch in inference
322 323 324
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
325 326 327 328
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
        enable_mkldnn (bool): whether to open MKLDNN 
329
        enable_mkldnn_bfloat16 (bool): Whether to turn on mkldnn bfloat16
W
wangguanzhong 已提交
330 331 332
        output_dir (str): The path of output
        threshold (float): The threshold of score for visualization
       
G
Guanghua Yu 已提交
333 334
    """

W
wangguanzhong 已提交
335 336
    def __init__(
            self,
G
Guanghua Yu 已提交
337
            model_dir,
W
wangguanzhong 已提交
338 339 340 341 342 343 344 345 346
            device='CPU',
            run_mode='paddle',
            batch_size=1,
            trt_min_shape=1,
            trt_max_shape=1280,
            trt_opt_shape=640,
            trt_calib_mode=False,
            cpu_threads=1,
            enable_mkldnn=False,
347
            enable_mkldnn_bfloat16=False,
W
wangguanzhong 已提交
348 349 350 351 352
            output_dir='./',
            threshold=0.5, ):
        super(DetectorSOLOv2, self).__init__(
            model_dir=model_dir,
            device=device,
G
Guanghua Yu 已提交
353
            run_mode=run_mode,
354
            batch_size=batch_size,
355 356
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
G
Guanghua Yu 已提交
357
            trt_opt_shape=trt_opt_shape,
358 359
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
W
wangguanzhong 已提交
360
            enable_mkldnn=enable_mkldnn,
361
            enable_mkldnn_bfloat16=enable_mkldnn_bfloat16,
W
wangguanzhong 已提交
362 363
            output_dir=output_dir,
            threshold=threshold, )
G
Guanghua Yu 已提交
364

W
wangguanzhong 已提交
365
    def predict(self, repeats=1):
G
Guanghua Yu 已提交
366 367
        '''
        Args:
W
wangguanzhong 已提交
368
            repeats (int): repeat number for prediction
G
Guanghua Yu 已提交
369
        Returns:
W
wangguanzhong 已提交
370
            result (dict): 'segm': np.ndarray,shape:[N, im_h, im_w]
G
Guanghua Yu 已提交
371 372
                            'cate_label': label of segm, shape:[N]
                            'cate_score': confidence score of segm, shape:[N]
G
Guanghua Yu 已提交
373 374 375 376 377
        '''
        np_label, np_score, np_segms = None, None, None
        for i in range(repeats):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
W
wangguanzhong 已提交
378 379
            np_boxes_num = self.predictor.get_output_handle(output_names[
                0]).copy_to_cpu()
G
Guanghua Yu 已提交
380 381
            np_label = self.predictor.get_output_handle(output_names[
                1]).copy_to_cpu()
G
Guanghua Yu 已提交
382
            np_score = self.predictor.get_output_handle(output_names[
G
Guanghua Yu 已提交
383
                2]).copy_to_cpu()
G
Guanghua Yu 已提交
384 385
            np_segms = self.predictor.get_output_handle(output_names[
                3]).copy_to_cpu()
G
Guanghua Yu 已提交
386

W
wangguanzhong 已提交
387
        result = dict(
W
wangguanzhong 已提交
388 389 390 391
            segm=np_segms,
            label=np_label,
            score=np_score,
            boxes_num=np_boxes_num)
W
wangguanzhong 已提交
392
        return result
G
Guanghua Yu 已提交
393 394


395 396 397 398 399
class DetectorPicoDet(Detector):
    """
    Args:
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
400
        run_mode (str): mode of running(paddle/trt_fp32/trt_fp16)
401 402 403 404 405 406 407
        batch_size (int): size of pre batch in inference
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
408 409
        enable_mkldnn (bool): whether to turn on MKLDNN
        enable_mkldnn_bfloat16 (bool): whether to turn on MKLDNN_BFLOAT16
410 411
    """

W
wangguanzhong 已提交
412 413
    def __init__(
            self,
414
            model_dir,
W
wangguanzhong 已提交
415 416 417 418 419 420 421 422 423
            device='CPU',
            run_mode='paddle',
            batch_size=1,
            trt_min_shape=1,
            trt_max_shape=1280,
            trt_opt_shape=640,
            trt_calib_mode=False,
            cpu_threads=1,
            enable_mkldnn=False,
424
            enable_mkldnn_bfloat16=False,
W
wangguanzhong 已提交
425 426 427 428 429
            output_dir='./',
            threshold=0.5, ):
        super(DetectorPicoDet, self).__init__(
            model_dir=model_dir,
            device=device,
430 431 432 433 434 435 436
            run_mode=run_mode,
            batch_size=batch_size,
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
            trt_opt_shape=trt_opt_shape,
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
W
wangguanzhong 已提交
437
            enable_mkldnn=enable_mkldnn,
438
            enable_mkldnn_bfloat16=enable_mkldnn_bfloat16,
W
wangguanzhong 已提交
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
            output_dir=output_dir,
            threshold=threshold, )

    def postprocess(self, inputs, result):
        # postprocess output of predictor
        np_score_list = result['boxes']
        np_boxes_list = result['boxes_num']
        postprocessor = PicoDetPostProcess(
            inputs['image'].shape[2:],
            inputs['im_shape'],
            inputs['scale_factor'],
            strides=self.pred_config.fpn_stride,
            nms_threshold=self.pred_config.nms['nms_threshold'])
        np_boxes, np_boxes_num = postprocessor(np_score_list, np_boxes_list)
        result = dict(boxes=np_boxes, boxes_num=np_boxes_num)
        return result
455

W
wangguanzhong 已提交
456
    def predict(self, repeats=1):
457 458
        '''
        Args:
W
wangguanzhong 已提交
459
            repeats (int): repeat number for prediction
460
        Returns:
W
wangguanzhong 已提交
461
            result (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box,
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
                            matix element:[class, score, x_min, y_min, x_max, y_max]
        '''
        np_score_list, np_boxes_list = [], []
        for i in range(repeats):
            self.predictor.run()
            np_score_list.clear()
            np_boxes_list.clear()
            output_names = self.predictor.get_output_names()
            num_outs = int(len(output_names) / 2)
            for out_idx in range(num_outs):
                np_score_list.append(
                    self.predictor.get_output_handle(output_names[out_idx])
                    .copy_to_cpu())
                np_boxes_list.append(
                    self.predictor.get_output_handle(output_names[
                        out_idx + num_outs]).copy_to_cpu())
W
wangguanzhong 已提交
478 479
        result = dict(boxes=np_score_list, boxes_num=np_boxes_list)
        return result
480 481


C
cnn 已提交
482
def create_inputs(imgs, im_info):
Q
qingqing01 已提交
483 484
    """generate input for different model type
    Args:
W
wangguanzhong 已提交
485 486
        imgs (list(numpy)): list of images (np.ndarray)
        im_info (list(dict)): list of image info
Q
qingqing01 已提交
487 488 489 490 491
    Returns:
        inputs (dict): input of model
    """
    inputs = {}

C
cnn 已提交
492 493
    im_shape = []
    scale_factor = []
494 495 496 497 498 499 500 501
    if len(imgs) == 1:
        inputs['image'] = np.array((imgs[0], )).astype('float32')
        inputs['im_shape'] = np.array(
            (im_info[0]['im_shape'], )).astype('float32')
        inputs['scale_factor'] = np.array(
            (im_info[0]['scale_factor'], )).astype('float32')
        return inputs

C
cnn 已提交
502 503 504 505
    for e in im_info:
        im_shape.append(np.array((e['im_shape'], )).astype('float32'))
        scale_factor.append(np.array((e['scale_factor'], )).astype('float32'))

C
cnn 已提交
506 507
    inputs['im_shape'] = np.concatenate(im_shape, axis=0)
    inputs['scale_factor'] = np.concatenate(scale_factor, axis=0)
C
cnn 已提交
508 509 510 511 512 513 514 515 516 517 518 519

    imgs_shape = [[e.shape[1], e.shape[2]] for e in imgs]
    max_shape_h = max([e[0] for e in imgs_shape])
    max_shape_w = max([e[1] for e in imgs_shape])
    padding_imgs = []
    for img in imgs:
        im_c, im_h, im_w = img.shape[:]
        padding_im = np.zeros(
            (im_c, max_shape_h, max_shape_w), dtype=np.float32)
        padding_im[:, :im_h, :im_w] = img
        padding_imgs.append(padding_im)
    inputs['image'] = np.stack(padding_imgs, axis=0)
Q
qingqing01 已提交
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
    return inputs


class PredictConfig():
    """set config of preprocess, postprocess and visualize
    Args:
        model_dir (str): root path of model.yml
    """

    def __init__(self, model_dir):
        # parsing Yaml config for Preprocess
        deploy_file = os.path.join(model_dir, 'infer_cfg.yml')
        with open(deploy_file) as f:
            yml_conf = yaml.safe_load(f)
        self.check_model(yml_conf)
        self.arch = yml_conf['arch']
        self.preprocess_infos = yml_conf['Preprocess']
        self.min_subgraph_size = yml_conf['min_subgraph_size']
        self.labels = yml_conf['label_list']
G
Guanghua Yu 已提交
539
        self.mask = False
540
        self.use_dynamic_shape = yml_conf['use_dynamic_shape']
G
Guanghua Yu 已提交
541 542
        if 'mask' in yml_conf:
            self.mask = yml_conf['mask']
543 544 545
        self.tracker = None
        if 'tracker' in yml_conf:
            self.tracker = yml_conf['tracker']
546 547 548 549
        if 'NMS' in yml_conf:
            self.nms = yml_conf['NMS']
        if 'fpn_stride' in yml_conf:
            self.fpn_stride = yml_conf['fpn_stride']
Q
qingqing01 已提交
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
        self.print_config()

    def check_model(self, yml_conf):
        """
        Raises:
            ValueError: loaded model not in supported model type 
        """
        for support_model in SUPPORT_MODELS:
            if support_model in yml_conf['arch']:
                return True
        raise ValueError("Unsupported arch: {}, expect {}".format(yml_conf[
            'arch'], SUPPORT_MODELS))

    def print_config(self):
        print('-----------  Model Configuration -----------')
        print('%s: %s' % ('Model Arch', self.arch))
        print('%s: ' % ('Transform Order'))
        for op_info in self.preprocess_infos:
            print('--%s: %s' % ('transform op', op_info['type']))
        print('--------------------------------------------')


def load_predictor(model_dir,
573
                   run_mode='paddle',
Q
qingqing01 已提交
574
                   batch_size=1,
G
Guanghua Yu 已提交
575
                   device='CPU',
576 577 578 579
                   min_subgraph_size=3,
                   use_dynamic_shape=False,
                   trt_min_shape=1,
                   trt_max_shape=1280,
G
Guanghua Yu 已提交
580
                   trt_opt_shape=640,
581 582
                   trt_calib_mode=False,
                   cpu_threads=1,
583 584
                   enable_mkldnn=False,
                   enable_mkldnn_bfloat16=False):
Q
qingqing01 已提交
585 586 587
    """set AnalysisConfig, generate AnalysisPredictor
    Args:
        model_dir (str): root path of __model__ and __params__
G
Guanghua Yu 已提交
588
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
589
        run_mode (str): mode of running(paddle/trt_fp32/trt_fp16/trt_int8)
590 591 592 593
        use_dynamic_shape (bool): use dynamic shape or not
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
G
Guanghua Yu 已提交
594 595
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
Q
qingqing01 已提交
596 597 598
    Returns:
        predictor (PaddlePredictor): AnalysisPredictor
    Raises:
G
Guanghua Yu 已提交
599
        ValueError: predict by TensorRT need device == 'GPU'.
Q
qingqing01 已提交
600
    """
601
    if device != 'GPU' and run_mode != 'paddle':
Q
qingqing01 已提交
602
        raise ValueError(
G
Guanghua Yu 已提交
603 604
            "Predict by TensorRT mode: {}, expect device=='GPU', but device == {}"
            .format(run_mode, device))
Q
qingqing01 已提交
605 606 607
    config = Config(
        os.path.join(model_dir, 'model.pdmodel'),
        os.path.join(model_dir, 'model.pdiparams'))
G
Guanghua Yu 已提交
608
    if device == 'GPU':
Q
qingqing01 已提交
609 610 611
        # initial GPU memory(M), device ID
        config.enable_use_gpu(200, 0)
        # optimize graph and fuse op
612
        config.switch_ir_optim(True)
G
Guanghua Yu 已提交
613
    elif device == 'XPU':
614
        config.enable_lite_engine()
G
Guanghua Yu 已提交
615
        config.enable_xpu(10 * 1024 * 1024)
Q
qingqing01 已提交
616 617
    else:
        config.disable_gpu()
618 619
        config.set_cpu_math_library_num_threads(cpu_threads)
        if enable_mkldnn:
G
Guanghua Yu 已提交
620 621 622 623
            try:
                # cache 10 different shapes for mkldnn to avoid memory leak
                config.set_mkldnn_cache_capacity(10)
                config.enable_mkldnn()
624 625
                if enable_mkldnn_bfloat16:
                    config.enable_mkldnn_bfloat16()
G
Guanghua Yu 已提交
626 627 628 629 630
            except Exception as e:
                print(
                    "The current environment does not support `mkldnn`, so disable mkldnn."
                )
                pass
Q
qingqing01 已提交
631

G
Guanghua Yu 已提交
632 633 634 635 636
    precision_map = {
        'trt_int8': Config.Precision.Int8,
        'trt_fp32': Config.Precision.Float32,
        'trt_fp16': Config.Precision.Half
    }
Q
qingqing01 已提交
637 638
    if run_mode in precision_map.keys():
        config.enable_tensorrt_engine(
639
            workspace_size=1 << 25,
Q
qingqing01 已提交
640 641 642 643
            max_batch_size=batch_size,
            min_subgraph_size=min_subgraph_size,
            precision_mode=precision_map[run_mode],
            use_static=False,
G
Guanghua Yu 已提交
644
            use_calib_mode=trt_calib_mode)
645 646

        if use_dynamic_shape:
647 648 649 650 651 652 653 654 655
            min_input_shape = {
                'image': [batch_size, 3, trt_min_shape, trt_min_shape]
            }
            max_input_shape = {
                'image': [batch_size, 3, trt_max_shape, trt_max_shape]
            }
            opt_input_shape = {
                'image': [batch_size, 3, trt_opt_shape, trt_opt_shape]
            }
656 657 658
            config.set_trt_dynamic_shape_info(min_input_shape, max_input_shape,
                                              opt_input_shape)
            print('trt set dynamic shape done!')
Q
qingqing01 已提交
659 660 661 662 663 664 665 666

    # disable print log when predict
    config.disable_glog_info()
    # enable shared memory
    config.enable_memory_optim()
    # disable feed, fetch OP, needed by zero_copy_run
    config.switch_use_feed_fetch_ops(False)
    predictor = create_predictor(config)
667
    return predictor, config
Q
qingqing01 已提交
668 669


G
Guanghua Yu 已提交
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
def get_test_images(infer_dir, infer_img):
    """
    Get image path list in TEST mode
    """
    assert infer_img is not None or infer_dir is not None, \
        "--infer_img or --infer_dir should be set"
    assert infer_img is None or os.path.isfile(infer_img), \
            "{} is not a file".format(infer_img)
    assert infer_dir is None or os.path.isdir(infer_dir), \
            "{} is not a directory".format(infer_dir)

    # infer_img has a higher priority
    if infer_img and os.path.isfile(infer_img):
        return [infer_img]

    images = set()
    infer_dir = os.path.abspath(infer_dir)
    assert os.path.isdir(infer_dir), \
        "infer_dir {} is not a directory".format(infer_dir)
    exts = ['jpg', 'jpeg', 'png', 'bmp']
    exts += [ext.upper() for ext in exts]
    for ext in exts:
        images.update(glob.glob('{}/*.{}'.format(infer_dir, ext)))
    images = list(images)

    assert len(images) > 0, "no image found in {}".format(infer_dir)
    print("Found {} inference images in total.".format(len(images)))

    return images


W
wangguanzhong 已提交
701
def visualize(image_list, result, labels, output_dir='output/', threshold=0.5):
Q
qingqing01 已提交
702
    # visualize the predict result
C
cnn 已提交
703 704
    start_idx = 0
    for idx, image_file in enumerate(image_list):
W
wangguanzhong 已提交
705
        im_bboxes_num = result['boxes_num'][idx]
C
cnn 已提交
706
        im_results = {}
W
wangguanzhong 已提交
707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
        if 'boxes' in result:
            im_results['boxes'] = result['boxes'][start_idx:start_idx +
                                                  im_bboxes_num, :]
        if 'masks' in result:
            im_results['masks'] = result['masks'][start_idx:start_idx +
                                                  im_bboxes_num, :]
        if 'segm' in result:
            im_results['segm'] = result['segm'][start_idx:start_idx +
                                                im_bboxes_num, :]
        if 'label' in result:
            im_results['label'] = result['label'][start_idx:start_idx +
                                                  im_bboxes_num]
        if 'score' in result:
            im_results['score'] = result['score'][start_idx:start_idx +
                                                  im_bboxes_num]
W
wangguanzhong 已提交
722

C
cnn 已提交
723 724 725 726 727 728 729 730 731
        start_idx += im_bboxes_num
        im = visualize_box_mask(
            image_file, im_results, labels, threshold=threshold)
        img_name = os.path.split(image_file)[-1]
        if not os.path.exists(output_dir):
            os.makedirs(output_dir)
        out_path = os.path.join(output_dir, img_name)
        im.save(out_path, quality=95)
        print("save result to: " + out_path)
Q
qingqing01 已提交
732 733 734 735 736 737 738 739 740 741


def print_arguments(args):
    print('-----------  Running Arguments -----------')
    for arg, value in sorted(vars(args).items()):
        print('%s: %s' % (arg, value))
    print('------------------------------------------')


def main():
W
wangguanzhong 已提交
742 743 744 745
    deploy_file = os.path.join(FLAGS.model_dir, 'infer_cfg.yml')
    with open(deploy_file) as f:
        yml_conf = yaml.safe_load(f)
    arch = yml_conf['arch']
746
    detector_func = 'Detector'
W
wangguanzhong 已提交
747
    if arch == 'SOLOv2':
748
        detector_func = 'DetectorSOLOv2'
W
wangguanzhong 已提交
749
    elif arch == 'PicoDet':
750 751
        detector_func = 'DetectorPicoDet'

W
wangguanzhong 已提交
752
    detector = eval(detector_func)(FLAGS.model_dir,
753 754 755 756 757 758 759 760
                                   device=FLAGS.device,
                                   run_mode=FLAGS.run_mode,
                                   batch_size=FLAGS.batch_size,
                                   trt_min_shape=FLAGS.trt_min_shape,
                                   trt_max_shape=FLAGS.trt_max_shape,
                                   trt_opt_shape=FLAGS.trt_opt_shape,
                                   trt_calib_mode=FLAGS.trt_calib_mode,
                                   cpu_threads=FLAGS.cpu_threads,
W
wangguanzhong 已提交
761
                                   enable_mkldnn=FLAGS.enable_mkldnn,
762
                                   enable_mkldnn_bfloat16=FLAGS.enable_mkldnn_bfloat16,
W
wangguanzhong 已提交
763 764
                                   threshold=FLAGS.threshold,
                                   output_dir=FLAGS.output_dir)
G
Guanghua Yu 已提交
765

Q
qingqing01 已提交
766
    # predict from video file or camera video stream
G
Guanghua Yu 已提交
767
    if FLAGS.video_file is not None or FLAGS.camera_id != -1:
W
wangguanzhong 已提交
768
        detector.predict_video(FLAGS.video_file, FLAGS.camera_id)
G
Guanghua Yu 已提交
769 770
    else:
        # predict from image
C
cnn 已提交
771 772
        if FLAGS.image_dir is None and FLAGS.image_file is not None:
            assert FLAGS.batch_size == 1, "batch_size should be 1, when image_file is not None"
G
Guanghua Yu 已提交
773
        img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
W
wangguanzhong 已提交
774
        detector.predict_image(img_list, FLAGS.run_benchmark, repeats=10)
G
Guanghua Yu 已提交
775 776 777
        if not FLAGS.run_benchmark:
            detector.det_times.info(average=True)
        else:
778
            mode = FLAGS.run_mode
W
wangguanzhong 已提交
779
            model_dir = FLAGS.model_dir
780
            model_info = {
781 782
                'model_name': model_dir.strip('/').split('/')[-1],
                'precision': mode.split('_')[-1]
783
            }
W
wangguanzhong 已提交
784
            bench_log(detector, img_list, model_info, name='DET')
Q
qingqing01 已提交
785 786 787 788


if __name__ == '__main__':
    paddle.enable_static()
G
Guanghua Yu 已提交
789
    parser = argsparser()
Q
qingqing01 已提交
790 791
    FLAGS = parser.parse_args()
    print_arguments(FLAGS)
G
Guanghua Yu 已提交
792 793 794 795
    FLAGS.device = FLAGS.device.upper()
    assert FLAGS.device in ['CPU', 'GPU', 'XPU'
                            ], "device should be CPU, GPU or XPU"
    assert not FLAGS.use_gpu, "use_gpu has been deprecated, please use --device"
Q
qingqing01 已提交
796

797 798
    assert not (FLAGS.enable_mkldnn==False and FLAGS.enable_mkldnn_bfloat16==True), 'To enable mkldnn bfloat, please turn on both enable_mkldnn and enable_mkldnn_bfloat16'

Q
qingqing01 已提交
799
    main()