test_imperative_optimizer.py 5.8 KB
Newer Older
M
minqiyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

M
minqiyang 已提交
15 16
from __future__ import print_function

M
minqiyang 已提交
17 18 19
import contextlib
import unittest
import numpy as np
M
minqiyang 已提交
20
import six
M
minqiyang 已提交
21

M
minqiyang 已提交
22
import paddle
M
minqiyang 已提交
23 24
import paddle.fluid as fluid
from paddle.fluid import core
M
minqiyang 已提交
25
from paddle.fluid.optimizer import SGDOptimizer
26
from paddle.fluid.imperative.nn import FC
27
from paddle.fluid.imperative.base import to_variable
M
minqiyang 已提交
28
from test_imperative_base import new_program_scope
29 30


31
class MLP(fluid.imperative.Layer):
M
minqiyang 已提交
32 33 34 35 36
    def __init__(self, name_scope, param_attr=None, bias_attr=None):
        super(MLP, self).__init__(name_scope)

        self._fc1 = FC(self.full_name(), 10)
        self._fc2 = FC(self.full_name(), 10)
37

38 39 40 41
    def forward(self, inputs):
        y = self._fc1(inputs)
        y = self._fc2(y)
        return y
42

M
minqiyang 已提交
43

44 45
class TestImperativeOptimizerBase(unittest.TestCase):
    def setUp(self):
M
minqiyang 已提交
46
        self.batch_num = 10
M
minqiyang 已提交
47

48
    def get_optimizer(self):
M
minqiyang 已提交
49 50 51 52 53 54
        bd = [3, 6, 9]
        self.optimizer = SGDOptimizer(
            learning_rate=fluid.layers.piecewise_decay(
                boundaries=bd,
                values=[0.1 * (0.1**i) for i in range(len(bd) + 1)]))
        return self.optimizer
M
minqiyang 已提交
55

56
    def test_optimizer_float32(self):
M
minqiyang 已提交
57
        seed = 90
M
minqiyang 已提交
58
        with fluid.imperative.guard():
M
minqiyang 已提交
59 60 61
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed

M
minqiyang 已提交
62 63
            mlp = MLP('mlp')
            optimizer = self.get_optimizer()
M
minqiyang 已提交
64
            train_reader = paddle.batch(
M
minqiyang 已提交
65
                paddle.dataset.mnist.train(), batch_size=128, drop_last=True)
M
minqiyang 已提交
66

M
minqiyang 已提交
67
            dy_param_init_value = {}
M
minqiyang 已提交
68
            for batch_id, data in enumerate(train_reader()):
69
                if batch_id >= self.batch_num:
M
minqiyang 已提交
70 71
                    break

M
minqiyang 已提交
72
                dy_x_data = np.array(
M
minqiyang 已提交
73 74 75
                    [x[0].reshape(1, 28, 28) for x in data]).astype('float32')
                y_data = np.array([x[1] for x in data]).astype('int64').reshape(
                    128, 1)
76

M
minqiyang 已提交
77
                img = to_variable(dy_x_data)
78 79 80
                label = to_variable(y_data)
                label._stop_gradient = True

81 82
                cost = mlp(img)
                avg_loss = fluid.layers.reduce_mean(cost)
M
minqiyang 已提交
83
                dy_out = avg_loss._numpy()
M
minqiyang 已提交
84

M
minqiyang 已提交
85 86 87 88 89
                if batch_id == 0:
                    for param in fluid.default_main_program().global_block(
                    ).all_parameters():
                        dy_param_init_value[param.name] = param._numpy()

M
minqiyang 已提交
90
                avg_loss._backward()
M
minqiyang 已提交
91
                optimizer.minimize(avg_loss)
92
                mlp.clear_gradients()
M
minqiyang 已提交
93 94 95 96
                dy_param_value = {}
                for param in fluid.default_main_program().global_block(
                ).all_parameters():
                    dy_param_value[param.name] = param._numpy()
M
minqiyang 已提交
97 98 99 100 101

        with new_program_scope():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed

M
minqiyang 已提交
102 103
            exe = fluid.Executor(fluid.CPUPlace(
            ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
M
minqiyang 已提交
104

M
minqiyang 已提交
105 106
            mnist = MLP('mlp')
            optimizer = self.get_optimizer()
M
minqiyang 已提交
107
            train_reader = paddle.batch(
M
minqiyang 已提交
108
                paddle.dataset.mnist.train(), batch_size=128, drop_last=True)
M
minqiyang 已提交
109 110 111 112 113

            img = fluid.layers.data(
                name='pixel', shape=[1, 28, 28], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            cost = mnist(img)
114
            avg_loss = fluid.layers.reduce_mean(cost)
M
minqiyang 已提交
115
            optimizer.minimize(avg_loss)
M
minqiyang 已提交
116 117

            # initialize params and fetch them
M
minqiyang 已提交
118
            static_param_init_value = {}
M
minqiyang 已提交
119
            static_param_name_list = []
M
minqiyang 已提交
120
            for param in mnist.parameters():
M
minqiyang 已提交
121 122 123 124 125 126
                static_param_name_list.append(param.name)

            out = exe.run(fluid.default_startup_program(),
                          fetch_list=static_param_name_list)

            for i in range(len(static_param_name_list)):
M
minqiyang 已提交
127
                static_param_init_value[static_param_name_list[i]] = out[i]
M
minqiyang 已提交
128 129

            for batch_id, data in enumerate(train_reader()):
130
                if batch_id >= self.batch_num:
M
minqiyang 已提交
131 132
                    break

M
minqiyang 已提交
133
                static_x_data = np.array(
M
minqiyang 已提交
134 135 136 137
                    [x[0].reshape(1, 28, 28) for x in data]).astype('float32')
                y_data = np.array([x[1] for x in data]).astype('int64').reshape(
                    [128, 1])

M
minqiyang 已提交
138
                fetch_list = [avg_loss.name]
M
minqiyang 已提交
139 140
                fetch_list.extend(static_param_name_list)
                out = exe.run(fluid.default_main_program(),
M
minqiyang 已提交
141
                              feed={"pixel": static_x_data,
M
minqiyang 已提交
142 143 144 145 146 147 148 149 150
                                    "label": y_data},
                              fetch_list=fetch_list)

                static_param_value = {}
                static_out = out[0]
                for i in range(1, len(out)):
                    static_param_value[static_param_name_list[i - 1]] = out[i]

        for key, value in six.iteritems(static_param_init_value):
M
minqiyang 已提交
151
            self.assertTrue(np.allclose(value, dy_param_init_value[key]))
M
minqiyang 已提交
152

M
minqiyang 已提交
153
        self.assertTrue(np.allclose(static_out, dy_out))
M
minqiyang 已提交
154

M
minqiyang 已提交
155
        for key, value in six.iteritems(static_param_value):
M
minqiyang 已提交
156
            self.assertTrue(np.allclose(value, dy_param_value[key], atol=1e-5))
M
minqiyang 已提交
157 158 159 160


if __name__ == '__main__':
    unittest.main()