infer.py 24.8 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import time
import yaml
G
Guanghua Yu 已提交
18
import glob
Q
qingqing01 已提交
19 20 21 22 23
from functools import reduce

from PIL import Image
import cv2
import numpy as np
C
cnn 已提交
24
import math
Q
qingqing01 已提交
25 26 27 28
import paddle
from paddle.inference import Config
from paddle.inference import create_predictor

29
from benchmark_utils import PaddleInferBenchmark
G
Guanghua Yu 已提交
30 31
from preprocess import preprocess, Resize, NormalizeImage, Permute, PadStride
from visualize import visualize_box_mask
32
from utils import argsparser, Timer, get_current_memory_mb
G
Guanghua Yu 已提交
33

Q
qingqing01 已提交
34 35 36 37 38
# Global dictionary
SUPPORT_MODELS = {
    'YOLO',
    'RCNN',
    'SSD',
39
    'Face',
F
Feng Ni 已提交
40
    'FCOS',
G
Guanghua Yu 已提交
41
    'SOLOv2',
F
Feng Ni 已提交
42
    'TTFNet',
C
cnn 已提交
43
    'S2ANet',
Q
qingqing01 已提交
44 45 46 47 48 49 50 51
}


class Detector(object):
    """
    Args:
        config (object): config of model, defined by `Config(model_dir)`
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
G
Guanghua Yu 已提交
52
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
Q
qingqing01 已提交
53
        run_mode (str): mode of running(fluid/trt_fp32/trt_fp16)
54
        batch_size (int): size of pre batch in inference
55 56 57 58
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
        run_mode (str): mode of running(fluid/trt_fp32/trt_fp16)
Q
qingqing01 已提交
59 60 61 62 63 64
        threshold (float): threshold to reserve the result for output.
    """

    def __init__(self,
                 pred_config,
                 model_dir,
G
Guanghua Yu 已提交
65
                 device='CPU',
Q
qingqing01 已提交
66
                 run_mode='fluid',
67
                 batch_size=1,
68 69 70
                 trt_min_shape=1,
                 trt_max_shape=1280,
                 trt_opt_shape=640,
71 72 73
                 trt_calib_mode=False,
                 cpu_threads=1,
                 enable_mkldnn=False):
Q
qingqing01 已提交
74
        self.pred_config = pred_config
75
        self.predictor, self.config = load_predictor(
Q
qingqing01 已提交
76 77
            model_dir,
            run_mode=run_mode,
78
            batch_size=batch_size,
Q
qingqing01 已提交
79
            min_subgraph_size=self.pred_config.min_subgraph_size,
G
Guanghua Yu 已提交
80
            device=device,
81
            use_dynamic_shape=self.pred_config.use_dynamic_shape,
82 83
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
G
Guanghua Yu 已提交
84
            trt_opt_shape=trt_opt_shape,
85 86 87
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
            enable_mkldnn=enable_mkldnn)
G
Guanghua Yu 已提交
88 89
        self.det_times = Timer()
        self.cpu_mem, self.gpu_mem, self.gpu_util = 0, 0, 0
Q
qingqing01 已提交
90

C
cnn 已提交
91
    def preprocess(self, image_list):
Q
qingqing01 已提交
92 93 94 95 96
        preprocess_ops = []
        for op_info in self.pred_config.preprocess_infos:
            new_op_info = op_info.copy()
            op_type = new_op_info.pop('type')
            preprocess_ops.append(eval(op_type)(**new_op_info))
C
cnn 已提交
97 98 99 100

        input_im_lst = []
        input_im_info_lst = []
        for im_path in image_list:
101
            im, im_info = preprocess(im_path, preprocess_ops)
C
cnn 已提交
102 103 104
            input_im_lst.append(im)
            input_im_info_lst.append(im_info)
        inputs = create_inputs(input_im_lst, input_im_info_lst)
Q
qingqing01 已提交
105 106
        return inputs

C
cnn 已提交
107 108 109 110 111 112
    def postprocess(self,
                    np_boxes,
                    np_masks,
                    inputs,
                    np_boxes_num,
                    threshold=0.5):
Q
qingqing01 已提交
113 114 115
        # postprocess output of predictor
        results = {}
        results['boxes'] = np_boxes
C
cnn 已提交
116
        results['boxes_num'] = np_boxes_num
Q
qingqing01 已提交
117 118 119 120
        if np_masks is not None:
            results['masks'] = np_masks
        return results

C
cnn 已提交
121
    def predict(self, image_list, threshold=0.5, warmup=0, repeats=1):
Q
qingqing01 已提交
122 123
        '''
        Args:
C
cnn 已提交
124
            image_list (list): ,list of image
Q
qingqing01 已提交
125 126 127 128 129
            threshold (float): threshold of predicted box' score
        Returns:
            results (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box,
                            matix element:[class, score, x_min, y_min, x_max, y_max]
                            MaskRCNN's results include 'masks': np.ndarray:
G
Guanghua Yu 已提交
130
                            shape: [N, im_h, im_w]
Q
qingqing01 已提交
131
        '''
132
        self.det_times.preprocess_time_s.start()
C
cnn 已提交
133
        inputs = self.preprocess(image_list)
134
        self.det_times.preprocess_time_s.end()
Q
qingqing01 已提交
135 136 137 138 139 140 141 142 143 144
        np_boxes, np_masks = None, None
        input_names = self.predictor.get_input_names()
        for i in range(len(input_names)):
            input_tensor = self.predictor.get_input_handle(input_names[i])
            input_tensor.copy_from_cpu(inputs[input_names[i]])
        for i in range(warmup):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            boxes_tensor = self.predictor.get_output_handle(output_names[0])
            np_boxes = boxes_tensor.copy_to_cpu()
G
Guanghua Yu 已提交
145
            if self.pred_config.mask:
Q
qingqing01 已提交
146 147 148
                masks_tensor = self.predictor.get_output_handle(output_names[2])
                np_masks = masks_tensor.copy_to_cpu()

149
        self.det_times.inference_time_s.start()
Q
qingqing01 已提交
150 151 152 153 154
        for i in range(repeats):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            boxes_tensor = self.predictor.get_output_handle(output_names[0])
            np_boxes = boxes_tensor.copy_to_cpu()
C
cnn 已提交
155 156
            boxes_num = self.predictor.get_output_handle(output_names[1])
            np_boxes_num = boxes_num.copy_to_cpu()
G
Guanghua Yu 已提交
157
            if self.pred_config.mask:
Q
qingqing01 已提交
158 159
                masks_tensor = self.predictor.get_output_handle(output_names[2])
                np_masks = masks_tensor.copy_to_cpu()
160
        self.det_times.inference_time_s.end(repeats=repeats)
Q
qingqing01 已提交
161

162
        self.det_times.postprocess_time_s.start()
Q
qingqing01 已提交
163
        results = []
G
Guanghua Yu 已提交
164 165
        if reduce(lambda x, y: x * y, np_boxes.shape) < 6:
            print('[WARNNING] No object detected.')
C
cnn 已提交
166
            results = {'boxes': np.array([]), 'boxes_num': [0]}
G
Guanghua Yu 已提交
167 168
        else:
            results = self.postprocess(
C
cnn 已提交
169
                np_boxes, np_masks, inputs, np_boxes_num, threshold=threshold)
170
        self.det_times.postprocess_time_s.end()
C
cnn 已提交
171
        self.det_times.img_num += len(image_list)
Q
qingqing01 已提交
172 173 174
        return results


G
Guanghua Yu 已提交
175 176 177 178 179
class DetectorSOLOv2(Detector):
    """
    Args:
        config (object): config of model, defined by `Config(model_dir)`
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
G
Guanghua Yu 已提交
180
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
G
Guanghua Yu 已提交
181
        run_mode (str): mode of running(fluid/trt_fp32/trt_fp16)
182
        batch_size (int): size of pre batch in inference
183 184 185
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
G
Guanghua Yu 已提交
186 187 188 189 190 191
        threshold (float): threshold to reserve the result for output.
    """

    def __init__(self,
                 pred_config,
                 model_dir,
G
Guanghua Yu 已提交
192
                 device='CPU',
G
Guanghua Yu 已提交
193
                 run_mode='fluid',
194
                 batch_size=1,
195 196 197
                 trt_min_shape=1,
                 trt_max_shape=1280,
                 trt_opt_shape=640,
198 199 200
                 trt_calib_mode=False,
                 cpu_threads=1,
                 enable_mkldnn=False):
G
Guanghua Yu 已提交
201
        self.pred_config = pred_config
202
        self.predictor, self.config = load_predictor(
G
Guanghua Yu 已提交
203 204
            model_dir,
            run_mode=run_mode,
205
            batch_size=batch_size,
G
Guanghua Yu 已提交
206
            min_subgraph_size=self.pred_config.min_subgraph_size,
G
Guanghua Yu 已提交
207
            device=device,
208
            use_dynamic_shape=self.pred_config.use_dynamic_shape,
209 210
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
G
Guanghua Yu 已提交
211
            trt_opt_shape=trt_opt_shape,
212 213 214
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
            enable_mkldnn=enable_mkldnn)
G
Guanghua Yu 已提交
215
        self.det_times = Timer()
216
        self.cpu_mem, self.gpu_mem, self.gpu_util = 0, 0, 0
G
Guanghua Yu 已提交
217 218

    def predict(self, image, threshold=0.5, warmup=0, repeats=1):
G
Guanghua Yu 已提交
219 220 221 222 223
        '''
        Args:
            image (str/np.ndarray): path of image/ np.ndarray read by cv2
            threshold (float): threshold of predicted box' score
        Returns:
G
Guanghua Yu 已提交
224 225 226
            results (dict): 'segm': np.ndarray,shape:[N, im_h, im_w]
                            'cate_label': label of segm, shape:[N]
                            'cate_score': confidence score of segm, shape:[N]
G
Guanghua Yu 已提交
227
        '''
228
        self.det_times.preprocess_time_s.start()
G
Guanghua Yu 已提交
229
        inputs = self.preprocess(image)
230
        self.det_times.preprocess_time_s.end()
G
Guanghua Yu 已提交
231 232 233 234 235 236 237 238
        np_label, np_score, np_segms = None, None, None
        input_names = self.predictor.get_input_names()
        for i in range(len(input_names)):
            input_tensor = self.predictor.get_input_handle(input_names[i])
            input_tensor.copy_from_cpu(inputs[input_names[i]])
        for i in range(warmup):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
W
wangguanzhong 已提交
239 240
            np_boxes_num = self.predictor.get_output_handle(output_names[
                0]).copy_to_cpu()
G
Guanghua Yu 已提交
241 242
            np_label = self.predictor.get_output_handle(output_names[
                1]).copy_to_cpu()
G
Guanghua Yu 已提交
243
            np_score = self.predictor.get_output_handle(output_names[
G
Guanghua Yu 已提交
244
                2]).copy_to_cpu()
G
Guanghua Yu 已提交
245 246
            np_segms = self.predictor.get_output_handle(output_names[
                3]).copy_to_cpu()
247
        self.det_times.inference_time_s.start()
G
Guanghua Yu 已提交
248 249 250
        for i in range(repeats):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
W
wangguanzhong 已提交
251 252
            np_boxes_num = self.predictor.get_output_handle(output_names[
                0]).copy_to_cpu()
G
Guanghua Yu 已提交
253 254
            np_label = self.predictor.get_output_handle(output_names[
                1]).copy_to_cpu()
G
Guanghua Yu 已提交
255
            np_score = self.predictor.get_output_handle(output_names[
G
Guanghua Yu 已提交
256
                2]).copy_to_cpu()
G
Guanghua Yu 已提交
257 258
            np_segms = self.predictor.get_output_handle(output_names[
                3]).copy_to_cpu()
259
        self.det_times.inference_time_s.end(repeats=repeats)
G
Guanghua Yu 已提交
260
        self.det_times.img_num += 1
G
Guanghua Yu 已提交
261

W
wangguanzhong 已提交
262 263 264 265 266
        return dict(
            segm=np_segms,
            label=np_label,
            score=np_score,
            boxes_num=np_boxes_num)
G
Guanghua Yu 已提交
267 268


C
cnn 已提交
269
def create_inputs(imgs, im_info):
Q
qingqing01 已提交
270 271 272 273 274 275 276 277 278
    """generate input for different model type
    Args:
        im (np.ndarray): image (np.ndarray)
        im_info (dict): info of image
    Returns:
        inputs (dict): input of model
    """
    inputs = {}

C
cnn 已提交
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
    im_shape = []
    scale_factor = []
    for e in im_info:
        im_shape.append(np.array((e['im_shape'], )).astype('float32'))
        scale_factor.append(np.array((e['scale_factor'], )).astype('float32'))

    origin_scale_factor = np.concatenate(scale_factor, axis=0)

    imgs_shape = [[e.shape[1], e.shape[2]] for e in imgs]
    max_shape_h = max([e[0] for e in imgs_shape])
    max_shape_w = max([e[1] for e in imgs_shape])
    padding_imgs = []
    padding_imgs_shape = []
    padding_imgs_scale = []
    for img in imgs:
        im_c, im_h, im_w = img.shape[:]
        padding_im = np.zeros(
            (im_c, max_shape_h, max_shape_w), dtype=np.float32)
        padding_im[:, :im_h, :im_w] = img
        padding_imgs.append(padding_im)
        padding_imgs_shape.append(
            np.array([max_shape_h, max_shape_w]).astype('float32'))
        rescale = [
            float(max_shape_h) / float(im_h), float(max_shape_w) / float(im_w)
        ]
        padding_imgs_scale.append(np.array(rescale).astype('float32'))
    inputs['image'] = np.stack(padding_imgs, axis=0)
    inputs['im_shape'] = np.stack(padding_imgs_shape, axis=0)
    inputs['scale_factor'] = origin_scale_factor
Q
qingqing01 已提交
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
    return inputs


class PredictConfig():
    """set config of preprocess, postprocess and visualize
    Args:
        model_dir (str): root path of model.yml
    """

    def __init__(self, model_dir):
        # parsing Yaml config for Preprocess
        deploy_file = os.path.join(model_dir, 'infer_cfg.yml')
        with open(deploy_file) as f:
            yml_conf = yaml.safe_load(f)
        self.check_model(yml_conf)
        self.arch = yml_conf['arch']
        self.preprocess_infos = yml_conf['Preprocess']
        self.min_subgraph_size = yml_conf['min_subgraph_size']
        self.labels = yml_conf['label_list']
G
Guanghua Yu 已提交
327
        self.mask = False
328
        self.use_dynamic_shape = yml_conf['use_dynamic_shape']
G
Guanghua Yu 已提交
329 330
        if 'mask' in yml_conf:
            self.mask = yml_conf['mask']
Q
qingqing01 已提交
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
        self.print_config()

    def check_model(self, yml_conf):
        """
        Raises:
            ValueError: loaded model not in supported model type 
        """
        for support_model in SUPPORT_MODELS:
            if support_model in yml_conf['arch']:
                return True
        raise ValueError("Unsupported arch: {}, expect {}".format(yml_conf[
            'arch'], SUPPORT_MODELS))

    def print_config(self):
        print('-----------  Model Configuration -----------')
        print('%s: %s' % ('Model Arch', self.arch))
        print('%s: ' % ('Transform Order'))
        for op_info in self.preprocess_infos:
            print('--%s: %s' % ('transform op', op_info['type']))
        print('--------------------------------------------')


def load_predictor(model_dir,
                   run_mode='fluid',
                   batch_size=1,
G
Guanghua Yu 已提交
356
                   device='CPU',
357 358 359 360
                   min_subgraph_size=3,
                   use_dynamic_shape=False,
                   trt_min_shape=1,
                   trt_max_shape=1280,
G
Guanghua Yu 已提交
361
                   trt_opt_shape=640,
362 363 364
                   trt_calib_mode=False,
                   cpu_threads=1,
                   enable_mkldnn=False):
Q
qingqing01 已提交
365 366 367
    """set AnalysisConfig, generate AnalysisPredictor
    Args:
        model_dir (str): root path of __model__ and __params__
G
Guanghua Yu 已提交
368
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
369
        run_mode (str): mode of running(fluid/trt_fp32/trt_fp16/trt_int8)
370 371 372 373
        use_dynamic_shape (bool): use dynamic shape or not
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
G
Guanghua Yu 已提交
374 375
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
Q
qingqing01 已提交
376 377 378
    Returns:
        predictor (PaddlePredictor): AnalysisPredictor
    Raises:
G
Guanghua Yu 已提交
379
        ValueError: predict by TensorRT need device == 'GPU'.
Q
qingqing01 已提交
380
    """
G
Guanghua Yu 已提交
381
    if device != 'GPU' and run_mode != 'fluid':
Q
qingqing01 已提交
382
        raise ValueError(
G
Guanghua Yu 已提交
383 384
            "Predict by TensorRT mode: {}, expect device=='GPU', but device == {}"
            .format(run_mode, device))
Q
qingqing01 已提交
385 386 387
    config = Config(
        os.path.join(model_dir, 'model.pdmodel'),
        os.path.join(model_dir, 'model.pdiparams'))
G
Guanghua Yu 已提交
388
    if device == 'GPU':
Q
qingqing01 已提交
389 390 391
        # initial GPU memory(M), device ID
        config.enable_use_gpu(200, 0)
        # optimize graph and fuse op
392
        config.switch_ir_optim(True)
G
Guanghua Yu 已提交
393 394
    elif device == 'XPU':
        config.enable_xpu(10 * 1024 * 1024)
Q
qingqing01 已提交
395 396
    else:
        config.disable_gpu()
397 398
        config.set_cpu_math_library_num_threads(cpu_threads)
        if enable_mkldnn:
G
Guanghua Yu 已提交
399 400 401 402 403 404 405 406 407
            try:
                # cache 10 different shapes for mkldnn to avoid memory leak
                config.set_mkldnn_cache_capacity(10)
                config.enable_mkldnn()
            except Exception as e:
                print(
                    "The current environment does not support `mkldnn`, so disable mkldnn."
                )
                pass
Q
qingqing01 已提交
408

G
Guanghua Yu 已提交
409 410 411 412 413
    precision_map = {
        'trt_int8': Config.Precision.Int8,
        'trt_fp32': Config.Precision.Float32,
        'trt_fp16': Config.Precision.Half
    }
Q
qingqing01 已提交
414 415 416 417 418 419 420
    if run_mode in precision_map.keys():
        config.enable_tensorrt_engine(
            workspace_size=1 << 10,
            max_batch_size=batch_size,
            min_subgraph_size=min_subgraph_size,
            precision_mode=precision_map[run_mode],
            use_static=False,
G
Guanghua Yu 已提交
421
            use_calib_mode=trt_calib_mode)
422 423

        if use_dynamic_shape:
424 425 426 427 428 429 430 431 432
            min_input_shape = {
                'image': [batch_size, 3, trt_min_shape, trt_min_shape]
            }
            max_input_shape = {
                'image': [batch_size, 3, trt_max_shape, trt_max_shape]
            }
            opt_input_shape = {
                'image': [batch_size, 3, trt_opt_shape, trt_opt_shape]
            }
433 434 435
            config.set_trt_dynamic_shape_info(min_input_shape, max_input_shape,
                                              opt_input_shape)
            print('trt set dynamic shape done!')
Q
qingqing01 已提交
436 437 438 439 440 441 442 443

    # disable print log when predict
    config.disable_glog_info()
    # enable shared memory
    config.enable_memory_optim()
    # disable feed, fetch OP, needed by zero_copy_run
    config.switch_use_feed_fetch_ops(False)
    predictor = create_predictor(config)
444
    return predictor, config
Q
qingqing01 已提交
445 446


G
Guanghua Yu 已提交
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
def get_test_images(infer_dir, infer_img):
    """
    Get image path list in TEST mode
    """
    assert infer_img is not None or infer_dir is not None, \
        "--infer_img or --infer_dir should be set"
    assert infer_img is None or os.path.isfile(infer_img), \
            "{} is not a file".format(infer_img)
    assert infer_dir is None or os.path.isdir(infer_dir), \
            "{} is not a directory".format(infer_dir)

    # infer_img has a higher priority
    if infer_img and os.path.isfile(infer_img):
        return [infer_img]

    images = set()
    infer_dir = os.path.abspath(infer_dir)
    assert os.path.isdir(infer_dir), \
        "infer_dir {} is not a directory".format(infer_dir)
    exts = ['jpg', 'jpeg', 'png', 'bmp']
    exts += [ext.upper() for ext in exts]
    for ext in exts:
        images.update(glob.glob('{}/*.{}'.format(infer_dir, ext)))
    images = list(images)

    assert len(images) > 0, "no image found in {}".format(infer_dir)
    print("Found {} inference images in total.".format(len(images)))

    return images


C
cnn 已提交
478
def visualize(image_list, results, labels, output_dir='output/', threshold=0.5):
Q
qingqing01 已提交
479
    # visualize the predict result
C
cnn 已提交
480 481 482 483 484 485 486 487 488 489 490 491 492
    start_idx = 0
    for idx, image_file in enumerate(image_list):
        im_bboxes_num = results['boxes_num'][idx]
        im_results = {}
        if 'boxes' in results:
            im_results['boxes'] = results['boxes'][start_idx:start_idx +
                                                   im_bboxes_num, :]
        if 'masks' in results:
            im_results['masks'] = results['masks'][start_idx:start_idx +
                                                   im_bboxes_num, :]
        if 'segm' in results:
            im_results['segm'] = results['segm'][start_idx:start_idx +
                                                 im_bboxes_num, :]
W
wangguanzhong 已提交
493 494 495 496 497 498 499
        if 'label' in results:
            im_results['label'] = results['label'][start_idx:start_idx +
                                                   im_bboxes_num]
        if 'score' in results:
            im_results['score'] = results['score'][start_idx:start_idx +
                                                   im_bboxes_num]

C
cnn 已提交
500 501 502 503 504 505 506 507 508
        start_idx += im_bboxes_num
        im = visualize_box_mask(
            image_file, im_results, labels, threshold=threshold)
        img_name = os.path.split(image_file)[-1]
        if not os.path.exists(output_dir):
            os.makedirs(output_dir)
        out_path = os.path.join(output_dir, img_name)
        im.save(out_path, quality=95)
        print("save result to: " + out_path)
Q
qingqing01 已提交
509 510 511 512 513 514 515 516 517


def print_arguments(args):
    print('-----------  Running Arguments -----------')
    for arg, value in sorted(vars(args).items()):
        print('%s: %s' % (arg, value))
    print('------------------------------------------')


C
cnn 已提交
518 519 520 521 522 523
def predict_image(detector, image_list, batch_size=1):
    batch_loop_cnt = math.ceil(float(len(image_list)) / batch_size)
    for i in range(batch_loop_cnt):
        start_index = i * batch_size
        end_index = min((i + 1) * batch_size, len(image_list))
        batch_image_list = image_list[start_index:end_index]
G
Guanghua Yu 已提交
524
        if FLAGS.run_benchmark:
C
cnn 已提交
525 526
            detector.predict(
                batch_image_list, FLAGS.threshold, warmup=10, repeats=10)
G
Guanghua Yu 已提交
527 528 529 530
            cm, gm, gu = get_current_memory_mb()
            detector.cpu_mem += cm
            detector.gpu_mem += gm
            detector.gpu_util += gu
C
cnn 已提交
531
            print('Test iter {}'.format(i))
G
Guanghua Yu 已提交
532
        else:
C
cnn 已提交
533
            results = detector.predict(batch_image_list, FLAGS.threshold)
G
Guanghua Yu 已提交
534
            visualize(
C
cnn 已提交
535
                batch_image_list,
G
Guanghua Yu 已提交
536 537 538 539
                results,
                detector.pred_config.labels,
                output_dir=FLAGS.output_dir,
                threshold=FLAGS.threshold)
Q
qingqing01 已提交
540 541 542 543 544 545 546 547 548 549


def predict_video(detector, camera_id):
    if camera_id != -1:
        capture = cv2.VideoCapture(camera_id)
        video_name = 'output.mp4'
    else:
        capture = cv2.VideoCapture(FLAGS.video_file)
        video_name = os.path.split(FLAGS.video_file)[-1]
    fps = 30
C
cnn 已提交
550 551
    frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
    print('frame_count', frame_count)
Q
qingqing01 已提交
552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
    width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
    # yapf: disable
    fourcc = cv2.VideoWriter_fourcc(*'mp4v')
    # yapf: enable
    if not os.path.exists(FLAGS.output_dir):
        os.makedirs(FLAGS.output_dir)
    out_path = os.path.join(FLAGS.output_dir, video_name)
    writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
    index = 1
    while (1):
        ret, frame = capture.read()
        if not ret:
            break
        print('detect frame:%d' % (index))
        index += 1
C
cnn 已提交
568
        results = detector.predict([frame], FLAGS.threshold)
Q
qingqing01 已提交
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
        im = visualize_box_mask(
            frame,
            results,
            detector.pred_config.labels,
            threshold=FLAGS.threshold)
        im = np.array(im)
        writer.write(im)
        if camera_id != -1:
            cv2.imshow('Mask Detection', im)
            if cv2.waitKey(1) & 0xFF == ord('q'):
                break
    writer.release()


def main():
    pred_config = PredictConfig(FLAGS.model_dir)
    detector = Detector(
        pred_config,
        FLAGS.model_dir,
G
Guanghua Yu 已提交
588
        device=FLAGS.device,
589
        run_mode=FLAGS.run_mode,
590
        batch_size=FLAGS.batch_size,
591 592
        trt_min_shape=FLAGS.trt_min_shape,
        trt_max_shape=FLAGS.trt_max_shape,
G
Guanghua Yu 已提交
593
        trt_opt_shape=FLAGS.trt_opt_shape,
594 595 596
        trt_calib_mode=FLAGS.trt_calib_mode,
        cpu_threads=FLAGS.cpu_threads,
        enable_mkldnn=FLAGS.enable_mkldnn)
G
Guanghua Yu 已提交
597 598 599 600
    if pred_config.arch == 'SOLOv2':
        detector = DetectorSOLOv2(
            pred_config,
            FLAGS.model_dir,
G
Guanghua Yu 已提交
601
            device=FLAGS.device,
602
            run_mode=FLAGS.run_mode,
603
            batch_size=FLAGS.batch_size,
604 605
            trt_min_shape=FLAGS.trt_min_shape,
            trt_max_shape=FLAGS.trt_max_shape,
G
Guanghua Yu 已提交
606
            trt_opt_shape=FLAGS.trt_opt_shape,
607 608 609
            trt_calib_mode=FLAGS.trt_calib_mode,
            cpu_threads=FLAGS.cpu_threads,
            enable_mkldnn=FLAGS.enable_mkldnn)
G
Guanghua Yu 已提交
610

Q
qingqing01 已提交
611
    # predict from video file or camera video stream
G
Guanghua Yu 已提交
612
    if FLAGS.video_file is not None or FLAGS.camera_id != -1:
Q
qingqing01 已提交
613
        predict_video(detector, FLAGS.camera_id)
G
Guanghua Yu 已提交
614 615
    else:
        # predict from image
C
cnn 已提交
616 617
        if FLAGS.image_dir is None and FLAGS.image_file is not None:
            assert FLAGS.batch_size == 1, "batch_size should be 1, when image_file is not None"
G
Guanghua Yu 已提交
618
        img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
C
cnn 已提交
619
        predict_image(detector, img_list, FLAGS.batch_size)
G
Guanghua Yu 已提交
620 621 622 623
        if not FLAGS.run_benchmark:
            detector.det_times.info(average=True)
        else:
            mems = {
624 625
                'cpu_rss_mb': detector.cpu_mem / len(img_list),
                'gpu_rss_mb': detector.gpu_mem / len(img_list),
G
Guanghua Yu 已提交
626 627
                'gpu_util': detector.gpu_util * 100 / len(img_list)
            }
628 629 630 631 632

            perf_info = detector.det_times.report(average=True)
            model_dir = FLAGS.model_dir
            mode = FLAGS.run_mode
            model_info = {
633 634
                'model_name': model_dir.strip('/').split('/')[-1],
                'precision': mode.split('_')[-1]
635 636
            }
            data_info = {
637
                'batch_size': FLAGS.batch_size,
638 639 640
                'shape': "dynamic_shape",
                'data_num': perf_info['img_num']
            }
641 642
            det_log = PaddleInferBenchmark(detector.config, model_info,
                                           data_info, perf_info, mems)
643
            det_log('Det')
Q
qingqing01 已提交
644 645 646 647


if __name__ == '__main__':
    paddle.enable_static()
G
Guanghua Yu 已提交
648
    parser = argsparser()
Q
qingqing01 已提交
649 650
    FLAGS = parser.parse_args()
    print_arguments(FLAGS)
G
Guanghua Yu 已提交
651 652 653 654
    FLAGS.device = FLAGS.device.upper()
    assert FLAGS.device in ['CPU', 'GPU', 'XPU'
                            ], "device should be CPU, GPU or XPU"
    assert not FLAGS.use_gpu, "use_gpu has been deprecated, please use --device"
Q
qingqing01 已提交
655 656

    main()