nn.py 161.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network. 
Y
Yu Yang 已提交
16 17 18 19 20
"""

from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
from ..framework import Variable
Y
yangyaming 已提交
21
from ..param_attr import ParamAttr
Y
yuyang18 已提交
22
from layer_function_generator import autodoc, templatedoc
Y
yangyaming 已提交
23
from tensor import concat
C
chengduoZH 已提交
24
import utils
Y
yuyang18 已提交
25
import random
Y
Yu Yang 已提交
26 27

__all__ = [
Y
ying 已提交
28 29 30
    'fc',
    'embedding',
    'dynamic_lstm',
Y
Yibing Liu 已提交
31
    'dynamic_lstmp',
G
guosheng 已提交
32
    'dynamic_gru',
Y
ying 已提交
33 34 35 36 37 38 39 40 41 42
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'sequence_pool',
43 44
    'sequence_softmax',
    'softmax',
Y
ying 已提交
45 46 47 48 49 50 51 52 53 54
    'pool2d',
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
    'sequence_expand',
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
55
    'reduce_prod',
Y
ying 已提交
56 57 58 59
    'sequence_first_step',
    'sequence_last_step',
    'dropout',
    'split',
60 61
    'ctc_greedy_decoder',
    'edit_distance',
Y
ying 已提交
62 63
    'l2_normalize',
    'matmul',
Q
qingqing01 已提交
64
    'topk',
Y
ying 已提交
65 66
    'warpctc',
    'sequence_reshape',
67
    'transpose',
68
    'im2sequence',
69
    'nce',
Q
Qiao Longfei 已提交
70
    'beam_search',
71
    'row_conv',
72
    'multiplex',
G
guosheng 已提交
73
    'layer_norm',
74 75
    'softmax_with_cross_entropy',
    'smooth_l1',
76
    'one_hot',
Y
Yu Yang 已提交
77
    'autoincreased_step_counter',
C
caoying03 已提交
78
    'reshape',
Y
yangyaming 已提交
79
    'lod_reset',
D
dragonwarrior 已提交
80
    'lrn',
G
guosheng 已提交
81
    'pad',
82
    'label_smooth',
83
    'roi_pool',
W
whs 已提交
84
    'dice_loss',
F
fengjiayi 已提交
85 86
    'image_resize',
    'image_resize_short',
B
baiyf 已提交
87
    'resize_bilinear',
W
whs 已提交
88
    'gather',
89
    'random_crop',
Y
Yu Yang 已提交
90 91 92 93 94 95 96 97
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
98
       use_mkldnn=False,
Y
Yu Yang 已提交
99
       act=None,
J
Jacek Czaja 已提交
100
       is_test=False,
101
       name=None):
Y
Yu Yang 已提交
102
    """
103
    **Fully Connected Layer**
Y
Yu Yang 已提交
104

C
caoying03 已提交
105
    The fully connected layer can take multiple tensors as its inputs. It
R
ranqiu 已提交
106 107 108 109 110 111
    creates a variable called weights for each input tensor, which represents
    a fully connected weight matrix from each input unit to each output unit.
    The fully connected layer multiplies each input tensor with its coresponding
    weight to produce an output Tensor. If multiple input tensors are given,
    the results of multiple multiplications will be sumed up. If bias_attr is
    not None, a bias variable will be created and added to the output. Finally,
Y
ying 已提交
112
    if activation is not None, it will be applied to the output as well.
C
caoying03 已提交
113

C
caoying03 已提交
114
    This process can be formulated as follows:
115 116 117

    .. math::

118
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
119 120 121

    In the above equation:

C
caoying03 已提交
122 123 124 125
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
126
    * :math:`Act`: The activation function.
C
caoying03 已提交
127
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
128 129

    Args:
R
ranqiu 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
            of this layer. If it is set to None, no bias will be added to the output units.
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
147
        is_test(bool): A flag indicating whether execution is in test phase.
M
mozga-intel 已提交
148 149
        use_mkldnn(bool): Use mkldnn kernel or not, it is valid only when the mkldnn
            library is installed. Default: False
R
ranqiu 已提交
150
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
151

152
    Returns:
R
ranqiu 已提交
153
        A tensor variable storing the transformation result.
154 155

    Raises:
C
caoying03 已提交
156
        ValueError: If rank of the input tensor is less than 2.
157 158 159 160

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
161 162
          data = fluid.layers.data(
              name="data", shape=[32, 32], dtype="float32")
163
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
164
    """
C
caoying03 已提交
165

C
caoying03 已提交
166
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
167 168 169 170

    dtype = helper.input_dtype()

    mul_results = []
171 172
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
173 174 175
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
176

Y
Yu Yang 已提交
177
        w = helper.create_parameter(
178 179
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
        tmp = helper.create_tmp_variable(dtype)
180
        helper.append_op(
181 182 183
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
184
            outputs={"Out": tmp},
M
mozga-intel 已提交
185 186
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
187 188 189 190
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
191
    else:
192 193 194 195 196 197 198
        pre_bias = helper.create_tmp_variable(dtype)
        helper.append_op(
            type="sum", inputs={"X": mul_results}, outputs={"Out": pre_bias})
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
199 200


201 202 203
def embedding(input,
              size,
              is_sparse=False,
204
              is_distributed=False,
205 206 207
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
208
    """
209 210
    **Embedding Layer**

211
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
212 213
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
214 215 216

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
217 218

    Args:
219 220 221 222 223
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
224
        is_distributed (bool): Whether to run lookup table from remote parameter server.
225 226
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
227 228
            with zeros whenever lookup encounters it in :attr:`input`. If
            :math:`padding_idx < 0`, the padding_idx to use in lookup is
229 230
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
231
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
232

233 234 235
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
236

237 238
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
239

C
chengduoZH 已提交
240
          dict_size = len(dataset.ids)
241
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
242
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
243 244 245 246 247 248
    """

    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
    tmp = helper.create_tmp_variable(dtype)
249 250
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
251 252 253 254 255
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
256 257 258 259 260
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
261 262 263 264 265
    return tmp


def dynamic_lstm(input,
                 size,
Y
Yancey 已提交
266 267
                 h_0=None,
                 c_0=None,
Y
Yu Yang 已提交
268 269 270 271 272 273 274
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
275 276
                 dtype='float32',
                 name=None):
Y
Yibing Liu 已提交
277 278 279 280 281 282
    """
    **Dynamic LSTM Layer**

    The defalut implementation is diagonal/peephole connection
    (https://arxiv.org/pdf/1402.1128.pdf), the formula is as follows:

Y
Yibing Liu 已提交
283
    .. math::
Y
Yibing Liu 已提交
284

285
        i_t & = \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
286

287
        f_t & = \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
288

289
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{ch}h_{t-1} + b_c)
Y
Yibing Liu 已提交
290

291 292 293
        o_t & = \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + W_{oc}c_t + b_o)

        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
294

Y
Yibing Liu 已提交
295
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
296

297
    where the :math:`W` terms denote weight matrices (e.g. :math:`W_{xi}` is
298
    the matrix of weights from the input gate to the input), :math:`W_{ic}, \
299 300 301
    W_{fc}, W_{oc}` are diagonal weight matrices for peephole connections. In
    our implementation, we use vectors to reprenset these diagonal weight
    matrices. The :math:`b` terms denote bias vectors (:math:`b_i` is the input
Y
Yibing Liu 已提交
302
    gate bias vector), :math:`\sigma` is the non-linear activations, such as
303 304
    logistic sigmoid function, and :math:`i, f, o` and :math:`c` are the input
    gate, forget gate, output gate, and cell activation vectors, respectively,
305 306
    all of which have the same size as the cell output activation vector :math:`h`.

307 308 309 310
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
    and :math:`act_h` are the cell input and cell output activation functions
    and `tanh` is usually used for them. :math:`\\tilde{c_t}` is also called
    candidate hidden state, which is computed based on the current input and
311 312 313
    the previous hidden state.

    Set `use_peepholes` to `False` to disable peephole connection. The formula
Y
Yibing Liu 已提交
314 315 316
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.

Y
Yibing Liu 已提交
317 318 319
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connect layer before LSTM layer.
Y
Yibing Liu 已提交
320 321

    Args:
322 323 324 325
        input(Variable): The input of dynamic_lstm layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
Y
Yibing Liu 已提交
326 327
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
Y
Yancey 已提交
328 329 330 331 332 333 334
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.

335
        param_attr(ParamAttr|None): The parameter attribute for the learnable
336
                               hidden-hidden weights.
Y
Yibing Liu 已提交
337 338 339

                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
340 341 342
                               - The shape is (D x 4D), where D is the hidden
                                 size.
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
343 344 345
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.
Y
Yibing Liu 已提交
346

347
                              1. `use_peepholes = False`
Y
Yibing Liu 已提交
348
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
349
                                - The shape is (1 x 4D).
350
                              2. `use_peepholes = True`
Y
Yibing Liu 已提交
351 352
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
353
                                - The shape is (1 x 7D).
354
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
Y
Yibing Liu 已提交
355 356
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
357 358
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
Y
Yibing Liu 已提交
359
                              "identity"], default "sigmoid".
360
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
Y
Yibing Liu 已提交
361 362
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
F
stash  
fengjiayi 已提交
363 364
                              Choices = ["sigmoid", "tanh",
                                  "relu", "identity"],
Y
Yibing Liu 已提交
365 366
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
367 368
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
369 370

    Returns:
Y
Yibing Liu 已提交
371 372
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.
Y
Yibing Liu 已提交
373

Y
Yibing Liu 已提交
374
    Examples:
Y
Yibing Liu 已提交
375 376
        .. code-block:: python

Y
Yibing Liu 已提交
377 378
            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
379
                                           act=None, bias_attr=None)
Y
Yibing Liu 已提交
380 381
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
Y
Yibing Liu 已提交
382
    """
383

Y
Yu Yang 已提交
384 385 386 387 388 389 390 391 392 393 394 395 396 397
    helper = LayerHelper('lstm', **locals())
    size = size / 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)
Y
Yancey 已提交
398 399 400 401 402 403 404 405 406 407
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yu Yang 已提交
408 409 410

    helper.append_op(
        type='lstm',
Y
Yancey 已提交
411
        inputs=inputs,
Y
Yu Yang 已提交
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell


Y
Yibing Liu 已提交
428 429 430 431 432 433 434 435 436 437 438
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
439 440
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
441 442 443
    """
    **Dynamic LSTMP Layer**

444 445 446 447 448 449
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
450 451 452 453 454

    The formula is as follows:

    .. math::

455
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
456

457
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
458

459
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
460

461
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
462

463
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
464

465
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
466

467
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
468

Y
Yibing Liu 已提交
469 470 471 472 473 474
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
475
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
476
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
477
          bias vector).
Y
Yibing Liu 已提交
478 479 480
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
481
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
482
    * :math:`h`: The hidden state.
483
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
484 485
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
486
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
487
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
488
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
489 490
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
491 492 493 494

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
495

Y
Yibing Liu 已提交
496 497 498 499 500 501 502 503 504 505 506 507
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
508
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
509 510
                               hidden-hidden weight and projection weight.

511 512
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
513 514
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
515 516
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
517 518
                               - The shape of projection weight is (D x P).
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
519 520 521 522 523 524
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
525
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
526 527 528
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
529
                                - The shape is (1 x 7D).
Y
Yibing Liu 已提交
530 531 532 533 534 535 536 537 538
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
F
stash  
fengjiayi 已提交
539 540
                              Choices = ["sigmoid", "tanh",
                                  "relu", "identity"],
Y
Yibing Liu 已提交
541 542
                              default "tanh".
        proj_activation(str): The activation for projection output.
F
stash  
fengjiayi 已提交
543 544
                              Choices = ["sigmoid", "tanh",
                                  "relu", "identity"],
Y
Yibing Liu 已提交
545 546
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
547 548
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
549 550

    Returns:
551 552
        tuple: The projection of hidden state, and cell state of LSTMP. The \
               shape of projection is (T x P), for the cell state which is \
Y
Yibing Liu 已提交
553 554 555 556 557
               (T x D), and both LoD is the same with the `input`.

    Examples:
        .. code-block:: python

Y
Yibing Liu 已提交
558
            hidden_dim, proj_dim = 512, 256
Y
Yibing Liu 已提交
559 560
            fc_out = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
                                     act=None, bias_attr=None)
561 562 563
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
564 565 566 567
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
568
    """
569

Y
Yibing Liu 已提交
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
    helper = LayerHelper('lstmp', **locals())
    size = size / 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    projection = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    ordered_proj0 = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
616 617 618 619 620 621 622 623 624 625 626
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
    **Dynamic GRU Layer**

627
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
G
guosheng 已提交
628
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_
629

G
guosheng 已提交
630 631 632 633 634 635 636 637 638
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
639

G
guosheng 已提交
640
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
641

G
guosheng 已提交
642
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
643 644
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
645 646 647 648
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
649
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
650 651

    Args:
652 653
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
654
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
655
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
656 657
            is the hidden size.
        size(int): The dimension of the gru cell.
658
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
659 660
            hidden-hidden weight matrix. Note:

661
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
662
              :math:`D` is the hidden size.
663
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
664
              The first part are weights of the update gate and reset gate with
665
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
666
              candidate hidden state with shape :math:`(D \\times D)`.
667
        bias_attr(ParamAttr): The parameter attribute for learnable the
G
guosheng 已提交
668
            hidden-hidden bias.
669
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
670 671 672
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
673
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
674
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
675
        h_0 (Variable): The hidden output of the first time step.
G
guosheng 已提交
676 677

    Returns:
G
guosheng 已提交
678 679
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
            and lod is the same with the input.
680

G
guosheng 已提交
681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
    Examples:
        .. code-block:: python

            hidden_dim = 512
            x = fluid.layers.fc(input=data, size=hidden_dim * 3)
            hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
696
    batch_size = input.shape[0]
G
guosheng 已提交
697 698 699
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    if h_0 != None:
        assert h_0.shape == (
Y
Yancey 已提交
700 701 702
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725

    hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_reset_hidden_prev = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
726 727 728
def gru_unit(input,
             hidden,
             size,
729 730
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
731
             activation='tanh',
732
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
733
    """
734
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
735

736 737
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
738

739
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
740

741
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
742

743
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
744 745

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
746 747 748
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
749 750
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

751 752
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
753 754 755
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
756 757 758 759 760

    Args:
        input (Variable): The fc transformed input value of current step.
        hidden (Variable): The hidden value of lstm unit from previous step.
        size (integer): The input dimension value.
761 762
        param_attr (ParamAttr): The weight parameters for gru unit. Default: None
        bias_attr (ParamAttr): The bias parameters for gru unit. Default: None
763 764 765 766
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
767

768 769 770 771 772 773
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
774

775
             # assuming we have x_t_data and prev_hidden of size=10
776
             x_t = fluid.layers.fc(input=x_t_data, size=30)
777 778
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
779 780 781 782 783 784 785 786 787 788 789 790 791 792 793

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
    size = size / 3

    # create weight
794 795
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
796

797 798 799 800
    gate = helper.create_tmp_variable(dtype)
    reset_hidden_pre = helper.create_tmp_variable(dtype)
    updated_hidden = helper.create_tmp_variable(dtype)
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
801
    # create bias
802
    if helper.bias_attr:
Y
Yu Yang 已提交
803 804 805
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
806
        inputs['Bias'] = bias
Y
Yu Yang 已提交
807 808 809

    helper.append_op(
        type='gru_unit',
810
        inputs=inputs,
Y
Yu Yang 已提交
811 812 813 814 815 816
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
817 818
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
819 820 821 822 823
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
824
@templatedoc()
825
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
826 827 828 829 830 831 832 833 834 835 836 837 838 839
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
        ${log_likelihood_comment}

    """
Y
Yu Yang 已提交
840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
    alpha = helper.create_tmp_variable(dtype=helper.input_dtype())
    emission_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    transition_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    log_likelihood = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


Y
yuyang18 已提交
865
@templatedoc()
866
def crf_decoding(input, param_attr, label=None):
Y
yuyang18 已提交
867 868 869 870 871 872 873 874 875 876 877
    """
    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
        param_attr(ParamAttr): The parameter attribute for training.
        label(${label_type}): ${label_comment}

    Returns:
        ${viterbi_path_comment}
    """
Y
Yu Yang 已提交
878 879 880 881 882 883 884 885 886 887 888 889 890
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})

    return viterbi_path


F
fengjiayi 已提交
891
def cos_sim(X, Y):
Y
Yu Yang 已提交
892 893 894
    """
    This function performs the cosine similarity between two tensors
    X and Y and returns that as the output.
895 896 897 898 899 900 901

    Args:
        X (Variable): The input X.
        Y (Variable): The input Y.
    
    Returns:
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
902
    """
F
fengjiayi 已提交
903
    helper = LayerHelper('cos_sim', **locals())
Y
Yu Yang 已提交
904 905 906 907 908 909 910 911 912 913 914 915 916
    out = helper.create_tmp_variable(dtype=X.dtype)
    xnorm = helper.create_tmp_variable(dtype=X.dtype)
    ynorm = helper.create_tmp_variable(dtype=X.dtype)
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


917
def dropout(x, dropout_prob, is_test=False, seed=None, name=None):
918 919 920 921 922 923 924 925 926 927
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
    training. The dropout operator randomly set (according to the given dropout
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
928 929 930 931 932 933 934 935 936
        x (Variable): The input tensor.
         dropout_prob (float): Probability of setting units to zero.
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
937 938 939 940 941 942 943 944 945 946 947

    Returns:
        Variable: A tensor variable.

    Examples:
        .. code-block:: python

          x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
          droped = fluid.layers.dropout(input=x, dropout_rate=0.5)
    """

F
fengjiayi 已提交
948
    helper = LayerHelper('dropout', **locals())
949 950 951 952 953 954 955
    out = helper.create_tmp_variable(dtype=x.dtype)
    mask = helper.create_tmp_variable(dtype=x.dtype, stop_gradient=True)
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
956 957 958 959 960 961
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
            'seed': seed if seed is not None else 0
        })
962 963 964
    return out


F
fengjiayi 已提交
965
def cross_entropy(input, label, soft_label=False):
Y
Yu Yang 已提交
966
    """
Y
Yibing Liu 已提交
967 968
    **Cross Entropy Layer**

969 970 971
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
972 973

    1) One-hot cross-entropy:
F
fengjiayi 已提交
974
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
975

Y
Yibing Liu 已提交
976
        .. math::
Y
yangyaming 已提交
977

Y
Yibing Liu 已提交
978 979 980
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
981 982
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
983 984 985 986 987

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
988
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
989 990 991
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
992 993
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
994
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
995

Y
Yibing Liu 已提交
996
    Args:
Y
yangyaming 已提交
997
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
998 999 1000 1001
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1002
        label (Variable|list): the ground truth which is a 2-D tensor. When
1003 1004 1005 1006
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1007
        soft_label (bool): a flag indicating whether to
1008 1009
                                           interpretate the given labels as soft
                                           labels, default `False`.
Y
Yibing Liu 已提交
1010 1011 1012 1013 1014

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1015 1016 1017 1018 1019
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1020 1021 1022 1023 1024 1025

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1026
    """
F
fengjiayi 已提交
1027
    helper = LayerHelper('cross_entropy', **locals())
Y
Yu Yang 已提交
1028 1029 1030 1031 1032 1033
    out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
F
fengjiayi 已提交
1034
        attrs={"soft_label": soft_label})
Y
Yu Yang 已提交
1035 1036 1037
    return out


F
fengjiayi 已提交
1038
def square_error_cost(input, label):
Y
Yu Yang 已提交
1039
    """
1040 1041
    **Square error cost layer**

1042 1043
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1044

1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1058 1059
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1060 1061

    Returns:
G
guosheng 已提交
1062
        Variable: The tensor variable storing the element-wise squared error \
1063
                  difference of input and label.
1064 1065 1066 1067 1068 1069 1070 1071

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1072
    """
F
fengjiayi 已提交
1073
    helper = LayerHelper('square_error_cost', **locals())
Y
Yu Yang 已提交
1074 1075 1076 1077 1078 1079 1080 1081 1082
    minus_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

    square_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
F
fengjiayi 已提交
1083 1084
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1085 1086 1087
    return square_out


1088
@templatedoc()
Y
Yu Yang 已提交
1089 1090 1091 1092
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1093
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1094
    """
Y
yangyaming 已提交
1095
    This function computes and outputs the precision, recall and
1096
    F1-score of chunk detection.
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108

    Args:
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
    
    Returns:
        tuple: tuple containing: (precision, recall, f1_score,
               num_infer_chunks, num_label_chunks,
               num_correct_chunks)
Y
Yu Yang 已提交
1109
    """
F
fengjiayi 已提交
1110
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1111 1112 1113 1114 1115

    # prepare output
    precision = helper.create_tmp_variable(dtype="float32")
    recall = helper.create_tmp_variable(dtype="float32")
    f1_score = helper.create_tmp_variable(dtype="float32")
1116 1117 1118
    num_infer_chunks = helper.create_tmp_variable(dtype="int64")
    num_label_chunks = helper.create_tmp_variable(dtype="int64")
    num_correct_chunks = helper.create_tmp_variable(dtype="int64")
Y
Yu Yang 已提交
1119 1120 1121 1122 1123 1124 1125 1126

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1127 1128 1129 1130
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1131 1132 1133
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1134 1135
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1136
        })
1137 1138
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1139 1140


1141
@templatedoc()
Y
Yu Yang 已提交
1142 1143 1144 1145 1146 1147 1148
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
1149
                  act=None):
Y
Yu Yang 已提交
1150 1151 1152 1153
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
        bias_attr (ParamAttr|None): attributes for bias
        param_attr (ParamAttr|None): attributes for parameter
        act (str): the activation type
    
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
    """

    # FIXME(dzh) : want to unify the argument of python layer
    # function. So we ignore some unecessary attributes.
    # such as, padding_trainable, context_start.

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
            'contextStart': -int(filter_size / 2),
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
def sequence_softmax(input, param_attr=None, bias_attr=None, use_cudnn=True):
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


1208
def softmax(input, param_attr=None, bias_attr=None, use_cudnn=True, name=None):
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1220 1221 1222
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1223 1224
           stride=1,
           padding=0,
1225
           dilation=1,
Y
Yu Yang 已提交
1226 1227 1228
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1229
           use_cudnn=True,
1230
           use_mkldnn=False,
1231 1232
           act=None,
           name=None):
Y
Yu Yang 已提交
1233
    """
C
chengduoZH 已提交
1234 1235 1236
    **Convlution2D Layer**

    The convolution2D layer calculates the output based on the input, filter
1237 1238 1239
    and strides, paddings, dilations, groups parameters. Input(Input) and
    Output(Output) are in NCHW format. Where N is batch size, C is the number of
    channels, H is the height of the feature, and W is the width of the feature.
C
chengduoZH 已提交
1240 1241
    The details of convolution layer, please refer UFLDL's `convolution,
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_ .
1242 1243 1244
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1245

1246
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1247

C
chengduoZH 已提交
1248 1249
    .. math::

C
refine  
chengduoZH 已提交
1250
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1251

C
chengduoZH 已提交
1252
    In the above equation:
C
chengduoZH 已提交
1253

1254 1255 1256 1257 1258
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1259 1260
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be
                   different.
C
chengduoZH 已提交
1261 1262 1263

    Example:

1264 1265
        - Input:

W
weixing02 已提交
1266
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1267

W
weixing02 已提交
1268
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1269

1270
        - Output:
W
weixing02 已提交
1271
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1272

C
chengduoZH 已提交
1273
        Where
1274 1275

        .. math::
C
chengduoZH 已提交
1276

W
weixing02 已提交
1277 1278
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1279 1280

    Args:
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
        input (Variable): The input image with [N, C, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr (ParamAttr): The parameters to the Conv2d Layer. Default: None
        bias_attr (ParamAttr): Bias parameter for the Conv2d layer. Default: None
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        use_mkldnn (bool): Use mkldnn kernels or not.
        act (str): Activation type. Default: None
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
C
chengduoZH 已提交
1309 1310

    Returns:
G
guosheng 已提交
1311
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1312 1313
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1314
    Raises:
1315 1316
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1317

C
chengduoZH 已提交
1318 1319 1320
    Examples:
        .. code-block:: python

1321 1322 1323 1324
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(
              input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1325 1326 1327 1328 1329
    """
    if stride is None:
        stride = [1, 1]

    num_channels = input.shape[1]
1330 1331

    l_type = 'conv2d'
X
xzl 已提交
1332 1333
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1334
        l_type = 'depthwise_conv2d'
1335 1336 1337 1338

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1339 1340 1341 1342 1343 1344 1345
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
        num_filter_channels = num_channels / groups

C
chengduoZH 已提交
1346 1347 1348
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1349
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1350

C
chengduoZH 已提交
1351 1352
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**2 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
1370
        type=l_type,
Y
Yu Yang 已提交
1371 1372 1373 1374 1375
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1376 1377 1378
        attrs={
            'strides': stride,
            'paddings': padding,
1379
            'dilations': dilation,
C
chengduoZH 已提交
1380
            'groups': groups,
1381 1382
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn
C
chengduoZH 已提交
1383
        })
Y
Yu Yang 已提交
1384 1385 1386 1387 1388 1389

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


F
fengjiayi 已提交
1390
def sequence_pool(input, pool_type):
Y
Yu Yang 已提交
1391
    """
Y
yangyaming 已提交
1392 1393 1394
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
         x.lod = [[0, 2, 5, 7]]
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
         with condition len(x.lod[-1]) - 1 == out.dims[0]

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
1420 1421
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1422

L
Luo Tao 已提交
1423 1424
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
1425
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
1426 1427 1428 1429 1430 1431 1432 1433
            It supports average, sum, sqrt and max.

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1434

Y
yangyaming 已提交
1435
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1436 1437 1438 1439 1440
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
1441 1442
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
1443
    """
F
fengjiayi 已提交
1444
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    max_index = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
        attrs={"pooltype": pool_type.upper()})

Y
yangyaming 已提交
1456 1457 1458 1459 1460
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
1461 1462 1463
    return pool_out


F
fengjiayi 已提交
1464
def sequence_first_step(input):
L
Luo Tao 已提交
1465
    """
L
Luo Tao 已提交
1466
    This function gets the first step of sequence.
L
Luo Tao 已提交
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478

    .. code-block:: text

       x is a 1-level LoDTensor:
         x.lod = [[0, 2, 5, 7]]
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
         with condition len(x.lod[-1]) - 1 == out.dims[0]
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1479

L
Luo Tao 已提交
1480 1481 1482 1483 1484 1485 1486 1487 1488
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1489

Y
yangyaming 已提交
1490
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1491 1492 1493
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
1494 1495 1496
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
1497
def sequence_last_step(input):
L
Luo Tao 已提交
1498
    """
L
Luo Tao 已提交
1499
    This function gets the last step of sequence.
L
Luo Tao 已提交
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511

    .. code-block:: text

       x is a 1-level LoDTensor:
         x.lod = [[0, 2, 5, 7]]
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
         with condition len(x.lod[-1]) - 1 == out.dims[0]
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
1512

L
Luo Tao 已提交
1513 1514 1515 1516 1517 1518 1519 1520 1521
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1522

Y
yangyaming 已提交
1523
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1524 1525 1526
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
1527 1528 1529
    return sequence_pool(input=input, pool_type="last")


Y
Yu Yang 已提交
1530
def pool2d(input,
C
chengduoZH 已提交
1531 1532
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
1533 1534
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
1535
           global_pooling=False,
C
chengduoZH 已提交
1536
           use_cudnn=True,
1537
           ceil_mode=False,
1538
           use_mkldnn=False,
C
caoying03 已提交
1539
           name=None):
Y
Yu Yang 已提交
1540 1541 1542
    """
    This function adds the operator for pooling in 2 dimensions, using the
    pooling configurations mentioned in input parameters.
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        use_mkldnn (bool): ${use_mkldnn_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
    
    Returns:
        Variable: output of pool2d layer.
Y
Yu Yang 已提交
1559 1560 1561 1562 1563
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
1564

C
chengduoZH 已提交
1565 1566 1567 1568 1569
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
1570 1571 1572 1573
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
1574 1575
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589

    helper = LayerHelper('pool2d', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="pool2d",
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
1590
            "paddings": pool_padding,
1591
            "use_cudnn": use_cudnn,
1592 1593
            "ceil_mode": ceil_mode,
            "use_mkldnn": use_mkldnn
Y
Yu Yang 已提交
1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
1606
               data_layout='NCHW',
Y
Yang Yang 已提交
1607
               in_place=False,
1608
               use_mkldnn=False,
1609 1610
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
1611
               moving_variance_name=None,
W
wanghaoshuang 已提交
1612
               do_model_average_for_mean_and_var=False):
Y
Yu Yang 已提交
1613 1614 1615
    """
    This function helps create an operator to implement
    the BatchNorm layer using the configurations from the input parameters.
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634

    Args:
        input (Variable): the input variable.
        act (str): activation type
        is_test (bool): whether to run batch_norm as test mode.
        momentum (float): momentum
        epsilon (float): epsilon, default 1e-05
        param_attr (ParamAttr|None): attributes for parameter
        bias_attr (ParamAttr|None): attributes for bias
        data_layout (str): data layout, default NCHW
        in_place (bool): if True, do not create tmp variable
        use_mkldnn (bool): ${use_mkldnn_comment}
        name (str): The name of this layer. It is optional.
        moving_mean_name (str): The name of moving mean variable name, optional.
        moving_variance_name (str): The name of moving variance name, optional.
        do_model_average_for_mean_and_var (bool):

    Returns:
        Variable: output of batch_norm layer.
Y
Yu Yang 已提交
1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
    """
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
1658
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
1659

1660 1661
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
1662 1663 1664
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
1665
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
1666
        shape=param_shape,
1667 1668 1669 1670 1671 1672 1673
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
1674
            trainable=False,
W
wanghaoshuang 已提交
1675
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
1676
        shape=param_shape,
1677 1678
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
1679 1680 1681 1682 1683 1684

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
Q
QI JUN 已提交
1685 1686
    saved_mean = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
1687

Y
Yang Yang 已提交
1688
    batch_norm_out = input if in_place else helper.create_tmp_variable(dtype)
Y
Yu Yang 已提交
1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
1706 1707 1708 1709 1710 1711
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
            "use_mkldnn": use_mkldnn
        })
Y
Yu Yang 已提交
1712 1713 1714 1715

    return helper.append_activation(batch_norm_out)


G
guosheng 已提交
1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
    **Layer Normalization**

1728
    Assume feature vectors exist on dimensions
G
guosheng 已提交
1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
    :attr:`begin_norm_axis ... rank(input)` and calculate the moment statistics
    along these dimensions for each feature vector :math:`a` with size
    :math:`H`, then normalize each feature vector using the corresponding
    statistics. After that, apply learnable gain and bias on the normalized
    tensor to scale and shift if :attr:`scale` and :attr:`shift` are set.

    Refer to `Layer Normalization <https://arxiv.org/pdf/1607.06450v1.pdf>`_

    The formula is as follows:

    .. math::

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

    Args:
        input(Variable): The input tensor variable.
1749
        scale(bool): Whether to learn the adaptive gain :math:`g` after
G
guosheng 已提交
1750
            normalization.
1751
        shift(bool): Whether to learn the adaptive bias :math:`b` after
G
guosheng 已提交
1752
            normalization.
1753
        begin_norm_axis(bool): The normalization will be performed along
G
guosheng 已提交
1754
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
1755
        epsilon(float): The small value added to the variance to prevent
G
guosheng 已提交
1756 1757 1758 1759 1760 1761
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            gain :math:`g`.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`.
        act(str): Activation to be applied to the output of layer normalizaiton.
1762
        name (str): The name of this layer. It is optional.
G
guosheng 已提交
1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787

    Returns:
        Variable: A tensor variable with the same shape as the input.

    Examples:
        .. code-block:: python

            data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
            x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
1788
    if shift:
G
guosheng 已提交
1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
    mean_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


1813
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py

    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.

    Examples:
        .. code-block:: python

            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
Y
Yu Yang 已提交
1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
    helper = LayerHelper('beam_search_decode', **locals())
    sentence_ids = helper.create_tmp_variable(dtype=ids.dtype)
    sentence_scores = helper.create_tmp_variable(dtype=ids.dtype)

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
1859 1860 1861
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})
Y
Yu Yang 已提交
1862 1863 1864 1865 1866 1867 1868 1869

    return sentence_ids, sentence_scores


def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
1870 1871 1872
                     padding=0,
                     stride=1,
                     dilation=1,
1873
                     groups=None,
C
caoying03 已提交
1874
                     param_attr=None,
1875
                     bias_attr=None,
C
chengduoZH 已提交
1876
                     use_cudnn=True,
1877
                     act=None,
C
caoying03 已提交
1878
                     name=None):
Y
Yu Yang 已提交
1879
    """
1880 1881 1882 1883 1884 1885 1886 1887
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
1888 1889
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901

    For each input :math:`X`, the equation is:

    .. math::

        Out = W \\ast X

    In the above equation:

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast` : Convolution transpose operation.
1902 1903
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be
                   different.
Y
Yu Yang 已提交
1904

1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
    Example:

        - Input:

          Input shape: $(N, C_{in}, H_{in}, W_{in})$

          Filter shape: $(C_{in}, C_{out}, H_f, W_f)$

        - Output:

          Output shape: $(N, C_{out}, H_{out}, W_{out})$

        Where
Y
Yu Yang 已提交
1918

1919 1920 1921 1922
        .. math::

           H_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1
Y
Yu Yang 已提交
1923 1924

    Args:
1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
            tuple, it must contain two integers, (image_H, image_W). This
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
        param_attr(ParamAttr): The parameters to the Conv2d_transpose Layer.
                               Default: None
        bias_attr(ParamAttr): Bias parameter for the Conv2d layer. Default: None
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act(str): Activation type. Default: None
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
1958 1959

    Returns:
1960
        Variable: The tensor variable storing the convolution transpose result.
1961 1962

    Raises:
1963 1964
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
1965 1966 1967 1968

    Examples:
       .. code-block:: python

1969 1970 1971 1972
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(
              input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
1973 1974 1975 1976 1977 1978
    """
    helper = LayerHelper("conv2d_transpose", **locals())
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")
    input_channel = input.shape[1]

C
chengduoZH 已提交
1979 1980 1981
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1982

C
chengduoZH 已提交
1983 1984 1985
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
1986 1987 1988 1989 1990 1991 1992 1993
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

        h_in = input.shape[2]
        w_in = input.shape[3]
C
chengduoZH 已提交
1994 1995 1996 1997 1998

        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
                         padding[0] - 1) / dilation[0] + 1
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
                         padding[1] - 1) / dilation[1] + 1
Y
Yu Yang 已提交
1999
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
2000 2001 2002
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
Y
Yu Yang 已提交
2003

2004 2005
    groups = 1 if groups is None else groups
    filter_shape = [input_channel, num_filters / groups] + filter_size
Y
Yu Yang 已提交
2006 2007 2008
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

2009
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
2010 2011 2012 2013
    helper.append_op(
        type='conv2d_transpose',
        inputs={'Input': [input],
                'Filter': [img_filter]},
2014
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2015 2016 2017 2018
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
2019
            'groups': groups,
C
chengduoZH 已提交
2020 2021
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
2022

2023 2024
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
2025
    return out
Y
yangyaming 已提交
2026 2027


Y
yangyaming 已提交
2028
def sequence_expand(x, y, ref_level=-1, name=None):
2029
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
2030 2031 2032 2033
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
2034 2035 2036 2037 2038

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
Y
yangyaming 已提交
2039 2040
                x.lod  = [[0,   2,        4]]
                x.data = [[a], [b], [c], [d]]
2041 2042 2043 2044 2045 2046
                x.dims = [4, 1]

            y is a LoDTensor:
                y.lod = [[0,    2,    4],
                         [0, 3, 6, 7, 8]]

Y
yangyaming 已提交
2047
            ref_level: 0
2048

Y
yangyaming 已提交
2049 2050 2051
            then output is a 1-level LoDTensor:
                out.lod =  [[0,   2,        4,        6,        8]]
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
2052 2053 2054 2055
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
2056
                x.data = [[a], [b], [c]]
2057 2058 2059
                x.dims = [3, 1]

            y is a LoDTensor:
Y
yangyaming 已提交
2060
                y.lod = [[0, 2, 2, 5]]
2061

Y
yangyaming 已提交
2062
            ref_level: -1
2063

Y
yangyaming 已提交
2064 2065 2066
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
2067 2068 2069
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2070 2071
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
2072
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
2073
                        will be named automatically.
2074 2075 2076 2077 2078 2079 2080 2081 2082 2083

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
2084
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
2085
    """
Y
yangyaming 已提交
2086
    helper = LayerHelper('sequence_expand', input=x, **locals())
2087 2088 2089
    dtype = helper.input_dtype()
    tmp = helper.create_tmp_variable(dtype)
    helper.append_op(
Y
yangyaming 已提交
2090 2091 2092 2093 2094
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
2095
    return tmp
2096 2097


2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
    Beam Search Layer. This layer does the search in beams for one time step. 
    Specifically, it selects the top-K candidate word ids of current step from
    :attr:`ids` according to their :attr:`scores` for all source sentences,
    where K is :attr:`beam_size` and :attr:`ids, scores` are predicted results
    from the computation cell. Additionally, :attr:`pre_ids` and
    :attr:`pre_scores` are the output of beam_search at previous step, they are
    needed for special use to handle ended candidate translations.
 
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py

    Args:
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.

    Examples:
        .. code-block:: python

            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

    selected_scores = helper.create_tmp_variable(dtype=score_type)
    selected_ids = helper.create_tmp_variable(dtype=id_type)

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
2186
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


Y
yangyaming 已提交
2204 2205 2206 2207
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
2208
              param_attr=None,
C
caoying03 已提交
2209 2210
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
2211 2212 2213 2214
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

2215
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
2216

2217
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
2218

2219
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
2220

2221
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
2222 2223 2224

            h_t & = o_t tanh(c_t)

2225 2226 2227 2228 2229 2230
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
2231 2232 2233

        .. math::

2234
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
2235 2236 2237 2238 2239 2240 2241 2242

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
2243
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
2244 2245

    Args:
Y
yangyaming 已提交
2246 2247 2248 2249 2250 2251
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
2252
        forget_bias (float): The forget bias of lstm unit.
Y
yangyaming 已提交
2253 2254
        param_attr (ParamAttr): The attributes of parameter weights, used to set
            initializer, name etc.
Y
yangyaming 已提交
2255 2256
        bias_attr (ParamAttr): The attributes of bias weights, if not False,
            bias weights will be created and be set to default value.
C
caoying03 已提交
2257 2258
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
2259 2260

    Returns:
Y
yangyaming 已提交
2261
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
2262 2263

    Raises:
2264 2265 2266 2267
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
2268 2269 2270 2271 2272 2273

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
2274
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
2275
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
2276
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
2293
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
2294 2295 2296 2297
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
2298 2299
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
2300 2301 2302
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
2303
    size = cell_t_prev.shape[1]
2304
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
2305 2306
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
2307
                param_attr=param_attr,
2308
                bias_attr=bias_attr)
Y
yangyaming 已提交
2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320
    dtype = x_t.dtype
    c = helper.create_tmp_variable(dtype)
    h = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
2321
    return h, c
G
guosheng 已提交
2322 2323


C
caoying03 已提交
2324
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
2325
    """
Y
yangyaming 已提交
2326
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
2327 2328 2329

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
2330
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
2331 2332
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
2333 2334
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
2335
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
2336
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
2337
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
2338 2339
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
2340 2341 2342

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
2343

G
guosheng 已提交
2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
2355 2356 2357 2358 2359 2360 2361 2362

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
2363 2364 2365
    """
    helper = LayerHelper('reduce_sum', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
2366 2367
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
2368 2369 2370 2371 2372
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
2373
            'dim': dim if dim != None else [0],
G
guosheng 已提交
2374 2375 2376 2377
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
2378 2379


C
caoying03 已提交
2380
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
2381
    """
Y
yangyaming 已提交
2382
    Computes the mean of tensor elements over the given dimension.
G
guosheng 已提交
2383 2384 2385

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
2386
        dim (list|int|None): The dimensions along which the mean is computed. If
Y
yangyaming 已提交
2387 2388 2389
            :attr:`None`, compute the mean over all elements of :attr:`input`
            and return a Tensor variable with a single element, otherwise
            must be in the range :math:`[-rank(input), rank(input))`. If
W
whs 已提交
2390
            :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
2391 2392
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
2393
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
2394 2395
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
2396 2397 2398

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
2399

G
guosheng 已提交
2400 2401 2402 2403 2404 2405 2406 2407 2408 2409
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
2410 2411
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
2412 2413 2414 2415 2416 2417 2418

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
2419 2420 2421
    """
    helper = LayerHelper('reduce_mean', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
2422 2423
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
2424 2425 2426 2427 2428
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
2429
            'dim': dim if dim != None else [0],
G
guosheng 已提交
2430 2431 2432 2433
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
2434 2435


C
caoying03 已提交
2436
def reduce_max(input, dim=None, keep_dim=False, name=None):
2437
    """
Y
yangyaming 已提交
2438
    Computes the maximum of tensor elements over the given dimension.
2439 2440 2441

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
2442
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
2443 2444 2445
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
2446
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
2447 2448
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
2449
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
2450 2451
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
2452 2453 2454

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
2455

2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
2467 2468 2469 2470 2471 2472 2473

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
2474 2475 2476
    """
    helper = LayerHelper('reduce_max', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
2477 2478
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
2479 2480 2481 2482 2483
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
2484
            'dim': dim if dim != None else [0],
2485 2486 2487 2488 2489 2490
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
2491
def reduce_min(input, dim=None, keep_dim=False, name=None):
2492
    """
Y
yangyaming 已提交
2493
    Computes the minimum of tensor elements over the given dimension.
2494 2495 2496

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
2497
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
2498 2499 2500
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
2501
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
2502 2503
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
2504
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
2505 2506
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
2507 2508 2509

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
2510

2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
2522 2523 2524 2525 2526 2527 2528

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
2529 2530 2531
    """
    helper = LayerHelper('reduce_min', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
2532 2533
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
2534 2535 2536 2537 2538
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
2539
            'dim': dim if dim != None else [0],
2540 2541 2542 2543
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
2544 2545


2546 2547 2548 2549 2550 2551
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
2552
        dim (list|int|None): The dimensions along which the product is performed. If
2553 2554
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
2555 2556
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
2557 2558 2559
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
2560
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
2561
            layer will be named automatically.
2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
2576
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
2577
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
2578 2579 2580 2581 2582 2583 2584

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
2585 2586 2587
    """
    helper = LayerHelper('reduce_prod', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
2588 2589
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
2590 2591 2592 2593 2594
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
2595
            'dim': dim if dim != None else [0],
2596 2597 2598 2599 2600 2601
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
2602
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
2603
    """
C
caoying03 已提交
2604
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
2605 2606 2607

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
2608 2609 2610 2611 2612
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
2613
            :attr:`dim` dimension orderly.
C
caoying03 已提交
2614
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
2615
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
2616 2617
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629

    Returns:
        List: The list of segmented tensor variables.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
2630 2631
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
        helper.create_tmp_variable(dtype=helper.input_dtype())
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
2661 2662 2663 2664 2665 2666 2667 2668 2669


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

2670 2671
    .. math::
    y = \frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
2672 2673 2674 2675 2676

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
2677 2678 2679 2680 2681 2682 2683 2684
        x(Variable|list): The input tensor to l2_normalize layer.
        axis(int): The axis on which to apply normalization. If `axis < 0`,
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
        epsilon(float): The epsilon value is used to avoid division by zero,
            the defalut value is 1e-10.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
C
caoying03 已提交
2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695


    Returns:
        Variable: The output tensor variable.

    Examples:
        .. code-block:: python

          data = fluid.layers.data(name="data",
                                   shape=(3, 17, 13),
                                   dtype="float32")
Y
ying 已提交
2696
          normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
2697 2698
    """

F
fengjiayi 已提交
2699 2700
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
2701 2702
    helper = LayerHelper("l2_normalize", **locals())

2703 2704
    out = helper.create_tmp_variable(dtype=x.dtype)
    norm = helper.create_tmp_variable(dtype=x.dtype)
C
caoying03 已提交
2705
    helper.append_op(
2706 2707 2708 2709
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
2710
        attrs={
2711 2712
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
2713 2714
        })
    return out
2715 2716


2717
def matmul(x, y, transpose_x=False, transpose_y=False, name=None):
G
guosheng 已提交
2718
    """
Y
ying 已提交
2719 2720 2721 2722
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
2723

C
chengduoZH 已提交
2724
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
2725
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
2726

2727 2728 2729 2730 2731
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
2732
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
2733

C
chengduoZH 已提交
2734
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
2735
      performs in the following way.
G
guosheng 已提交
2736

2737
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
2738
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
2739
        last two dimensions and a batched matrix multiply supporting broadcast
2740
        applies on the two tensors.
G
guosheng 已提交
2741

Y
ying 已提交
2742 2743
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
2744
    removed after matrix multiplication.
G
guosheng 已提交
2745 2746 2747

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
2748 2749 2750
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
2751
        name(str|None): A name for this layer(optional). If set None, the layer
2752
            will be named automatically.
G
guosheng 已提交
2753 2754

    Returns:
2755
        Variable: The product Tensor variable.
G
guosheng 已提交
2756

G
guosheng 已提交
2757 2758 2759
    Examples:
        .. code-block:: python

2760
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
2761 2762
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
2763

2764 2765
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
2766

2767 2768
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
2769

2770 2771
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
2772 2773 2774 2775

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

2776 2777
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
2778

Y
ying 已提交
2779
            # x: [M], y: [N]
2780
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
2781
    """
Y
ying 已提交
2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
2794
            y_shape = y_shape + [1]
Y
ying 已提交
2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

2811
    helper = LayerHelper('matmul', **locals())
Y
ying 已提交
2812
    out = helper.create_tmp_variable(dtype=x.dtype)
G
guosheng 已提交
2813
    helper.append_op(
2814 2815 2816 2817 2818 2819 2820
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'transpose_X': transpose_x,
               'transpose_Y': transpose_y})
    return out
2821 2822


2823
def topk(input, k, name=None):
Q
qingqing01 已提交
2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

    If the input is a vector (rank=1), finds the k largest entries in the vector
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
        k(int): An integer value to specify the top k largest elements.
2839 2840
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Q
qingqing01 已提交
2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871

    Returns:
        values(Variable): The k largest elements along each last dimensional
            slice.
        indices(Variable): The indices of values within the last dimension of
            input.

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    shape = input.shape
    if k < 1 and k >= shape[-1]:
        raise ValueError("k must be greater than 0 and less than %d." %
                         (shape[-1]))

    helper = LayerHelper("top_k", **locals())
    values = helper.create_tmp_variable(dtype=input.dtype)
    indices = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


W
wanghaoshuang 已提交
2872
def edit_distance(input, label, normalized=True, ignored_tokens=None,
W
wanghaoshuang 已提交
2873
                  name=None):
2874
    """
Y
ying 已提交
2875 2876 2877 2878 2879 2880 2881 2882 2883
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
2884

Y
ying 已提交
2885
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
2886

Y
ying 已提交
2887 2888 2889 2890
    Input(Hyps) is a LoDTensor consisting of all the hypothesis strings with
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
    in order in the same way in the LoDTensor Input(Refs).
W
wanghaoshuang 已提交
2891

Y
ying 已提交
2892 2893 2894
    Output(Out) contains the `batch_size` results and each stands for the edit
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
2895

2896 2897 2898
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
Y
ying 已提交
2899 2900 2901 2902
        normalized(bool): Indicated whether to normalize the edit distance by
                          the length of reference string.
        ignored_tokens(list of int): Tokens that should be removed before
                                     calculating edit distance.
2903
        name (str): The name of this layer. It is optional.
2904

W
wanghaoshuang 已提交
2905
    Returns:
W
wanghaoshuang 已提交
2906
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
2907 2908 2909 2910 2911

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
2912 2913
            y = fluid.layers.data(name='y', shape=[7], dtype='float32')

2914
            cost = fluid.layers.edit_distance(input=x,label=y)
2915
    """
2916
    helper = LayerHelper("edit_distance", **locals())
2917

2918
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
2919
    if ignored_tokens is not None and len(ignored_tokens) > 0:
2920 2921 2922 2923 2924 2925 2926
        erased_input = helper.create_tmp_variable(dtype="int64")
        erased_label = helper.create_tmp_variable(dtype="int64")

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
2927
            attrs={"tokens": ignored_tokens})
2928 2929 2930 2931 2932
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
2933
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
2934
            attrs={"tokens": ignored_tokens})
2935 2936
        label = erased_label

2937 2938
    # edit distance op
    edit_distance_out = helper.create_tmp_variable(dtype="int64")
2939
    sequence_num = helper.create_tmp_variable(dtype="int64")
2940 2941 2942 2943
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
2944 2945
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
2946 2947
        attrs={"normalized": normalized})

2948
    return edit_distance_out, sequence_num
2949 2950 2951 2952 2953


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
ying 已提交
2954 2955 2956 2957
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

        input.lod = [[0, 4, 8]]

        Then:

        output.data = [[2],
                       [1],
                       [3]]

        output.lod = [[0, 2, 3]]

    Args:

Y
ying 已提交
2987 2988 2989 2990 2991 2992 2993 2994 2995
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
2996
        name (str): The name of this layer. It is optional.
2997 2998

    Returns:
2999
        Variable: CTC greedy decode result. If all the sequences in result were
3000
        empty, the result LoDTensor will be [-1] with LoD [[0]] and dims [1, 1].
3001 3002 3003 3004 3005

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
3006

3007
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
3008
    """
3009
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
3010
    _, topk_indices = topk(input, k=1)
3011 3012 3013 3014 3015 3016

    # ctc align op
    ctc_out = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
3017
        outputs={"Output": [ctc_out]},
3018 3019
        attrs={"merge_repeated": True,
               "blank": blank})
3020
    return ctc_out
3021 3022


F
fengjiayi 已提交
3023
def warpctc(input, label, blank=0, norm_by_times=False):
W
wanghaoshuang 已提交
3024
    """
3025 3026
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
3027
    to compute Connectionist Temporal Classification (CTC) loss.
3028 3029
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
3030 3031 3032
    input tensor.

    Args:
3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049
        input(Variable): (LodTensor, default: LoDTensor<float>),
            the unscaled probabilities of variable-length sequences,
            which is a 2-D Tensor with LoD information.
            It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
            sequences' length and num_classes is the true number of classes.
            (not including the blank label).
        label(Variable): (LodTensor, default: LoDTensor<int>), the ground truth
            of variable-length sequence, which is a 2-D Tensor with LoD
            information. It is of the shape [Lg, 1], where Lg is th sum of
            all labels' length.
        blank (int): default 0, the blank label index of Connectionist
            Temporal Classification (CTC) loss, which is in the
            half-opened interval [0, num_classes + 1).
        norm_by_times (bool): default false, whether to normalize
            the gradients by the number of time-step, which is also the
            sequence's length. There is no need to normalize the gradients
            if warpctc layer was follewed by a mean_op.
W
wanghaoshuang 已提交
3050 3051

    Returns:
3052 3053
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
3054 3055 3056

    Examples:
        .. code-block:: python
3057 3058 3059 3060
            y = layers.data(
                name='y', shape=[11, 8], dtype='float32', lod_level=1)
            y_predict = layers.data(
                name='y_predict', shape=[11, 1], dtype='float32')
W
wanghaoshuang 已提交
3061 3062 3063
            cost = layers.warpctc(input=y_predict, label=y)

    """
F
fengjiayi 已提交
3064
    helper = LayerHelper('warpctc', **locals())
W
wanghaoshuang 已提交
3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075
    loss_out = helper.create_tmp_variable(dtype=input.dtype)
    grad_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
        attrs={'blank': blank,
               'norm_by_times': norm_by_times})
    return loss_out
3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
            x.data = [[1, 2], [3, 4],
                      [5, 6], [7, 8], [9, 10], [11, 12]]
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
            out.lod  = [[0, 1, 3]]
            out.data = [[1, 2, 3, 4],
                        [5, 6, 7, 8], [9, 10, 11, 12]]
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
3108 3109 3110
        input (Variable): (LodTensor, default: LoDTensor<float>), a 2-D LoDTensor
            with shape being [N, M] where M for dimension.
        new_dim (int): New dimension which the input LoDTensor is reshaped to.
3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129

    Returns:
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[5, 20],
                              dtype='float32', lod_level=1)
            x_reshaped = layers.sequence_reshape(input=x, new_dim=10)
    """
    helper = LayerHelper('sequence_reshape', **locals())
    out = helper.create_tmp_variable(helper.input_dtype())
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
3130 3131


3132 3133 3134 3135
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
3136 3137 3138 3139 3140 3141 3142
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
        num_neg_samples=None):
3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
        sample_weight (int): ${sample_weight_comment}
        param_attr (ParamAttr|None): attributes for parameter
        bias_attr (ParamAttr|None): attributes for bias
        num_neg_samples (int): ${num_neg_samples_comment}
    
    Returns:
        Variable: output of nce layer.
    """
Y
Yang Yu 已提交
3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    dim = input.shape[1]
    assert isinstance(label, Variable)
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
    b = helper.create_parameter(
        attr=helper.bias_attr,
        shape=[num_total_classes, 1],
        is_bias=True,
        dtype=input.dtype)
    cost = helper.create_tmp_variable(dtype=input.dtype)
    sample_logits = helper.create_tmp_variable(dtype=input.dtype)
    sample_labels = helper.create_tmp_variable(dtype=label.dtype)

Y
Yang Yu 已提交
3177 3178 3179 3180 3181 3182 3183 3184 3185
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

    attrs = {
        'num_total_classes': int(num_total_classes),
        'num_neg_samples': num_neg_samples
    }
Y
Yang Yu 已提交
3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201

    helper.append_op(
        type='nce',
        inputs={
            'Input': input,
            'Label': label,
            'Weight': w,
            'Bias': b,
            'SampleWeight': sample_weight if sample_weight is not None else []
        },
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
3202
    return cost / (num_neg_samples + 1)
3203 3204


Y
fix ci.  
ying 已提交
3205
def transpose(x, perm, name=None):
Y
ying 已提交
3206 3207 3208 3209 3210 3211 3212 3213 3214
    """
    **transpose Layer**

    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
3215 3216 3217
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
3218 3219 3220 3221 3222 3223 3224 3225

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[5, 10, 15], dtype='float32')
Y
fix ci.  
ying 已提交
3226
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
3227 3228
    """

Y
fix ci.  
ying 已提交
3229
    if len(perm) != len(x.shape):
Y
ying 已提交
3230 3231 3232
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
3233 3234 3235 3236 3237 3238
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
3239 3240

    helper = LayerHelper('transpose', **locals())
Y
fix ci.  
ying 已提交
3241
    out = helper.create_tmp_variable(x.dtype)
Y
ying 已提交
3242 3243
    helper.append_op(
        type='transpose',
Y
fix ci.  
ying 已提交
3244
        inputs={'X': [x]},
Y
ying 已提交
3245 3246 3247
        outputs={'Out': [out]},
        attrs={'axis': perm})
    return out
3248 3249


3250
def im2sequence(input, filter_size=1, stride=1, padding=0, name=None):
3251
    """
3252 3253 3254 3255 3256 3257 3258
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
3259 3260 3261 3262 3263 3264 3265 3266 3267 3268

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

3287 3288 3289
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
3290 3291 3292 3293 3294
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323

    Examples:

    As an example:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
3324 3325 3326
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

            output.dims = {8, 9}

            output.lod = [[0, 4, 8]]

        The simple usage is:

        .. code-block:: python

3347 3348
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
3349 3350

    """
W
wanghaoshuang 已提交
3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])

3362
    helper = LayerHelper('im2sequence', **locals())
3363 3364
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
3365
        type='im2sequence',
3366 3367 3368
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
wanghaoshuang 已提交
3369 3370 3371
            'kernels': filter_size,
            'strides': stride,
            'paddings': padding,
3372 3373
        })
    return out
3374 3375


3376 3377 3378 3379
def row_conv(input, future_context_size, param_attr=None, act=None):
    """Row Conv Operator. This layer will apply lookahead convolution to
    **input**. The input variable should be a 2D LoDTensor with shape [T, D].
    Parameters with shape [future_context_size + 1, D] will be created. The math
Y
yangyaming 已提交
3380
    equation of row convolution is as follows:
3381 3382 3383 3384 3385 3386 3387

    .. math::
        Out_{i} = \sum_{j = i} ^ {i + \\tau} X_{j} \odot W_{i - j}

    In the above equation:

    * :math:`Out_{i}`: The i-th row of output variable with shape [1, D].
Y
yangyaming 已提交
3388
    * :math:`\\tau`: Future context size.
3389 3390 3391 3392 3393 3394 3395 3396 3397 3398
    * :math:`X_{j}`: The j-th row of input variable with shape [1, D].
    * :math:`W_{i-j}`: The (i-j)-th row of parameters with shape [1, D].

    More details about row_conv please refer to the paper \
    (http://www.cs.cmu.edu/~dyogatam/papers/wang+etal.iclrworkshop2016.pdf) and
    the design document \
    (https://github.com/PaddlePaddle/Paddle/issues/2228#issuecomment-303903645).

    Args:
        input (Variable): Input variable, a 2D LoDTensor with shape [T, D].
Y
yangyaming 已提交
3399 3400
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
        Variable: The output tensor with same shape as input tensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[16],
                            dtype='float32', lod_level=1)
            out = fluid.layers.row_conv(input=x, future_context_size=2)
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
3426
    return helper.append_activation(out)
3427 3428


3429 3430 3431 3432
def multiplex(inputs, index):
    """
    **Multiplex Layer**

Y
yangyaming 已提交
3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447
    Referring to the given index variable, this layer selects rows from the
    input variables to construct a multiplex variable. Assuming that there are
    :math:`m` input variables and :math:`I_i` represents the i-th input
    variable and :math:`i` is in [0, :math:`m`). All input variables are
    tensors with same shape [:math:`d_0`, :math:`d_1`, ..., :math:`d_R`].
    Please note that rank of the input tensor should be at least 2. Each input
    variable will be treated as a 2-D matrix with shape [:math:`M`, :math:`N`]
    where :math:`M` for :math:`d_0` and :math:`N` for :math:`d_1` * :math:`d_2`
    * ... * :math:`d_R`. Let :math:`I_i[j]` be the j-th row of the i-th input
    variable. The given index variable should be a 2-D tensor with shape
    [:math:`M`, 1]. Let `ID[i]` be the i-th index value of the index variable.
    Then the output variable will be a tensor with shape [:math:`d_0`,
    :math:`d_1`, ..., :math:`d_R`]. If we treat the output tensor as a 2-D
    matrix with shape [:math:`M`, :math:`N`] and let :math:`O[i]` be the i-th
    row of the matrix, then `O[i]` is equal to :math:`I_{ID[i]}[i]`.
3448 3449

    Args:
3450
        inputs (list): A list of variables to gather from. All variables have the
Y
yangyaming 已提交
3451
                same shape and the rank is at least 2.
3452
        index (Variable): Tensor<int32>, index variable which is a 2-D tensor
Y
yangyaming 已提交
3453
                with shape [M, 1] where M is the batch size.
3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466

    Returns:
        Variable: Multiplex variable gathered from input variables.

    Examples:
        .. code-block:: python

            x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
            x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
            index = fluid.layers.data(name='index', shape=[1], dtype='int32')
            out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
3467 3468 3469 3470 3471 3472

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

    out = helper.create_tmp_variable(inputs[0].dtype)
3473 3474 3475 3476 3477 3478
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
3479 3480 3481 3482 3483


def softmax_with_cross_entropy(logits, label, soft_label=False):
    """
    **Softmax With Cross Entropy Operator.**
3484

3485 3486 3487 3488
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
3489

3490 3491 3492
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
3493

3494 3495 3496
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
3497

3498
    The equation is as follows:
3499

3500
    1) Hard label (one-hot label, so every sample has exactly one class)
3501

3502 3503 3504 3505
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
3506

3507 3508 3509
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
3510

3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
    Returns:
        Variable: The cross entropy loss is a 2-D tensor with shape [N x 1].

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
3532 3533
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
    softmax = helper.create_tmp_variable(dtype=logits.dtype)
    loss = helper.create_tmp_variable(dtype=logits.dtype)
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
        attrs={'soft_label': soft_label})
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
    **Smooth L1 Loss Operator. **

Q
qingqing01 已提交
3552
    This operator computes the smooth L1 loss for X and Y.
3553
    The operator takes the first dimension of X and Y as batch size.
Q
qingqing01 已提交
3554
    For each instance, it computes the smooth L1 loss element by element first
3555
    and then sums all the losses. So the shape of Out is [batch_size, 1].
3556

3557 3558
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
3559
            L1 loss op with shape [batch_size, dim1, ..., dimN].
3560
        y (Variable): A tensor with rank at least 2. The target value of smooth
Q
qingqing01 已提交
3561
            L1 loss op with same shape as x.
3562 3563 3564 3565 3566 3567
        inside_weight (Variable|None):  A tensor with rank at least 2. This
            input is optional and should have same shape with x. If provided,
            the result of (x - y) will be multiplied by this tensor element by
            element.
        outside_weight (Variable|None): A tensor with rank at least 2. This
            input is optional and should have same shape with x. If provided,
Q
qingqing01 已提交
3568
            the out smooth L1 loss will be multiplied by this tensor element
3569
            by element.
Q
qingqing01 已提交
3570
        sigma (float|None): Hyper parameter of smooth L1 loss op. A float scalar
3571 3572
            with default value 1.0.
    Returns:
Q
qingqing01 已提交
3573
        Variable: A tensor with rank be 2. The output smooth L1 loss with
3574 3575 3576 3577 3578 3579
            shape [batch_size, 1].

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
3580 3581
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
3582
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
3583
            out = fluid.layers.smooth_l1(x=fc, y=label)
3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599
    """
    helper = LayerHelper('smooth_l1_loss', **locals())
    diff = helper.create_tmp_variable(dtype=x.dtype)
    loss = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
3600 3601 3602 3603 3604 3605 3606 3607 3608


def one_hot(input, depth):
    """
    One Hot Operator. This operator creates the one-hot representations for input
    index values. The following example will help to explain the function of this
    operator.

    Args:
F
fengjiayi 已提交
3609
        input(variable):  A Tensor/LodTensor of indices, last dimension must be 1.
3610 3611 3612 3613 3614 3615
        depth(scalar): an interger defining the depth of the one hot dimension.

    Returns:
         The one-hot tensor or LodTensor, same as input.

    Examples:
C
caoying03 已提交
3616 3617
        .. code-block:: python

3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638
        X is a LoDTensor:
          X.lod = [[0, 1, 4]]
          X.shape = [4, 1]
          X.data = [[1], [1], [3], [0]]
        set depth = 4
        Out is a LoDTensor:
          Out.lod = [[0, 1, 4]]
          Out.shape = [4, 4]
          Out.data = [[0., 1., 0., 0.],
                      [0., 1., 0., 0.],
                      [0., 0., 0., 1.],
                      [1., 0., 0., 0.]]
    """
    helper = LayerHelper("one_hot", **locals())
    one_hot_out = helper.create_tmp_variable(dtype='float32')
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
3639 3640


Y
Yu Yang 已提交
3641
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
3642
    """
Y
Yu Yang 已提交
3643
    NOTE: The counter will be automatically increased by 1 every mini-batch
Y
Yu Yang 已提交
3644
    Return the run counter of the main program, which is started with 1.
Y
Yu Yang 已提交
3645 3646 3647 3648 3649 3650

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

3651 3652
    Returns:
        Variable: The global run counter.
Y
Yu Yang 已提交
3653 3654
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
3655 3656
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
3657 3658 3659 3660 3661
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
3662
                value=begin - 1, force_cpu=True))
Y
Yu Yang 已提交
3663 3664 3665
        helper.main_program.global_block().prepend_op(
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
3666 3667
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
3668 3669 3670
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
3671 3672


3673
def reshape(x, shape, actual_shape=None, act=None, inplace=True, name=None):
C
caoying03 已提交
3674
    """
C
caoying03 已提交
3675 3676
    Gives a new shape to the input Tensor without changing its data.

3677 3678 3679 3680 3681
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
3682

3683
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
3684

3685 3686 3687 3688
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

3689
    2. 0 means the actual dimension value is going to be copied from the
3690 3691 3692 3693
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
3694 3695

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
3696
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
3697
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
3698

3699
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
3700 3701
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
3702 3703
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
3704
    dimensions.
C
caoying03 已提交
3705

3706
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
3707 3708 3709 3710
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
3711 3712

    Args:
3713
        x(variable): The input tensor.
C
caoying03 已提交
3714 3715
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
3716 3717 3718 3719 3720
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
C
caoying03 已提交
3721 3722 3723 3724
        act (str): The non-linear activation to be applied to output variable.
        inplace(bool): If this flag is set true, a new output tensor is created
                       whose data is copied from input x, otherwise the output
                       shares data with input without copying.
3725
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
3726

3727 3728
    Returns:
        Variable: The output tensor.
C
caoying03 已提交
3729 3730 3731

    Examples:
        .. code-block:: python
G
guosheng 已提交
3732

3733
            data = fluid.layers.data(
3734
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
3735
            reshaped = fluid.layers.reshape(
3736
                x=data, shape=[-1, 0, 3, 2], act='tanh', inplace=True)
C
caoying03 已提交
3737 3738 3739 3740 3741
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
        raise ValueError("Input shape must be a python lsit or tuple.")

3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

C
caoying03 已提交
3757 3758 3759 3760
    helper = LayerHelper("reshape", **locals())
    reshaped = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type="reshape",
3761 3762 3763
        inputs={"X": x,
                "Shape": actual_shape}
        if isinstance(actual_shape, Variable) else {"X": x},
C
caoying03 已提交
3764 3765 3766 3767 3768
        attrs={"shape": shape,
               "inplace": inplace},
        outputs={"Out": reshaped})

    return helper.append_activation(reshaped)
3769 3770


Y
yangyaming 已提交
3771
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863
    """
    LoD Reset Operator. Set LoD of **x** to a new one specified by **y** or
    **target_lod**. When **y** provided, **y.lod** would be considered as target
    LoD first, otherwise **y.data** would be considered as target LoD. If **y**
    is not provided, target LoD should be specified by **target_lod**.
    If target LoD is specified by **Y.data** or **target_lod**, only one level
    LoD is supported.

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
                x.lod =  [[ 0,     2,                   5      6 ]]
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            target_lod: [0, 4, 6]

            then we get a 1-level LoDTensor:
                out.lod =  [[ 0,                   4,            6 ]]
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
                x.lod =  [[ 0,     2,                   5      6 ]]
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
                y.data = [[0, 2, 6]]
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
                out.lod =  [[ 0,     2,                          6 ]]
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
                x.lod =  [[ 0,      2,                   5     6 ]]
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
                y.lod =  [[0, 2, 4], [0, 2, 5, 6]]
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
                out.lod =  [[0, 2, 4], [0, 2, 5, 6]]
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
        y (Variable|None): If provided, output's LoD would be derived from y.
        target_lod (list|tuple|None): One level LoD which should be considered
                                      as target LoD when y not provided.

    Returns:
        Variable: Output variable with LoD specified by this operator.

    Raises:
        ValueError: If y and target_lod are both None.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

        Output(i, x, y) = Input(i, x, y) / \left(
        k + \alpha \sum\limits^{\min(C, c + n/2)}_{j = \max(0, c - n/2)}
        (Input(j, x, y))^2 \right)^{\beta}

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
3906 3907
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

    mid_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
3935 3936 3937 3938


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
3939
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
3940
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
3941

G
guosheng 已提交
3942 3943 3944 3945
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
3968
                         The length of :attr:paddings must be
G
guosheng 已提交
3969 3970 3971 3972 3973 3974 3975 3976 3977 3978
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
3979

G
guosheng 已提交
3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
3994 3995 3996 3997 3998 3999 4000 4001 4002


def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
4003 4004
    called label-smoothing regularization (LSR).

4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
4028
                              be :math:`(1, class\_num)`.
4029 4030
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
4031
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
    smooth_label = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
4059 4060 4061 4062


def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
4063
    Region of interest pooling (also known as RoI pooling) is to perform
4064 4065
        is to perform max pooling on inputs of nonuniform sizes to obtain
        fixed-size feature maps (e.g. 7*7).
4066 4067 4068 4069
    The operator has three steps:
        1. Dividing each region proposal into equal-sized sections with
           the pooled_width and pooled_height
        2. Finding the largest value in each section
4070 4071 4072 4073 4074 4075 4076
        3. Copying these max values to the output buffer

    Args:
        input (Variable): The input for ROI pooling.
        rois (Variable): ROIs (Regions of Interest) to pool over. It should
                         be a 2-D one level LoTensor of shape [num_rois, 4].
                         The layout is [x1, y1, x2, y2], where (x1, y1)
4077 4078
                         is the top left coordinates, and (x2, y2) is the
                         bottom right coordinates. The num_rois is the
4079 4080 4081 4082 4083 4084 4085 4086
                         total number of ROIs in this batch data.
        pooled_height (integer): The pooled output height. Default: 1
        pooled_width (integer): The pooled output width. Default: 1
        spatial_scale (float): Multiplicative spatial scale factor. To
                               translate ROI coords from their input scale
                               to the scale used when pooling. Default: 1.0

    Returns:
4087
        pool_out (Variable): The output is a 4-D tensor of the shape
4088 4089 4090
                             (num_rois, channels, pooled_h, pooled_w).

    Examples:
4091 4092
        .. code-block:: python

4093
            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    argmaxes = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138


def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
4139 4140
        .. code-block:: python

W
whs 已提交
4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
    reduce_dim = range(1, len(input.shape))
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
4152 4153


4154 4155 4156 4157 4158
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
                 resample='BILINEAR'):
4159
    """
4160
    Resize a batch of images.
F
stash  
fengjiayi 已提交
4161

4162 4163 4164 4165 4166
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w), 
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
        'BILINEAR' : Bilinear interpolation
F
stash  
fengjiayi 已提交
4167

4168
    Args:
4169
        input (Variable): The input tensor of image resize layer,
4170 4171
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
4172
        out_shape(list|tuple|Variable|None): Output shape of image resize
4173 4174
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
4175
        scale(float|None): The multiplier for the input height or width.
4176 4177 4178
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
4179 4180
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
4181 4182
        resample(str): The resample method. It can only be 'BILINEAR' currently.
                       Default: 'BILINEAR'
4183 4184 4185 4186

    Returns:
        out (Variable): The output is a 4-D tensor of the shape
                        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
4187

4188 4189 4190
    Examples:
        .. code-block:: python

4191
            out = fluid.layers.image_resize(input, out_shape=[12, 12])
4192
    """
4193 4194 4195 4196
    resample_methods = {'BILINEAR': 'bilinear_interp'}
    if resample not in resample_methods:
        raise ValueError(
            "The 'resample' of image_resize can only be 'BILINEAR' currently.")
4197 4198
    if out_shape is None and scale is None:
        raise ValueError("One of out_shape and scale must not be None")
4199 4200
    helper = LayerHelper('bilinear_interp', **locals())
    dtype = helper.input_dtype()
4201 4202 4203 4204

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

4205 4206 4207
    out_h = 0
    out_w = 0
    inputs = {"X": input}
4208
    if out_shape is not None:
B
baiyf 已提交
4209 4210 4211
        if not (_is_list_or_turple_(out_shape) and
                len(out_shape) == 2) and not isinstance(out_shape, Variable):
            raise ValueError('out_shape should be a list or tuple or variable')
4212 4213 4214 4215 4216 4217
        if _is_list_or_turple_(out_shape):
            out_shape = list(map(int, out_shape))
            out_h = out_shape[0]
            out_w = out_shape[1]
        else:
            inputs['OutSize'] = out_shape
4218 4219 4220 4221
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

4222 4223
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
4224
        type=resample_methods[resample],
4225
        inputs=inputs,
4226 4227 4228 4229
        outputs={"Out": out},
        attrs={"out_h": out_h,
               "out_w": out_w})
    return out
F
stash  
fengjiayi 已提交
4230 4231


Y
yuyang18 已提交
4232
@templatedoc(op_type="bilinear_interp")
4233 4234
def resize_bilinear(input, out_shape=None, scale=None, name=None):
    """
Y
yuyang18 已提交
4235 4236 4237 4238 4239 4240
    ${comment}

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
4241

Y
yuyang18 已提交
4242 4243 4244 4245 4246 4247 4248 4249
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.

    Returns:
        ${out_comment}.
4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266
    """

    return image_resize(input, out_shape, scale, name, 'BILINEAR')


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
    Resize a batch of images. The short edge of input images will be 
    resized to the given 'out_short_len'. The long edge of input images 
    will be resized proportionately to make images' length-width ratio 
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
4267
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
4268

4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281
    Returns:
        out (Variable): The output is a 4-D tensor of the shape
                        (num_batches, channls, out_h, out_w).
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
4282 4283 4284
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
4285 4286 4287
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
4288 4289 4290 4291 4292 4293 4294
def gather(input, index):
    """
    Output is obtained by gathering entries of the outer-most dimension 
    of X indexed by `index` and concatenate them together.

    .. math::

4295
        Out = X[Index]
W
whs 已提交
4296 4297 4298 4299 4300 4301 4302


    .. code-block:: text


                Given:

4303 4304
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
        input (Variable): The source input with rank>=1. 
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}

    """
F
stash  
fengjiayi 已提交
4356 4357 4358
    helper = LayerHelper("random_crop", **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
Y
yuyang18 已提交
4359 4360 4361
    if seed is None:
        seed = random.randint(-65536, 65535)

F
stash  
fengjiayi 已提交
4362
    if isinstance(seed, int):
F
fengjiayi 已提交
4363
        seed_value = seed
F
fengjiayi 已提交
4364 4365 4366 4367 4368 4369 4370 4371
        seed = helper.create_tmp_variable(dtype="int64")
        helper.append_op(
            type="fill_constant",
            inputs={},
            outputs={"Out": seed},
            attrs={
                "dtype": seed.dtype,
                "shape": [1],
F
fengjiayi 已提交
4372 4373
                "value": float(seed_value),
                "force_cpu": True
F
fengjiayi 已提交
4374
            })
F
stash  
fengjiayi 已提交
4375 4376
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
F
fengjiayi 已提交
4377
    seed_out = helper.create_tmp_variable(dtype="int64")
F
stash  
fengjiayi 已提交
4378 4379 4380 4381 4382 4383 4384 4385
    helper.append_op(
        type="random_crop",
        inputs={"X": input,
                "Seed": seed},
        outputs={"Out": out,
                 "SeedOut": seed_out},
        attrs={"shape": shape})
    return out