paddleclas.py 24.3 KB
Newer Older
G
gaotingquan 已提交
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
C
chenziheng 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
16
from typing import Union, Generator
T
Tingquan Gao 已提交
17 18
import argparse
import shutil
T
Tingquan Gao 已提交
19
import textwrap
T
Tingquan Gao 已提交
20 21 22
import tarfile
import requests
from functools import partial
T
Tingquan Gao 已提交
23
from difflib import SequenceMatcher
C
chenziheng 已提交
24 25 26 27

import cv2
import numpy as np
from tqdm import tqdm
T
Tingquan Gao 已提交
28
from prettytable import PrettyTable
29
import paddle
T
Tingquan Gao 已提交
30

31 32
from .ppcls.arch import backbone
from .ppcls.utils import logger
33

34 35 36
from .deploy.python.predict_cls import ClsPredictor
from .deploy.utils.get_image_list import get_image_list
from .deploy.utils import config
T
Tingquan Gao 已提交
37

38 39 40
# for the PaddleClas Project
from . import deploy
from . import ppcls
T
Tingquan Gao 已提交
41

42
# for building model with loading pretrained weights from backbone
G
gaotingquan 已提交
43
logger.init_logger()
44

T
Tingquan Gao 已提交
45
__all__ = ["PaddleClas"]
T
Tingquan Gao 已提交
46

C
chenziheng 已提交
47
BASE_DIR = os.path.expanduser("~/.paddleclas/")
T
Tingquan Gao 已提交
48 49
BASE_INFERENCE_MODEL_DIR = os.path.join(BASE_DIR, "inference_model")
BASE_IMAGES_DIR = os.path.join(BASE_DIR, "images")
50 51
IMN_MODEL_BASE_DOWNLOAD_URL = "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/{}_infer.tar"
IMN_MODEL_SERIES = {
T
Tingquan Gao 已提交
52
    "AlexNet": ["AlexNet"],
G
gaotingquan 已提交
53 54 55 56 57
    "CSWinTransformer": [
        "CSWinTransformer_tiny_224", "CSWinTransformer_small_224",
        "CSWinTransformer_base_224", "CSWinTransformer_base_384",
        "CSWinTransformer_large_224", "CSWinTransformer_large_384"
    ],
T
Tingquan Gao 已提交
58 59
    "DarkNet": ["DarkNet53"],
    "DeiT": [
T
Tingquan Gao 已提交
60 61 62 63
        "DeiT_base_distilled_patch16_224", "DeiT_base_distilled_patch16_384",
        "DeiT_base_patch16_224", "DeiT_base_patch16_384",
        "DeiT_small_distilled_patch16_224", "DeiT_small_patch16_224",
        "DeiT_tiny_distilled_patch16_224", "DeiT_tiny_patch16_224"
T
Tingquan Gao 已提交
64 65 66 67 68
    ],
    "DenseNet": [
        "DenseNet121", "DenseNet161", "DenseNet169", "DenseNet201",
        "DenseNet264"
    ],
69 70 71 72
    "DLA": [
        "DLA46_c", "DLA60x_c", "DLA34", "DLA60", "DLA60x", "DLA102", "DLA102x",
        "DLA102x2", "DLA169"
    ],
T
Tingquan Gao 已提交
73 74 75 76 77 78
    "DPN": ["DPN68", "DPN92", "DPN98", "DPN107", "DPN131"],
    "EfficientNet": [
        "EfficientNetB0", "EfficientNetB0_small", "EfficientNetB1",
        "EfficientNetB2", "EfficientNetB3", "EfficientNetB4", "EfficientNetB5",
        "EfficientNetB6", "EfficientNetB7"
    ],
G
gaotingquan 已提交
79
    "ESNet": ["ESNet_x0_25", "ESNet_x0_5", "ESNet_x0_75", "ESNet_x1_0"],
T
Tingquan Gao 已提交
80 81
    "GhostNet":
    ["GhostNet_x0_5", "GhostNet_x1_0", "GhostNet_x1_3", "GhostNet_x1_3_ssld"],
82
    "HarDNet": ["HarDNet39_ds", "HarDNet68_ds", "HarDNet68", "HarDNet85"],
T
Tingquan Gao 已提交
83 84 85 86 87 88
    "HRNet": [
        "HRNet_W18_C", "HRNet_W30_C", "HRNet_W32_C", "HRNet_W40_C",
        "HRNet_W44_C", "HRNet_W48_C", "HRNet_W64_C", "HRNet_W18_C_ssld",
        "HRNet_W48_C_ssld"
    ],
    "Inception": ["GoogLeNet", "InceptionV3", "InceptionV4"],
G
gaotingquan 已提交
89 90
    "LeViT":
    ["LeViT_128S", "LeViT_128", "LeViT_192", "LeViT_256", "LeViT_384"],
G
gaotingquan 已提交
91
    "MixNet": ["MixNet_S", "MixNet_M", "MixNet_L"],
T
Tingquan Gao 已提交
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
    "MobileNetV1": [
        "MobileNetV1_x0_25", "MobileNetV1_x0_5", "MobileNetV1_x0_75",
        "MobileNetV1", "MobileNetV1_ssld"
    ],
    "MobileNetV2": [
        "MobileNetV2_x0_25", "MobileNetV2_x0_5", "MobileNetV2_x0_75",
        "MobileNetV2", "MobileNetV2_x1_5", "MobileNetV2_x2_0",
        "MobileNetV2_ssld"
    ],
    "MobileNetV3": [
        "MobileNetV3_small_x0_35", "MobileNetV3_small_x0_5",
        "MobileNetV3_small_x0_75", "MobileNetV3_small_x1_0",
        "MobileNetV3_small_x1_25", "MobileNetV3_large_x0_35",
        "MobileNetV3_large_x0_5", "MobileNetV3_large_x0_75",
        "MobileNetV3_large_x1_0", "MobileNetV3_large_x1_25",
        "MobileNetV3_small_x1_0_ssld", "MobileNetV3_large_x1_0_ssld"
    ],
G
gaotingquan 已提交
109
    "MobileViT": ["MobileViT_XXS", "MobileViT_XS", "MobileViT_S"],
G
gaotingquan 已提交
110 111 112 113 114 115
    "PPHGNet": [
        "PPHGNet_tiny",
        "PPHGNet_small",
        "PPHGNet_tiny_ssld",
        "PPHGNet_small_ssld",
    ],
G
gaotingquan 已提交
116 117 118 119
    "PPLCNet": [
        "PPLCNet_x0_25", "PPLCNet_x0_35", "PPLCNet_x0_5", "PPLCNet_x0_75",
        "PPLCNet_x1_0", "PPLCNet_x1_5", "PPLCNet_x2_0", "PPLCNet_x2_5"
    ],
G
gaotingquan 已提交
120
    "PPLCNetV2": ["PPLCNetV2_base"],
G
gaotingquan 已提交
121 122 123 124
    "PVTV2": [
        "PVT_V2_B0", "PVT_V2_B1", "PVT_V2_B2", "PVT_V2_B2_Linear", "PVT_V2_B3",
        "PVT_V2_B4", "PVT_V2_B5"
    ],
125
    "RedNet": ["RedNet26", "RedNet38", "RedNet50", "RedNet101", "RedNet152"],
T
Tingquan Gao 已提交
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
    "RegNet": ["RegNetX_4GF"],
    "Res2Net": [
        "Res2Net50_14w_8s", "Res2Net50_26w_4s", "Res2Net50_vd_26w_4s",
        "Res2Net200_vd_26w_4s", "Res2Net101_vd_26w_4s",
        "Res2Net50_vd_26w_4s_ssld", "Res2Net101_vd_26w_4s_ssld",
        "Res2Net200_vd_26w_4s_ssld"
    ],
    "ResNeSt": ["ResNeSt50", "ResNeSt50_fast_1s1x64d"],
    "ResNet": [
        "ResNet18", "ResNet18_vd", "ResNet34", "ResNet34_vd", "ResNet50",
        "ResNet50_vc", "ResNet50_vd", "ResNet50_vd_v2", "ResNet101",
        "ResNet101_vd", "ResNet152", "ResNet152_vd", "ResNet200_vd",
        "ResNet34_vd_ssld", "ResNet50_vd_ssld", "ResNet50_vd_ssld_v2",
        "ResNet101_vd_ssld", "Fix_ResNet50_vd_ssld_v2", "ResNet50_ACNet_deploy"
    ],
    "ResNeXt": [
        "ResNeXt50_32x4d", "ResNeXt50_vd_32x4d", "ResNeXt50_64x4d",
        "ResNeXt50_vd_64x4d", "ResNeXt101_32x4d", "ResNeXt101_vd_32x4d",
        "ResNeXt101_32x8d_wsl", "ResNeXt101_32x16d_wsl",
        "ResNeXt101_32x32d_wsl", "ResNeXt101_32x48d_wsl",
        "Fix_ResNeXt101_32x48d_wsl", "ResNeXt101_64x4d", "ResNeXt101_vd_64x4d",
        "ResNeXt152_32x4d", "ResNeXt152_vd_32x4d", "ResNeXt152_64x4d",
        "ResNeXt152_vd_64x4d"
    ],
150 151
    "ReXNet":
    ["ReXNet_1_0", "ReXNet_1_3", "ReXNet_1_5", "ReXNet_2_0", "ReXNet_3_0"],
T
Tingquan Gao 已提交
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
    "SENet": [
        "SENet154_vd", "SE_HRNet_W64_C_ssld", "SE_ResNet18_vd",
        "SE_ResNet34_vd", "SE_ResNet50_vd", "SE_ResNeXt50_32x4d",
        "SE_ResNeXt50_vd_32x4d", "SE_ResNeXt101_32x4d"
    ],
    "ShuffleNetV2": [
        "ShuffleNetV2_swish", "ShuffleNetV2_x0_25", "ShuffleNetV2_x0_33",
        "ShuffleNetV2_x0_5", "ShuffleNetV2_x1_0", "ShuffleNetV2_x1_5",
        "ShuffleNetV2_x2_0"
    ],
    "SqueezeNet": ["SqueezeNet1_0", "SqueezeNet1_1"],
    "SwinTransformer": [
        "SwinTransformer_large_patch4_window7_224_22kto1k",
        "SwinTransformer_large_patch4_window12_384_22kto1k",
        "SwinTransformer_base_patch4_window7_224_22kto1k",
        "SwinTransformer_base_patch4_window12_384_22kto1k",
        "SwinTransformer_base_patch4_window12_384",
        "SwinTransformer_base_patch4_window7_224",
        "SwinTransformer_small_patch4_window7_224",
        "SwinTransformer_tiny_patch4_window7_224"
    ],
G
gaotingquan 已提交
173 174 175 176
    "Twins": [
        "pcpvt_small", "pcpvt_base", "pcpvt_large", "alt_gvt_small",
        "alt_gvt_base", "alt_gvt_large"
    ],
G
gaotingquan 已提交
177
    "TNT": ["TNT_small"],
T
Tingquan Gao 已提交
178 179 180 181 182 183 184 185 186 187
    "VGG": ["VGG11", "VGG13", "VGG16", "VGG19"],
    "VisionTransformer": [
        "ViT_base_patch16_224", "ViT_base_patch16_384", "ViT_base_patch32_384",
        "ViT_large_patch16_224", "ViT_large_patch16_384",
        "ViT_large_patch32_384", "ViT_small_patch16_224"
    ],
    "Xception": [
        "Xception41", "Xception41_deeplab", "Xception65", "Xception65_deeplab",
        "Xception71"
    ]
C
chenziheng 已提交
188 189
}

G
gaotingquan 已提交
190
PULC_MODEL_BASE_DOWNLOAD_URL = "https://paddleclas.bj.bcebos.com/models/PULC/inference/{}_infer.tar"
191
PULC_MODELS = [
G
gaotingquan 已提交
192 193 194
    "car_exists", "language_classification", "person_attribute",
    "person_exists", "safety_helmet", "text_image_orientation",
    "textline_orientation", "traffic_sign", "vehicle_attribute"
195 196
]

C
chenziheng 已提交
197

T
Tingquan Gao 已提交
198 199
class ImageTypeError(Exception):
    """ImageTypeError.
T
Tingquan Gao 已提交
200 201
    """

T
Tingquan Gao 已提交
202
    def __init__(self, message=""):
T
Tingquan Gao 已提交
203 204 205
        super().__init__(message)


T
Tingquan Gao 已提交
206 207 208 209 210 211 212 213
class InputModelError(Exception):
    """InputModelError.
    """

    def __init__(self, message=""):
        super().__init__(message)


214 215 216
def init_config(model_type, model_name, inference_model_dir, **kwargs):

    cfg_path = f"deploy/configs/PULC/{model_name}/inference_{model_name}.yaml" if model_type == "pulc" else "deploy/configs/inference_cls.yaml"
217
    __dir__ = os.path.dirname(__file__)
G
gaotingquan 已提交
218
    cfg_path = os.path.join(__dir__, cfg_path)
219 220 221 222 223 224
    cfg = config.get_config(cfg_path, show=False)

    cfg.Global.inference_model_dir = inference_model_dir

    if "batch_size" in kwargs and kwargs["batch_size"]:
        cfg.Global.batch_size = kwargs["batch_size"]
225

226 227
    if "use_gpu" in kwargs and kwargs["use_gpu"]:
        cfg.Global.use_gpu = kwargs["use_gpu"]
228 229 230 231
    if cfg.Global.use_gpu and not paddle.device.is_compiled_with_cuda():
        msg = "The current running environment does not support the use of GPU. CPU has been used instead."
        logger.warning(msg)
        cfg.Global.use_gpu = False
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260

    if "infer_imgs" in kwargs and kwargs["infer_imgs"]:
        cfg.Global.infer_imgs = kwargs["infer_imgs"]
    if "enable_mkldnn" in kwargs and kwargs["enable_mkldnn"]:
        cfg.Global.enable_mkldnn = kwargs["enable_mkldnn"]
    if "cpu_num_threads" in kwargs and kwargs["cpu_num_threads"]:
        cfg.Global.cpu_num_threads = kwargs["cpu_num_threads"]
    if "use_fp16" in kwargs and kwargs["use_fp16"]:
        cfg.Global.use_fp16 = kwargs["use_fp16"]
    if "use_tensorrt" in kwargs and kwargs["use_tensorrt"]:
        cfg.Global.use_tensorrt = kwargs["use_tensorrt"]
    if "gpu_mem" in kwargs and kwargs["gpu_mem"]:
        cfg.Global.gpu_mem = kwargs["gpu_mem"]
    if "resize_short" in kwargs and kwargs["resize_short"]:
        cfg.PreProcess.transform_ops[0]["ResizeImage"][
            "resize_short"] = kwargs["resize_short"]
    if "crop_size" in kwargs and kwargs["crop_size"]:
        cfg.PreProcess.transform_ops[1]["CropImage"]["size"] = kwargs[
            "crop_size"]

    # TODO(gaotingquan): not robust
    if "thresh" in kwargs and kwargs[
            "thresh"] and "ThreshOutput" in cfg.PostProcess:
        cfg.PostProcess.ThreshOutput.thresh = kwargs["thresh"]
    if "Topk" in cfg.PostProcess:
        if "topk" in kwargs and kwargs["topk"]:
            cfg.PostProcess.Topk.topk = kwargs["topk"]
        if "class_id_map_file" in kwargs and kwargs["class_id_map_file"]:
            cfg.PostProcess.Topk.class_id_map_file = kwargs[
T
Tingquan Gao 已提交
261
                "class_id_map_file"]
262
        else:
G
gaotingquan 已提交
263
            class_id_map_file_path = os.path.relpath(
264
                cfg.PostProcess.Topk.class_id_map_file, "../")
G
gaotingquan 已提交
265 266
            cfg.PostProcess.Topk.class_id_map_file = os.path.join(
                __dir__, class_id_map_file_path)
267 268 269 270 271 272 273 274 275 276
    if "VehicleAttribute" in cfg.PostProcess:
        if "color_threshold" in kwargs and kwargs["color_threshold"]:
            cfg.PostProcess.VehicleAttribute.color_threshold = kwargs[
                "color_threshold"]
        if "type_threshold" in kwargs and kwargs["type_threshold"]:
            cfg.PostProcess.VehicleAttribute.type_threshold = kwargs[
                "type_threshold"]

    if "save_dir" in kwargs and kwargs["save_dir"]:
        cfg.PostProcess.SavePreLabel.save_dir = kwargs["save_dir"]
T
Tingquan Gao 已提交
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297

    return cfg


def args_cfg():
    def str2bool(v):
        return v.lower() in ("true", "t", "1")

    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--infer_imgs",
        type=str,
        required=True,
        help="The image(s) to be predicted.")
    parser.add_argument(
        "--model_name", type=str, help="The model name to be used.")
    parser.add_argument(
        "--inference_model_dir",
        type=str,
        help="The directory of model files. Valid when model_name not specifed."
    )
298 299 300 301 302
    parser.add_argument("--use_gpu", type=str2bool, help="Whether use GPU.")
    parser.add_argument(
        "--gpu_mem",
        type=int,
        help="The memory size of GPU allocated to predict.")
T
Tingquan Gao 已提交
303 304 305 306 307
    parser.add_argument(
        "--enable_mkldnn",
        type=str2bool,
        help="Whether use MKLDNN. Valid when use_gpu is False")
    parser.add_argument(
308 309 310 311 312 313
        "--cpu_num_threads",
        type=int,
        help="The threads number when predicting on CPU.")
    parser.add_argument(
        "--use_tensorrt",
        type=str2bool,
G
gaotingquan 已提交
314
        help="Whether use TensorRT to accelerate.")
315 316
    parser.add_argument(
        "--use_fp16", type=str2bool, help="Whether use FP16 to predict.")
317
    parser.add_argument("--batch_size", type=int, help="Batch size.")
T
Tingquan Gao 已提交
318 319 320
    parser.add_argument(
        "--topk",
        type=int,
321 322
        help="Return topk score(s) and corresponding results when Topk postprocess is used."
    )
T
Tingquan Gao 已提交
323 324 325 326
    parser.add_argument(
        "--class_id_map_file",
        type=str,
        help="The path of file that map class_id and label.")
327 328 329 330 331 332
    parser.add_argument(
        "--threshold",
        type=float,
        help="The threshold of ThreshOutput when postprocess is used.")
    parser.add_argument("--color_threshold", type=float, help="")
    parser.add_argument("--type_threshold", type=float, help="")
T
Tingquan Gao 已提交
333 334 335 336
    parser.add_argument(
        "--save_dir",
        type=str,
        help="The directory to save prediction results as pre-label.")
G
gaotingquan 已提交
337
    parser.add_argument(
338 339
        "--resize_short", type=int, help="Resize according to short size.")
    parser.add_argument("--crop_size", type=int, help="Centor crop size.")
T
Tingquan Gao 已提交
340 341 342

    args = parser.parse_args()
    return vars(args)
T
Tingquan Gao 已提交
343 344


T
Tingquan Gao 已提交
345
def print_info():
T
Tingquan Gao 已提交
346 347
    """Print list of supported models in formatted.
    """
348 349
    imn_table = PrettyTable(["IMN Model Series", "Model Name"])
    pulc_table = PrettyTable(["PULC Models"])
T
Tingquan Gao 已提交
350 351
    try:
        sz = os.get_terminal_size()
352 353 354
        total_width = sz.columns
        first_width = 30
        second_width = total_width - first_width if total_width > 50 else 10
T
Tingquan Gao 已提交
355
    except OSError:
356
        total_width = 100
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
        second_width = 100
    for series in IMN_MODEL_SERIES:
        names = textwrap.fill(
            "  ".join(IMN_MODEL_SERIES[series]), width=second_width)
        imn_table.add_row([series, names])

    table_width = len(str(imn_table).split("\n")[0])
    pulc_table.add_row([
        textwrap.fill(
            "  ".join(PULC_MODELS), width=total_width).center(table_width - 4)
    ])

    print("{}".format("-" * table_width))
    print("Models supported by PaddleClas".center(table_width))
    print(imn_table)
    print(pulc_table)
    print("Powered by PaddlePaddle!".rjust(table_width))
    print("{}".format("-" * table_width))


def get_imn_model_names():
T
Tingquan Gao 已提交
378 379
    """Get the model names list.
    """
T
Tingquan Gao 已提交
380
    model_names = []
381 382
    for series in IMN_MODEL_SERIES:
        model_names += (IMN_MODEL_SERIES[series])
T
Tingquan Gao 已提交
383 384 385
    return model_names


386
def similar_model_names(name="", names=[], thresh=0.1, topk=5):
T
Tingquan Gao 已提交
387
    """Find the most similar topk model names.
T
Tingquan Gao 已提交
388 389 390
    """
    scores = []
    for idx, n in enumerate(names):
T
Tingquan Gao 已提交
391
        if n.startswith("__"):
T
Tingquan Gao 已提交
392 393 394 395 396 397 398 399 400
            continue
        score = SequenceMatcher(None, n.lower(), name.lower()).quick_ratio()
        if score > thresh:
            scores.append((idx, score))
    scores.sort(key=lambda x: x[1], reverse=True)
    similar_names = [names[s[0]] for s in scores[:min(topk, len(scores))]]
    return similar_names


C
chenziheng 已提交
401
def download_with_progressbar(url, save_path):
T
Tingquan Gao 已提交
402 403 404 405
    """Download from url with progressbar.
    """
    if os.path.isfile(save_path):
        os.remove(save_path)
C
chenziheng 已提交
406
    response = requests.get(url, stream=True)
T
Tingquan Gao 已提交
407
    total_size_in_bytes = int(response.headers.get("content-length", 0))
C
chenziheng 已提交
408
    block_size = 1024  # 1 Kibibyte
T
Tingquan Gao 已提交
409 410
    progress_bar = tqdm(total=total_size_in_bytes, unit="iB", unit_scale=True)
    with open(save_path, "wb") as file:
C
chenziheng 已提交
411 412 413 414
        for data in response.iter_content(block_size):
            progress_bar.update(len(data))
            file.write(data)
    progress_bar.close()
T
Tingquan Gao 已提交
415 416
    if total_size_in_bytes == 0 or progress_bar.n != total_size_in_bytes or not os.path.isfile(
            save_path):
T
Tingquan Gao 已提交
417
        raise Exception(
T
Tingquan Gao 已提交
418
            f"Something went wrong while downloading file from {url}")
C
chenziheng 已提交
419 420


421
def check_model_file(model_type, model_name):
422
    """Check the model files exist and download and untar when no exist.
T
Tingquan Gao 已提交
423
    """
424 425 426 427 428 429 430 431
    if model_type == "pulc":
        storage_directory = partial(os.path.join, BASE_INFERENCE_MODEL_DIR,
                                    "PULC", model_name)
        url = PULC_MODEL_BASE_DOWNLOAD_URL.format(model_name)
    else:
        storage_directory = partial(os.path.join, BASE_INFERENCE_MODEL_DIR,
                                    "IMN", model_name)
        url = IMN_MODEL_BASE_DOWNLOAD_URL.format(model_name)
T
Tingquan Gao 已提交
432

C
chenziheng 已提交
433
    tar_file_name_list = [
T
Tingquan Gao 已提交
434
        "inference.pdiparams", "inference.pdiparams.info", "inference.pdmodel"
C
chenziheng 已提交
435
    ]
T
Tingquan Gao 已提交
436 437 438 439 440
    model_file_path = storage_directory("inference.pdmodel")
    params_file_path = storage_directory("inference.pdiparams")
    if not os.path.exists(model_file_path) or not os.path.exists(
            params_file_path):
        tmp_path = storage_directory(url.split("/")[-1])
G
gaotingquan 已提交
441
        logger.info(f"download {url} to {tmp_path}")
T
Tingquan Gao 已提交
442
        os.makedirs(storage_directory(), exist_ok=True)
C
chenziheng 已提交
443
        download_with_progressbar(url, tmp_path)
T
Tingquan Gao 已提交
444
        with tarfile.open(tmp_path, "r") as tarObj:
C
chenziheng 已提交
445 446 447 448 449 450 451 452
            for member in tarObj.getmembers():
                filename = None
                for tar_file_name in tar_file_name_list:
                    if tar_file_name in member.name:
                        filename = tar_file_name
                if filename is None:
                    continue
                file = tarObj.extractfile(member)
T
Tingquan Gao 已提交
453
                with open(storage_directory(filename), "wb") as f:
C
chenziheng 已提交
454 455
                    f.write(file.read())
        os.remove(tmp_path)
T
Tingquan Gao 已提交
456 457 458 459 460
    if not os.path.exists(model_file_path) or not os.path.exists(
            params_file_path):
        raise Exception(
            f"Something went wrong while praparing the model[{model_name}] files!"
        )
C
chenziheng 已提交
461

T
Tingquan Gao 已提交
462
    return storage_directory()
C
chenziheng 已提交
463

T
Tingquan Gao 已提交
464

C
chenziheng 已提交
465
class PaddleClas(object):
T
Tingquan Gao 已提交
466 467 468 469 470 471
    """PaddleClas.
    """

    def __init__(self,
                 model_name: str=None,
                 inference_model_dir: str=None,
T
Tingquan Gao 已提交
472
                 **kwargs):
T
Tingquan Gao 已提交
473
        """Init PaddleClas with config.
T
Tingquan Gao 已提交
474

T
Tingquan Gao 已提交
475
        Args:
476 477 478 479 480
            model_name (str, optional): The model name supported by PaddleClas. If specified, override config. Defaults to None.
            inference_model_dir (str, optional): The directory that contained model file and params file to be used. If specified, override config. Defaults to None.
            use_gpu (bool, optional): Whether use GPU. If specified, override config. Defaults to True.
            batch_size (int, optional): The batch size to pridict. If specified, override config. Defaults to 1.
            topk (int, optional): Return the top k prediction results with the highest score. Defaults to 5.
T
Tingquan Gao 已提交
481 482
        """
        super().__init__()
483

484 485 486 487 488
        self.model_type, inference_model_dir = self._check_input_model(
            model_name, inference_model_dir)
        self._config = init_config(self.model_type, model_name,
                                   inference_model_dir, **kwargs)

T
Tingquan Gao 已提交
489 490 491 492
        self.cls_predictor = ClsPredictor(self._config)

    def get_config(self):
        """Get the config.
C
chenziheng 已提交
493
        """
T
Tingquan Gao 已提交
494 495
        return self._config

496
    def _check_input_model(self, model_name, inference_model_dir):
T
Tingquan Gao 已提交
497 498
        """Check input model name or model files.
        """
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
        all_imn_model_names = get_imn_model_names()
        all_pulc_model_names = PULC_MODELS

        if model_name:
            if model_name in all_imn_model_names:
                inference_model_dir = check_model_file("imn", model_name)
                return "imn", inference_model_dir
            elif model_name in all_pulc_model_names:
                inference_model_dir = check_model_file("pulc", model_name)
                return "pulc", inference_model_dir
            else:
                similar_imn_names = similar_model_names(model_name,
                                                        all_imn_model_names)
                similar_pulc_names = similar_model_names(model_name,
                                                         all_pulc_model_names)
                similar_names_str = ", ".join(similar_imn_names +
                                              similar_pulc_names)
                err = f"{model_name} is not provided by PaddleClas. \nMaybe you want the : [{similar_names_str}]. \nIf you want to use your own model, please specify inference_model_dir!"
T
Tingquan Gao 已提交
517
                raise InputModelError(err)
518
        elif inference_model_dir:
T
Tingquan Gao 已提交
519 520 521 522 523 524 525 526
            model_file_path = os.path.join(inference_model_dir,
                                           "inference.pdmodel")
            params_file_path = os.path.join(inference_model_dir,
                                            "inference.pdiparams")
            if not os.path.isfile(model_file_path) or not os.path.isfile(
                    params_file_path):
                err = f"There is no model file or params file in this directory: {inference_model_dir}"
                raise InputModelError(err)
527
            return "custom", inference_model_dir
T
Tingquan Gao 已提交
528
        else:
T
Tingquan Gao 已提交
529
            err = f"Please specify the model name supported by PaddleClas or directory contained model files(inference.pdmodel, inference.pdiparams)."
T
Tingquan Gao 已提交
530
            raise InputModelError(err)
531
        return None
T
Tingquan Gao 已提交
532

533 534
    def predict(self, input_data: Union[str, np.array],
                print_pred: bool=False) -> Generator[list, None, None]:
T
Tingquan Gao 已提交
535 536
        """Predict input_data.

C
chenziheng 已提交
537
        Args:
G
gaotingquan 已提交
538
            input_data (Union[str, np.array]):
539 540
                When the type is str, it is the path of image, or the directory containing images, or the URL of image from Internet.
                When the type is np.array, it is the image data whose channel order is RGB.
G
gaotingquan 已提交
541
            print_pred (bool, optional): Whether print the prediction result. Defaults to False.
T
Tingquan Gao 已提交
542 543 544 545 546

        Raises:
            ImageTypeError: Illegal input_data.

        Yields:
G
gaotingquan 已提交
547 548 549
            Generator[list, None, None]:
                The prediction result(s) of input_data by batch_size. For every one image,
                prediction result(s) is zipped as a dict, that includs topk "class_ids", "scores" and "label_names".
G
gaotingquan 已提交
550
                The format of batch prediction result(s) is as follow: [{"class_ids": [...], "scores": [...], "label_names": [...]}, ...]
C
chenziheng 已提交
551
        """
552

T
Tingquan Gao 已提交
553
        if isinstance(input_data, np.ndarray):
G
gaotingquan 已提交
554
            yield self.cls_predictor.predict(input_data)
T
Tingquan Gao 已提交
555
        elif isinstance(input_data, str):
T
Tingquan Gao 已提交
556
            if input_data.startswith("http") or input_data.startswith("https"):
T
Tingquan Gao 已提交
557 558 559 560 561
                image_storage_dir = partial(os.path.join, BASE_IMAGES_DIR)
                if not os.path.exists(image_storage_dir()):
                    os.makedirs(image_storage_dir())
                image_save_path = image_storage_dir("tmp.jpg")
                download_with_progressbar(input_data, image_save_path)
G
gaotingquan 已提交
562
                logger.info(
T
Tingquan Gao 已提交
563 564
                    f"Image to be predicted from Internet: {input_data}, has been saved to: {image_save_path}"
                )
565
                input_data = image_save_path
T
Tingquan Gao 已提交
566 567 568 569 570
            image_list = get_image_list(input_data)

            batch_size = self._config.Global.get("batch_size", 1)

            img_list = []
T
Tingquan Gao 已提交
571 572
            img_path_list = []
            cnt = 0
573
            for idx_img, img_path in enumerate(image_list):
T
Tingquan Gao 已提交
574 575
                img = cv2.imread(img_path)
                if img is None:
G
gaotingquan 已提交
576
                    logger.warning(
T
Tingquan Gao 已提交
577 578
                        f"Image file failed to read and has been skipped. The path: {img_path}"
                    )
T
Tingquan Gao 已提交
579
                    continue
580
                img = img[:, :, ::-1]
T
Tingquan Gao 已提交
581 582 583 584
                img_list.append(img)
                img_path_list.append(img_path)
                cnt += 1

585
                if cnt % batch_size == 0 or (idx_img + 1) == len(image_list):
G
gaotingquan 已提交
586 587
                    preds = self.cls_predictor.predict(img_list)

588 589 590 591
                    if preds:
                        for idx_pred, pred in enumerate(preds):
                            pred["filename"] = img_path_list[idx_pred]
                            if print_pred:
G
gaotingquan 已提交
592
                                logger.info(", ".join(
593
                                    [f"{k}: {pred[k]}" for k in pred]))
T
Tingquan Gao 已提交
594

T
Tingquan Gao 已提交
595
                    img_list = []
T
Tingquan Gao 已提交
596
                    img_path_list = []
T
Tingquan Gao 已提交
597
                    yield preds
C
chenziheng 已提交
598
        else:
T
Tingquan Gao 已提交
599 600 601
            err = "Please input legal image! The type of image supported by PaddleClas are: NumPy.ndarray and string of local path or Ineternet URL"
            raise ImageTypeError(err)
        return
C
chenziheng 已提交
602 603


T
Tingquan Gao 已提交
604
# for CLI
C
chenziheng 已提交
605
def main():
T
Tingquan Gao 已提交
606 607
    """Function API used for commad line.
    """
608
    print_info()
T
Tingquan Gao 已提交
609
    cfg = args_cfg()
T
Tingquan Gao 已提交
610 611 612 613
    clas_engine = PaddleClas(**cfg)
    res = clas_engine.predict(cfg["infer_imgs"], print_pred=True)
    for _ in res:
        pass
G
gaotingquan 已提交
614
    logger.info("Predict complete!")
T
Tingquan Gao 已提交
615
    return
C
chenziheng 已提交
616 617


T
Tingquan Gao 已提交
618
if __name__ == "__main__":
C
chenziheng 已提交
619
    main()