paddleclas.py 23.7 KB
Newer Older
G
gaotingquan 已提交
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
C
chenziheng 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import sys
__dir__ = os.path.dirname(__file__)
T
Tingquan Gao 已提交
18 19 20
sys.path.append(os.path.join(__dir__, ""))
sys.path.append(os.path.join(__dir__, "deploy"))

21
from typing import Union, Generator
T
Tingquan Gao 已提交
22 23
import argparse
import shutil
T
Tingquan Gao 已提交
24
import textwrap
T
Tingquan Gao 已提交
25 26 27
import tarfile
import requests
from functools import partial
T
Tingquan Gao 已提交
28
from difflib import SequenceMatcher
C
chenziheng 已提交
29 30 31 32

import cv2
import numpy as np
from tqdm import tqdm
T
Tingquan Gao 已提交
33
from prettytable import PrettyTable
34
import paddle
T
Tingquan Gao 已提交
35 36 37 38 39

from deploy.python.predict_cls import ClsPredictor
from deploy.utils.get_image_list import get_image_list
from deploy.utils import config

40
import ppcls.arch.backbone as backbone
G
gaotingquan 已提交
41
from ppcls.utils import logger
T
Tingquan Gao 已提交
42

43
# for building model with loading pretrained weights from backbone
G
gaotingquan 已提交
44
logger.init_logger()
45

T
Tingquan Gao 已提交
46
__all__ = ["PaddleClas"]
T
Tingquan Gao 已提交
47

C
chenziheng 已提交
48
BASE_DIR = os.path.expanduser("~/.paddleclas/")
T
Tingquan Gao 已提交
49 50
BASE_INFERENCE_MODEL_DIR = os.path.join(BASE_DIR, "inference_model")
BASE_IMAGES_DIR = os.path.join(BASE_DIR, "images")
51 52
IMN_MODEL_BASE_DOWNLOAD_URL = "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/{}_infer.tar"
IMN_MODEL_SERIES = {
T
Tingquan Gao 已提交
53 54 55
    "AlexNet": ["AlexNet"],
    "DarkNet": ["DarkNet53"],
    "DeiT": [
T
Tingquan Gao 已提交
56 57 58 59
        "DeiT_base_distilled_patch16_224", "DeiT_base_distilled_patch16_384",
        "DeiT_base_patch16_224", "DeiT_base_patch16_384",
        "DeiT_small_distilled_patch16_224", "DeiT_small_patch16_224",
        "DeiT_tiny_distilled_patch16_224", "DeiT_tiny_patch16_224"
T
Tingquan Gao 已提交
60 61 62 63 64
    ],
    "DenseNet": [
        "DenseNet121", "DenseNet161", "DenseNet169", "DenseNet201",
        "DenseNet264"
    ],
65 66 67 68
    "DLA": [
        "DLA46_c", "DLA60x_c", "DLA34", "DLA60", "DLA60x", "DLA102", "DLA102x",
        "DLA102x2", "DLA169"
    ],
T
Tingquan Gao 已提交
69 70 71 72 73 74
    "DPN": ["DPN68", "DPN92", "DPN98", "DPN107", "DPN131"],
    "EfficientNet": [
        "EfficientNetB0", "EfficientNetB0_small", "EfficientNetB1",
        "EfficientNetB2", "EfficientNetB3", "EfficientNetB4", "EfficientNetB5",
        "EfficientNetB6", "EfficientNetB7"
    ],
G
gaotingquan 已提交
75
    "ESNet": ["ESNet_x0_25", "ESNet_x0_5", "ESNet_x0_75", "ESNet_x1_0"],
T
Tingquan Gao 已提交
76 77
    "GhostNet":
    ["GhostNet_x0_5", "GhostNet_x1_0", "GhostNet_x1_3", "GhostNet_x1_3_ssld"],
78
    "HarDNet": ["HarDNet39_ds", "HarDNet68_ds", "HarDNet68", "HarDNet85"],
T
Tingquan Gao 已提交
79 80 81 82 83 84
    "HRNet": [
        "HRNet_W18_C", "HRNet_W30_C", "HRNet_W32_C", "HRNet_W40_C",
        "HRNet_W44_C", "HRNet_W48_C", "HRNet_W64_C", "HRNet_W18_C_ssld",
        "HRNet_W48_C_ssld"
    ],
    "Inception": ["GoogLeNet", "InceptionV3", "InceptionV4"],
G
gaotingquan 已提交
85
    "MixNet": ["MixNet_S", "MixNet_M", "MixNet_L"],
T
Tingquan Gao 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
    "MobileNetV1": [
        "MobileNetV1_x0_25", "MobileNetV1_x0_5", "MobileNetV1_x0_75",
        "MobileNetV1", "MobileNetV1_ssld"
    ],
    "MobileNetV2": [
        "MobileNetV2_x0_25", "MobileNetV2_x0_5", "MobileNetV2_x0_75",
        "MobileNetV2", "MobileNetV2_x1_5", "MobileNetV2_x2_0",
        "MobileNetV2_ssld"
    ],
    "MobileNetV3": [
        "MobileNetV3_small_x0_35", "MobileNetV3_small_x0_5",
        "MobileNetV3_small_x0_75", "MobileNetV3_small_x1_0",
        "MobileNetV3_small_x1_25", "MobileNetV3_large_x0_35",
        "MobileNetV3_large_x0_5", "MobileNetV3_large_x0_75",
        "MobileNetV3_large_x1_0", "MobileNetV3_large_x1_25",
        "MobileNetV3_small_x1_0_ssld", "MobileNetV3_large_x1_0_ssld"
    ],
G
gaotingquan 已提交
103 104 105 106 107 108
    "PPHGNet": [
        "PPHGNet_tiny",
        "PPHGNet_small",
        "PPHGNet_tiny_ssld",
        "PPHGNet_small_ssld",
    ],
G
gaotingquan 已提交
109 110 111 112
    "PPLCNet": [
        "PPLCNet_x0_25", "PPLCNet_x0_35", "PPLCNet_x0_5", "PPLCNet_x0_75",
        "PPLCNet_x1_0", "PPLCNet_x1_5", "PPLCNet_x2_0", "PPLCNet_x2_5"
    ],
G
gaotingquan 已提交
113
    "PPLCNetV2": ["PPLCNetV2_base"],
114
    "RedNet": ["RedNet26", "RedNet38", "RedNet50", "RedNet101", "RedNet152"],
T
Tingquan Gao 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
    "RegNet": ["RegNetX_4GF"],
    "Res2Net": [
        "Res2Net50_14w_8s", "Res2Net50_26w_4s", "Res2Net50_vd_26w_4s",
        "Res2Net200_vd_26w_4s", "Res2Net101_vd_26w_4s",
        "Res2Net50_vd_26w_4s_ssld", "Res2Net101_vd_26w_4s_ssld",
        "Res2Net200_vd_26w_4s_ssld"
    ],
    "ResNeSt": ["ResNeSt50", "ResNeSt50_fast_1s1x64d"],
    "ResNet": [
        "ResNet18", "ResNet18_vd", "ResNet34", "ResNet34_vd", "ResNet50",
        "ResNet50_vc", "ResNet50_vd", "ResNet50_vd_v2", "ResNet101",
        "ResNet101_vd", "ResNet152", "ResNet152_vd", "ResNet200_vd",
        "ResNet34_vd_ssld", "ResNet50_vd_ssld", "ResNet50_vd_ssld_v2",
        "ResNet101_vd_ssld", "Fix_ResNet50_vd_ssld_v2", "ResNet50_ACNet_deploy"
    ],
    "ResNeXt": [
        "ResNeXt50_32x4d", "ResNeXt50_vd_32x4d", "ResNeXt50_64x4d",
        "ResNeXt50_vd_64x4d", "ResNeXt101_32x4d", "ResNeXt101_vd_32x4d",
        "ResNeXt101_32x8d_wsl", "ResNeXt101_32x16d_wsl",
        "ResNeXt101_32x32d_wsl", "ResNeXt101_32x48d_wsl",
        "Fix_ResNeXt101_32x48d_wsl", "ResNeXt101_64x4d", "ResNeXt101_vd_64x4d",
        "ResNeXt152_32x4d", "ResNeXt152_vd_32x4d", "ResNeXt152_64x4d",
        "ResNeXt152_vd_64x4d"
    ],
139 140
    "ReXNet":
    ["ReXNet_1_0", "ReXNet_1_3", "ReXNet_1_5", "ReXNet_2_0", "ReXNet_3_0"],
T
Tingquan Gao 已提交
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
    "SENet": [
        "SENet154_vd", "SE_HRNet_W64_C_ssld", "SE_ResNet18_vd",
        "SE_ResNet34_vd", "SE_ResNet50_vd", "SE_ResNeXt50_32x4d",
        "SE_ResNeXt50_vd_32x4d", "SE_ResNeXt101_32x4d"
    ],
    "ShuffleNetV2": [
        "ShuffleNetV2_swish", "ShuffleNetV2_x0_25", "ShuffleNetV2_x0_33",
        "ShuffleNetV2_x0_5", "ShuffleNetV2_x1_0", "ShuffleNetV2_x1_5",
        "ShuffleNetV2_x2_0"
    ],
    "SqueezeNet": ["SqueezeNet1_0", "SqueezeNet1_1"],
    "SwinTransformer": [
        "SwinTransformer_large_patch4_window7_224_22kto1k",
        "SwinTransformer_large_patch4_window12_384_22kto1k",
        "SwinTransformer_base_patch4_window7_224_22kto1k",
        "SwinTransformer_base_patch4_window12_384_22kto1k",
        "SwinTransformer_base_patch4_window12_384",
        "SwinTransformer_base_patch4_window7_224",
        "SwinTransformer_small_patch4_window7_224",
        "SwinTransformer_tiny_patch4_window7_224"
    ],
G
gaotingquan 已提交
162 163 164 165
    "Twins": [
        "pcpvt_small", "pcpvt_base", "pcpvt_large", "alt_gvt_small",
        "alt_gvt_base", "alt_gvt_large"
    ],
T
Tingquan Gao 已提交
166 167 168 169 170 171 172 173 174 175
    "VGG": ["VGG11", "VGG13", "VGG16", "VGG19"],
    "VisionTransformer": [
        "ViT_base_patch16_224", "ViT_base_patch16_384", "ViT_base_patch32_384",
        "ViT_large_patch16_224", "ViT_large_patch16_384",
        "ViT_large_patch32_384", "ViT_small_patch16_224"
    ],
    "Xception": [
        "Xception41", "Xception41_deeplab", "Xception65", "Xception65_deeplab",
        "Xception71"
    ]
C
chenziheng 已提交
176 177
}

178 179 180
PULC_MODEL_BASE_DOWNLOAD_URL = "https://paddleclas.bj.bcebos.com/models/PULC/{}_infer.tar"
PULC_MODELS = [
    "person_exists", "person_attribute", "safety_helmet", "traffic_sign",
G
gaotingquan 已提交
181 182
    "vehicle_exists", "vehicle_attr", "textline_orientation",
    "text_image_orientation", "language_classification"
183 184
]

C
chenziheng 已提交
185

T
Tingquan Gao 已提交
186 187
class ImageTypeError(Exception):
    """ImageTypeError.
T
Tingquan Gao 已提交
188 189
    """

T
Tingquan Gao 已提交
190
    def __init__(self, message=""):
T
Tingquan Gao 已提交
191 192 193
        super().__init__(message)


T
Tingquan Gao 已提交
194 195 196 197 198 199 200 201
class InputModelError(Exception):
    """InputModelError.
    """

    def __init__(self, message=""):
        super().__init__(message)


202 203 204
def init_config(model_type, model_name, inference_model_dir, **kwargs):

    cfg_path = f"deploy/configs/PULC/{model_name}/inference_{model_name}.yaml" if model_type == "pulc" else "deploy/configs/inference_cls.yaml"
G
gaotingquan 已提交
205
    cfg_path = os.path.join(__dir__, cfg_path)
206 207 208 209 210 211
    cfg = config.get_config(cfg_path, show=False)

    cfg.Global.inference_model_dir = inference_model_dir

    if "batch_size" in kwargs and kwargs["batch_size"]:
        cfg.Global.batch_size = kwargs["batch_size"]
212

213 214
    if "use_gpu" in kwargs and kwargs["use_gpu"]:
        cfg.Global.use_gpu = kwargs["use_gpu"]
215 216 217 218
    if cfg.Global.use_gpu and not paddle.device.is_compiled_with_cuda():
        msg = "The current running environment does not support the use of GPU. CPU has been used instead."
        logger.warning(msg)
        cfg.Global.use_gpu = False
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247

    if "infer_imgs" in kwargs and kwargs["infer_imgs"]:
        cfg.Global.infer_imgs = kwargs["infer_imgs"]
    if "enable_mkldnn" in kwargs and kwargs["enable_mkldnn"]:
        cfg.Global.enable_mkldnn = kwargs["enable_mkldnn"]
    if "cpu_num_threads" in kwargs and kwargs["cpu_num_threads"]:
        cfg.Global.cpu_num_threads = kwargs["cpu_num_threads"]
    if "use_fp16" in kwargs and kwargs["use_fp16"]:
        cfg.Global.use_fp16 = kwargs["use_fp16"]
    if "use_tensorrt" in kwargs and kwargs["use_tensorrt"]:
        cfg.Global.use_tensorrt = kwargs["use_tensorrt"]
    if "gpu_mem" in kwargs and kwargs["gpu_mem"]:
        cfg.Global.gpu_mem = kwargs["gpu_mem"]
    if "resize_short" in kwargs and kwargs["resize_short"]:
        cfg.PreProcess.transform_ops[0]["ResizeImage"][
            "resize_short"] = kwargs["resize_short"]
    if "crop_size" in kwargs and kwargs["crop_size"]:
        cfg.PreProcess.transform_ops[1]["CropImage"]["size"] = kwargs[
            "crop_size"]

    # TODO(gaotingquan): not robust
    if "thresh" in kwargs and kwargs[
            "thresh"] and "ThreshOutput" in cfg.PostProcess:
        cfg.PostProcess.ThreshOutput.thresh = kwargs["thresh"]
    if "Topk" in cfg.PostProcess:
        if "topk" in kwargs and kwargs["topk"]:
            cfg.PostProcess.Topk.topk = kwargs["topk"]
        if "class_id_map_file" in kwargs and kwargs["class_id_map_file"]:
            cfg.PostProcess.Topk.class_id_map_file = kwargs[
T
Tingquan Gao 已提交
248
                "class_id_map_file"]
249 250 251 252 253 254 255 256 257 258 259 260 261
        else:
            cfg.PostProcess.Topk.class_id_map_file = os.path.relpath(
                cfg.PostProcess.Topk.class_id_map_file, "../")
    if "VehicleAttribute" in cfg.PostProcess:
        if "color_threshold" in kwargs and kwargs["color_threshold"]:
            cfg.PostProcess.VehicleAttribute.color_threshold = kwargs[
                "color_threshold"]
        if "type_threshold" in kwargs and kwargs["type_threshold"]:
            cfg.PostProcess.VehicleAttribute.type_threshold = kwargs[
                "type_threshold"]

    if "save_dir" in kwargs and kwargs["save_dir"]:
        cfg.PostProcess.SavePreLabel.save_dir = kwargs["save_dir"]
T
Tingquan Gao 已提交
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282

    return cfg


def args_cfg():
    def str2bool(v):
        return v.lower() in ("true", "t", "1")

    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--infer_imgs",
        type=str,
        required=True,
        help="The image(s) to be predicted.")
    parser.add_argument(
        "--model_name", type=str, help="The model name to be used.")
    parser.add_argument(
        "--inference_model_dir",
        type=str,
        help="The directory of model files. Valid when model_name not specifed."
    )
283 284 285 286 287
    parser.add_argument("--use_gpu", type=str2bool, help="Whether use GPU.")
    parser.add_argument(
        "--gpu_mem",
        type=int,
        help="The memory size of GPU allocated to predict.")
T
Tingquan Gao 已提交
288 289 290 291 292
    parser.add_argument(
        "--enable_mkldnn",
        type=str2bool,
        help="Whether use MKLDNN. Valid when use_gpu is False")
    parser.add_argument(
293 294 295 296 297 298 299 300 301
        "--cpu_num_threads",
        type=int,
        help="The threads number when predicting on CPU.")
    parser.add_argument(
        "--use_tensorrt",
        type=str2bool,
        help="Whether use TensorRT to accelerate. ")
    parser.add_argument(
        "--use_fp16", type=str2bool, help="Whether use FP16 to predict.")
302
    parser.add_argument("--batch_size", type=int, help="Batch size.")
T
Tingquan Gao 已提交
303 304 305
    parser.add_argument(
        "--topk",
        type=int,
306 307
        help="Return topk score(s) and corresponding results when Topk postprocess is used."
    )
T
Tingquan Gao 已提交
308 309 310 311
    parser.add_argument(
        "--class_id_map_file",
        type=str,
        help="The path of file that map class_id and label.")
312 313 314 315 316 317
    parser.add_argument(
        "--threshold",
        type=float,
        help="The threshold of ThreshOutput when postprocess is used.")
    parser.add_argument("--color_threshold", type=float, help="")
    parser.add_argument("--type_threshold", type=float, help="")
T
Tingquan Gao 已提交
318 319 320 321
    parser.add_argument(
        "--save_dir",
        type=str,
        help="The directory to save prediction results as pre-label.")
G
gaotingquan 已提交
322
    parser.add_argument(
323 324
        "--resize_short", type=int, help="Resize according to short size.")
    parser.add_argument("--crop_size", type=int, help="Centor crop size.")
T
Tingquan Gao 已提交
325 326 327

    args = parser.parse_args()
    return vars(args)
T
Tingquan Gao 已提交
328 329


T
Tingquan Gao 已提交
330
def print_info():
T
Tingquan Gao 已提交
331 332
    """Print list of supported models in formatted.
    """
333 334
    imn_table = PrettyTable(["IMN Model Series", "Model Name"])
    pulc_table = PrettyTable(["PULC Models"])
T
Tingquan Gao 已提交
335 336
    try:
        sz = os.get_terminal_size()
337 338 339
        total_width = sz.columns
        first_width = 30
        second_width = total_width - first_width if total_width > 50 else 10
T
Tingquan Gao 已提交
340
    except OSError:
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
        second_width = 100
    for series in IMN_MODEL_SERIES:
        names = textwrap.fill(
            "  ".join(IMN_MODEL_SERIES[series]), width=second_width)
        imn_table.add_row([series, names])

    table_width = len(str(imn_table).split("\n")[0])
    pulc_table.add_row([
        textwrap.fill(
            "  ".join(PULC_MODELS), width=total_width).center(table_width - 4)
    ])

    print("{}".format("-" * table_width))
    print("Models supported by PaddleClas".center(table_width))
    print(imn_table)
    print(pulc_table)
    print("Powered by PaddlePaddle!".rjust(table_width))
    print("{}".format("-" * table_width))


def get_imn_model_names():
T
Tingquan Gao 已提交
362 363
    """Get the model names list.
    """
T
Tingquan Gao 已提交
364
    model_names = []
365 366
    for series in IMN_MODEL_SERIES:
        model_names += (IMN_MODEL_SERIES[series])
T
Tingquan Gao 已提交
367 368 369
    return model_names


370
def similar_model_names(name="", names=[], thresh=0.1, topk=5):
T
Tingquan Gao 已提交
371
    """Find the most similar topk model names.
T
Tingquan Gao 已提交
372 373 374
    """
    scores = []
    for idx, n in enumerate(names):
T
Tingquan Gao 已提交
375
        if n.startswith("__"):
T
Tingquan Gao 已提交
376 377 378 379 380 381 382 383 384
            continue
        score = SequenceMatcher(None, n.lower(), name.lower()).quick_ratio()
        if score > thresh:
            scores.append((idx, score))
    scores.sort(key=lambda x: x[1], reverse=True)
    similar_names = [names[s[0]] for s in scores[:min(topk, len(scores))]]
    return similar_names


C
chenziheng 已提交
385
def download_with_progressbar(url, save_path):
T
Tingquan Gao 已提交
386 387 388 389
    """Download from url with progressbar.
    """
    if os.path.isfile(save_path):
        os.remove(save_path)
C
chenziheng 已提交
390
    response = requests.get(url, stream=True)
T
Tingquan Gao 已提交
391
    total_size_in_bytes = int(response.headers.get("content-length", 0))
C
chenziheng 已提交
392
    block_size = 1024  # 1 Kibibyte
T
Tingquan Gao 已提交
393 394
    progress_bar = tqdm(total=total_size_in_bytes, unit="iB", unit_scale=True)
    with open(save_path, "wb") as file:
C
chenziheng 已提交
395 396 397 398
        for data in response.iter_content(block_size):
            progress_bar.update(len(data))
            file.write(data)
    progress_bar.close()
T
Tingquan Gao 已提交
399 400
    if total_size_in_bytes == 0 or progress_bar.n != total_size_in_bytes or not os.path.isfile(
            save_path):
T
Tingquan Gao 已提交
401
        raise Exception(
T
Tingquan Gao 已提交
402
            f"Something went wrong while downloading file from {url}")
C
chenziheng 已提交
403 404


405
def check_model_file(model_type, model_name):
406
    """Check the model files exist and download and untar when no exist.
T
Tingquan Gao 已提交
407
    """
408 409 410 411 412 413 414 415
    if model_type == "pulc":
        storage_directory = partial(os.path.join, BASE_INFERENCE_MODEL_DIR,
                                    "PULC", model_name)
        url = PULC_MODEL_BASE_DOWNLOAD_URL.format(model_name)
    else:
        storage_directory = partial(os.path.join, BASE_INFERENCE_MODEL_DIR,
                                    "IMN", model_name)
        url = IMN_MODEL_BASE_DOWNLOAD_URL.format(model_name)
T
Tingquan Gao 已提交
416

C
chenziheng 已提交
417
    tar_file_name_list = [
T
Tingquan Gao 已提交
418
        "inference.pdiparams", "inference.pdiparams.info", "inference.pdmodel"
C
chenziheng 已提交
419
    ]
T
Tingquan Gao 已提交
420 421 422 423 424
    model_file_path = storage_directory("inference.pdmodel")
    params_file_path = storage_directory("inference.pdiparams")
    if not os.path.exists(model_file_path) or not os.path.exists(
            params_file_path):
        tmp_path = storage_directory(url.split("/")[-1])
G
gaotingquan 已提交
425
        logger.info(f"download {url} to {tmp_path}")
T
Tingquan Gao 已提交
426
        os.makedirs(storage_directory(), exist_ok=True)
C
chenziheng 已提交
427
        download_with_progressbar(url, tmp_path)
T
Tingquan Gao 已提交
428
        with tarfile.open(tmp_path, "r") as tarObj:
C
chenziheng 已提交
429 430 431 432 433 434 435 436
            for member in tarObj.getmembers():
                filename = None
                for tar_file_name in tar_file_name_list:
                    if tar_file_name in member.name:
                        filename = tar_file_name
                if filename is None:
                    continue
                file = tarObj.extractfile(member)
T
Tingquan Gao 已提交
437
                with open(storage_directory(filename), "wb") as f:
C
chenziheng 已提交
438 439
                    f.write(file.read())
        os.remove(tmp_path)
T
Tingquan Gao 已提交
440 441 442 443 444
    if not os.path.exists(model_file_path) or not os.path.exists(
            params_file_path):
        raise Exception(
            f"Something went wrong while praparing the model[{model_name}] files!"
        )
C
chenziheng 已提交
445

T
Tingquan Gao 已提交
446
    return storage_directory()
C
chenziheng 已提交
447

T
Tingquan Gao 已提交
448

C
chenziheng 已提交
449
class PaddleClas(object):
T
Tingquan Gao 已提交
450 451 452
    """PaddleClas.
    """

T
Tingquan Gao 已提交
453
    print_info()
C
chenziheng 已提交
454

T
Tingquan Gao 已提交
455 456 457
    def __init__(self,
                 model_name: str=None,
                 inference_model_dir: str=None,
T
Tingquan Gao 已提交
458
                 **kwargs):
T
Tingquan Gao 已提交
459
        """Init PaddleClas with config.
T
Tingquan Gao 已提交
460

T
Tingquan Gao 已提交
461
        Args:
462 463 464 465 466
            model_name (str, optional): The model name supported by PaddleClas. If specified, override config. Defaults to None.
            inference_model_dir (str, optional): The directory that contained model file and params file to be used. If specified, override config. Defaults to None.
            use_gpu (bool, optional): Whether use GPU. If specified, override config. Defaults to True.
            batch_size (int, optional): The batch size to pridict. If specified, override config. Defaults to 1.
            topk (int, optional): Return the top k prediction results with the highest score. Defaults to 5.
T
Tingquan Gao 已提交
467 468
        """
        super().__init__()
469 470 471 472 473
        self.model_type, inference_model_dir = self._check_input_model(
            model_name, inference_model_dir)
        self._config = init_config(self.model_type, model_name,
                                   inference_model_dir, **kwargs)

T
Tingquan Gao 已提交
474 475 476 477
        self.cls_predictor = ClsPredictor(self._config)

    def get_config(self):
        """Get the config.
C
chenziheng 已提交
478
        """
T
Tingquan Gao 已提交
479 480
        return self._config

481
    def _check_input_model(self, model_name, inference_model_dir):
T
Tingquan Gao 已提交
482 483
        """Check input model name or model files.
        """
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
        all_imn_model_names = get_imn_model_names()
        all_pulc_model_names = PULC_MODELS

        if model_name:
            if model_name in all_imn_model_names:
                inference_model_dir = check_model_file("imn", model_name)
                return "imn", inference_model_dir
            elif model_name in all_pulc_model_names:
                inference_model_dir = check_model_file("pulc", model_name)
                return "pulc", inference_model_dir
            else:
                similar_imn_names = similar_model_names(model_name,
                                                        all_imn_model_names)
                similar_pulc_names = similar_model_names(model_name,
                                                         all_pulc_model_names)
                similar_names_str = ", ".join(similar_imn_names +
                                              similar_pulc_names)
                err = f"{model_name} is not provided by PaddleClas. \nMaybe you want the : [{similar_names_str}]. \nIf you want to use your own model, please specify inference_model_dir!"
T
Tingquan Gao 已提交
502
                raise InputModelError(err)
503
        elif inference_model_dir:
T
Tingquan Gao 已提交
504 505 506 507 508 509 510 511
            model_file_path = os.path.join(inference_model_dir,
                                           "inference.pdmodel")
            params_file_path = os.path.join(inference_model_dir,
                                            "inference.pdiparams")
            if not os.path.isfile(model_file_path) or not os.path.isfile(
                    params_file_path):
                err = f"There is no model file or params file in this directory: {inference_model_dir}"
                raise InputModelError(err)
512
            return "custom", inference_model_dir
T
Tingquan Gao 已提交
513
        else:
T
Tingquan Gao 已提交
514
            err = f"Please specify the model name supported by PaddleClas or directory contained model files(inference.pdmodel, inference.pdiparams)."
T
Tingquan Gao 已提交
515
            raise InputModelError(err)
516
        return None
T
Tingquan Gao 已提交
517

518 519
    def predict(self, input_data: Union[str, np.array],
                print_pred: bool=False) -> Generator[list, None, None]:
T
Tingquan Gao 已提交
520 521
        """Predict input_data.

C
chenziheng 已提交
522
        Args:
G
gaotingquan 已提交
523
            input_data (Union[str, np.array]):
524 525
                When the type is str, it is the path of image, or the directory containing images, or the URL of image from Internet.
                When the type is np.array, it is the image data whose channel order is RGB.
G
gaotingquan 已提交
526
            print_pred (bool, optional): Whether print the prediction result. Defaults to False.
T
Tingquan Gao 已提交
527 528 529 530 531

        Raises:
            ImageTypeError: Illegal input_data.

        Yields:
G
gaotingquan 已提交
532 533 534
            Generator[list, None, None]:
                The prediction result(s) of input_data by batch_size. For every one image,
                prediction result(s) is zipped as a dict, that includs topk "class_ids", "scores" and "label_names".
G
gaotingquan 已提交
535
                The format of batch prediction result(s) is as follow: [{"class_ids": [...], "scores": [...], "label_names": [...]}, ...]
C
chenziheng 已提交
536
        """
537

T
Tingquan Gao 已提交
538
        if isinstance(input_data, np.ndarray):
G
gaotingquan 已提交
539
            yield self.cls_predictor.predict(input_data)
T
Tingquan Gao 已提交
540
        elif isinstance(input_data, str):
T
Tingquan Gao 已提交
541
            if input_data.startswith("http") or input_data.startswith("https"):
T
Tingquan Gao 已提交
542 543 544 545 546
                image_storage_dir = partial(os.path.join, BASE_IMAGES_DIR)
                if not os.path.exists(image_storage_dir()):
                    os.makedirs(image_storage_dir())
                image_save_path = image_storage_dir("tmp.jpg")
                download_with_progressbar(input_data, image_save_path)
G
gaotingquan 已提交
547
                logger.info(
T
Tingquan Gao 已提交
548 549
                    f"Image to be predicted from Internet: {input_data}, has been saved to: {image_save_path}"
                )
550
                input_data = image_save_path
T
Tingquan Gao 已提交
551 552 553 554 555
            image_list = get_image_list(input_data)

            batch_size = self._config.Global.get("batch_size", 1)

            img_list = []
T
Tingquan Gao 已提交
556 557
            img_path_list = []
            cnt = 0
558
            for idx_img, img_path in enumerate(image_list):
T
Tingquan Gao 已提交
559 560
                img = cv2.imread(img_path)
                if img is None:
G
gaotingquan 已提交
561
                    logger.warning(
T
Tingquan Gao 已提交
562 563
                        f"Image file failed to read and has been skipped. The path: {img_path}"
                    )
T
Tingquan Gao 已提交
564
                    continue
565
                img = img[:, :, ::-1]
T
Tingquan Gao 已提交
566 567 568 569
                img_list.append(img)
                img_path_list.append(img_path)
                cnt += 1

570
                if cnt % batch_size == 0 or (idx_img + 1) == len(image_list):
G
gaotingquan 已提交
571 572
                    preds = self.cls_predictor.predict(img_list)

573 574 575 576
                    if preds:
                        for idx_pred, pred in enumerate(preds):
                            pred["filename"] = img_path_list[idx_pred]
                            if print_pred:
G
gaotingquan 已提交
577
                                logger.info(", ".join(
578
                                    [f"{k}: {pred[k]}" for k in pred]))
T
Tingquan Gao 已提交
579

T
Tingquan Gao 已提交
580
                    img_list = []
T
Tingquan Gao 已提交
581
                    img_path_list = []
T
Tingquan Gao 已提交
582
                    yield preds
C
chenziheng 已提交
583
        else:
T
Tingquan Gao 已提交
584 585 586
            err = "Please input legal image! The type of image supported by PaddleClas are: NumPy.ndarray and string of local path or Ineternet URL"
            raise ImageTypeError(err)
        return
C
chenziheng 已提交
587 588


T
Tingquan Gao 已提交
589
# for CLI
C
chenziheng 已提交
590
def main():
T
Tingquan Gao 已提交
591 592 593
    """Function API used for commad line.
    """
    cfg = args_cfg()
T
Tingquan Gao 已提交
594 595 596 597
    clas_engine = PaddleClas(**cfg)
    res = clas_engine.predict(cfg["infer_imgs"], print_pred=True)
    for _ in res:
        pass
G
gaotingquan 已提交
598
    logger.info("Predict complete!")
T
Tingquan Gao 已提交
599
    return
C
chenziheng 已提交
600 601


T
Tingquan Gao 已提交
602
if __name__ == "__main__":
C
chenziheng 已提交
603
    main()